Microsoft MVP성태의 닷넷 이야기
닷넷: 2247. C# - tensorflow 연동 (MNIST 예제) [링크 복사], [링크+제목 복사],
조회: 10667
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - tensorflow 연동 (MNIST 예제)

요즘 접하기 쉬운 예제로 MNIST 손글씨 인식을 C#에서 tensorflow와 연동해 만들어 보겠습니다. 여기서 중요한 것은, Model을 구해야 하는 것인데요 ^^ 그 부분은 그냥 파이썬 환경에서 자유롭게 코딩해 구하기만 하면 됩니다.

예를 들어, 아래의 MNIST 예제는 my_mnist_model.keras 파일로 모델을 저장하고 있습니다.

// 케라스 창시자에게 배우는 딥러닝
// https://github.com/gilbutITbook/080315/blob/main/chapter02_mathematical-building-blocks.ipynb

import setuptools.dist
from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
    layers.Dense(512, activation='relu'),
    layers.Dense(10, activation='softmax')
    ])

model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'{test_acc}')

# https://www.tensorflow.org/tutorials/keras/save_and_load?hl=ko
model.save('my_mnist_model.keras')

my_mnist_model.keras 파일의 크기는 3MB 정도 됩니다. 이렇게 구한 Model 파일은 C# 프로젝트에 추가/배포해, 실행 시 C#에서 Python.NET을 이용해 저 Model 파일을 로드해 활용할 것입니다.




자, 그럼 본격적으로 위에서 만든 MNIST 필기체 인식 Model을 C#에서 Python과 연동해 볼까요? ^^

이를 위해, 모델을 이용한 predict 코드를 호출하는 파이썬 코드를 다음과 같이 만들어 줍니다.

# mnist_predict.py

import setuptools.dist
import tensorflow as tf
import numpy as np

model = tf.keras.models.load_model('my_mnist_model.keras')

def predict(img):
    imgs = np.expand_dims(img, axis=0)
    predictions = model.predict(imgs, verbose=0)
    predict_number = np.argmax(predictions[0])
    return (predict_number.item(), predictions[0][predict_number].item())

위의 predict 함수는 model.predict 호출 시 해당 이미지로 판정되는 숫자와 그 확률을 반환합니다.

그럼, 이제 Python.NET을 이용한 C# 코드에서는 이를 호출하는 코드만 다음과 같이 작성해 주면 됩니다.

using Python.Runtime;

namespace ConsoleApp3;

internal class Program
{
    static void Main(string[] args)
    {
        Runtime.PythonDLL = @".\python\python312.dll";

        PythonEngine.Initialize();

        using (_ = Py.GIL())
        {
            DisableTensorflowLog();

            dynamic npModule = Py.Import("numpy");

            {
                dynamic sys = Py.Import("sys");
                string dirPath = Path.GetDirectoryName(typeof(Program).Assembly.Location) ?? Environment.CurrentDirectory;
                sys.path.append(dirPath);
            }

            float[]? testImgArray = // ... 28x28 크기의 이미지 데이터 ...;
            dynamic npArray = npModule.array(testImgArray);

            {
                var pyFile = Py.Import(Path.GetFileNameWithoutExtension("mnist_predict"));

                dynamic results = pyFile.InvokeMethod("predict", npArray);

                int expected = results[0];
                double percentage = results[1];

                Console.WriteLine($"{expected}: {percentage:P0}");
            }
        }

        PythonEngine.Shutdown();
    }
}

만약 testImgArray에 7과 비슷한 숫자의 이미지를 담고 있는 28x28 크기의 버퍼가 있다면 위의 프로그램을 실행 시 "7: 100%"와 유사한 출력이 나옵니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)

만약 지난 글에 설명한 대로 CopyToOutputDirectory 설정을 했다면, 위의 예제를 실행했을 때 "C:\temp\ConsoleApp3\net8.0" 디렉터리에 출력이 모였을 것입니다. 해당 출력 파일만 다른 컴퓨터에 그대로 복사하면 (당연히 별도의 파이썬 설치 없이) 정상적으로 실행까지 됩니다.

한 가지 문제점이라면, 위의 경우 net8.0 출력에 있는 전체 바이너리의 크기가 (python + tensorflow까지 포함하므로) 1.6GB 정도, 압축하면 480MB 정도 됩니다. 만약 대상 컴퓨터에 파이썬 tensorflow 환경이 설치돼 있다면 이 용량을 없앨 수 있지만 그렇지 않은 경우라면... 뭔가 있어 보이는 ^^ 응용 프로그램의 크기를 자랑합니다.




참고로, 위의 코드를 Windows 10+ 환경에서 Python 3.12.0 버전으로 실행하면 load_model 시에 다음과 같은 오류가 발생합니다.

