Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/12/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




... [16]  17  18  19  20  21  22  23  24  25  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
11973정성태7/4/20191533Linux: 21. 리눅스에서 공유 라이브러리가 로드되지 않는다면?
11972정성태7/3/20191850.NET Framework: 847. JAVA와 .NET 간의 AES 암호화 연동파일 다운로드1
11971정성태7/3/20191700개발 환경 구성: 447. Visual Studio Code에서 OpenCvSharp 개발 환경 구성
11970정성태7/2/20191406오류 유형: 552. 웹 브라우저에서 파일 다운로드 후 "Running security scan"이 끝나지 않는 문제
11969정성태7/7/20191347Math: 63. C# - 3층 구조의 신경망파일 다운로드1
11968정성태7/1/20193599오류 유형: 551. Visual Studio Code에서 Remote-SSH 연결 시 "Opening Remote..." 단계에서 진행되지 않는 문제 [1]
11967정성태7/1/20191417개발 환경 구성: 446. Synology NAS를 Windows 10에서 iSCSI로 연결하는 방법
11966정성태6/30/20191392Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화파일 다운로드1
11965정성태6/30/20191475.NET Framework: 846. C# - 2차원 배열을 1차원 배열로 나열하는 확장 메서드파일 다운로드1
11964정성태6/30/20191896Linux: 20. C# - Linux에서의 Named Pipe를 이용한 통신
11963정성태6/29/20191771Linux: 19. C# - .NET Core Unix Domain Socket 사용 예제
11962정성태6/27/20191163Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류파일 다운로드1
11961정성태6/27/2019947Graphics: 37. C# - PLplot - 출력 모음(Family File Output)
11960정성태6/27/20191320Graphics: 36. C# - PLplot의 16색 이상을 표현하는 방법과 subpage를 이용한 그리드 맵 표현
11959정성태6/27/20191077Graphics: 35. matplotlib와 PLplot의 한글 처리
11958정성태6/25/20192635Linux: 18. C# - .NET Core Console로 리눅스 daemon 프로그램 만드는 방법 [1]
11957정성태6/24/20193035Windows: 160. WMI 쿼리를 명령행에서 간단하게 수행하는 wmic.exe [1]
11956정성태6/24/20192175Linux: 17. CentOS 7에서 .NET Core Web App 실행 환경 구성 [1]
11955정성태6/20/20191567Math: 60. C# - 로지스틱 회귀를 이용한 분류파일 다운로드1
11954정성태6/20/20192044오류 유형: 550. scp - sudo: no tty present and no askpass program specified
11953정성태6/20/20191282오류 유형: 549. The library 'libhostpolicy.so' required to execute the application was not found in '...'
11952정성태6/20/20191591Linux: 16. 우분투, Centos의 Netbios 호스트 이름 풀이 방법
11951정성태6/20/20191924오류 유형: 548. scp 연결 시 "Permission denied" 오류 및 "WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!" 경고
11950정성태6/18/20192065.NET Framework: 845. C# - 윈도우 작업 관리자와 리소스 모니터의 메모리 값을 구하는 방법
11949정성태6/18/20191105오류 유형: 547. CoreCLR Profiler 예제 프로젝트 빌드 시 컴파일 오류 유형
11948정성태6/17/20191314Linux: 15. 리눅스 환경의 Visual Studio Code에서 TFS 서버 연동
... [16]  17  18  19  20  21  22  23  24  25  26  27  28  29  30  ...