Traceback (most recent call last):
  File "C:\temp\ConsoleApp3\net8.0\python\test.py", line 36, in <module>
    model2 = tf.keras.models.load_model('my_mnist_model.keras')
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_api.py", line 176, in load_model
    return saving_lib.load_model(
           ^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 152, in load_model
    return _load_model_from_fileobj(
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 207, in _load_model_from_fileobj
    _raise_loading_failure(error_msgs)
  File "C:\temp\ConsoleApp3\net8.0\python\Lib\site-packages\keras\src\saving\saving_lib.py", line 295, in _raise_loading_failure
    raise ValueError(msg)
ValueError: A total of 1 objects could not be loaded. Example error message for object <keras.src.optimizers.adam.Adam object at 0x000001CBB0BCFBF0>:

The shape of the target variable and the shape of the target value in `variable.assign(value)` must match. variable.shape=(10,), Received: value.shape=(512, 10). Target variable: <KerasVariable shape=(10,), dtype=float32, path=adam/dense_1_bias_momentum>

List of objects that could not be loaded:
[<keras.src.optimizers.adam.Adam object at 0x000001CBB0BCFBF0>]))

3.12.2 이상의 버전에서 하면 오류가 발생하지 않습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/24/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13945정성태6/7/2025458오류 유형: 960. 파이썬 + conda - mysqlclient 사용 시 "NameError: name '_mysql' is not defined" 에러
13944정성태6/7/2025475오류 유형: 959. The trust relationship between this workstation and the primary domain failed. - 네 번째 이야기
13943정성태6/6/2025710개발 환경 구성: 748. Windows + Foundry Local - 로컬에서 AI 모델 활용
13942정성태6/5/2025887오류 유형: 958. winget 설치 시 "0x80d02002 : unknown error"
13941정성태6/2/20251040닷넷: 2334. C# - cpuid 명령어를 이용한 CPU 제조사 문자열 가져오기파일 다운로드1
13940정성태6/1/20251419C/C++: 188. C++의 32비트 + Release 어셈블리 코드를 .NET으로 포팅할 때 주의할 점파일 다운로드1
13939정성태5/29/20251711오류 유형: 957. NVIDIA Triton Inference Server - version `GLIBCXX_3.4.32' not found (required by /opt/tritonserver/backends/python/triton_python_backend_stub)
13938정성태5/29/20251435개발 환경 구성: 747. 파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
13937정성태5/24/20251360개발 환경 구성: 746. Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식
13936정성태5/23/20251189개발 환경 구성: 745. Linux / WSL 환경에 Miniconda 설치하기
13935정성태5/20/20251233파이썬 - pip 사용 시 "ImportError: cannot import name 'html5lib' from 'pip._vendor'" 오류
13934정성태5/20/20251712스크립트: 77. 파이썬 - 'urllib.request' 모듈의 명시적/암시적 로딩 차이
13933정성태5/19/20251291오류 유형: 956. Visual Studio 2022가 17.12 버전부터 업데이트 되지 않는다면?
13932정성태5/18/20251502스크립트: 76. 파이썬 - Version 문자열 다루기(semver 패키지)
13931정성태5/17/20251793스크립트: 75. 파이썬 - Cython 기본 예제 및 컴파일
13930정성태5/17/20251491개발 환경 구성: 744. 파이썬 - Windows embeddable package 환경에서 외부 패키지 사용하는 방법(ex: UFO² 환경 구성)
13929정성태5/16/20251519오류 유형: 955. 파이썬 - "Windows embeddable package" REPL 환경에서 "NameError: name 'exit' is not defined"
13928정성태5/15/20251558오류 유형: 954. UFO² - "'Invalid URL (POST /v1/chat/completions/chat/completions)'"
13927정성태5/15/20251545오류 유형: 953. OpenAI - The API request of HOST_AGENT failed: OpenAI API request exceeded rate limit: Error code: 429
13926정성태5/14/20251907개발 환경 구성: 743. LLM과 윈도우의 만남 - Desktop AgentOS UFO² 기본 환경 구성
13925정성태5/12/20252010닷넷: 2333. C# - (Console 유형의 프로젝트에서) Clipboard 연동파일 다운로드1
13924정성태5/8/20251759닷넷: 2332. C# - (JetBrains Omea Reader 대상으로) 런타임 시에 메서드 가로채기 [2]파일 다운로드1
13923정성태5/5/20251505스크립트: 74. 파이썬 - C# - Python.NET의 RunSimpleScript, Exec, Eval 차이점파일 다운로드1
13922정성태5/3/20251757스크립트: 73. 파이썬 - Windows embeddable package 버전에서 tkinter 환경 구성
13921정성태5/3/20252284오류 유형: 952. 듀얼 채널 메모리 정렬을 지키지 않은 컴퓨터의 Windows 비정상 종료 현상(Blue Screen) [2]
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...