Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 9개 있습니다.)
.NET Framework: 497. .NET Garbage Collection에 대한 정리
; https://www.sysnet.pe.kr/2/0/1862

.NET Framework: 728. windbg - 눈으로 확인하는 Workstation GC / Server GC
; https://www.sysnet.pe.kr/2/0/11445

.NET Framework: 729. windbg로 살펴보는 GC heap의 Segment 구조
; https://www.sysnet.pe.kr/2/0/11446

.NET Framework: 1026. 닷넷 5에 추가된 POH (Pinned Object Heap)
; https://www.sysnet.pe.kr/2/0/12545

.NET Framework: 1029. C# - GC 호출로 인한 메모리 압축(Compaction)을 확인하는 방법
; https://www.sysnet.pe.kr/2/0/12572

.NET Framework: 1059. 세대 별 GC(Garbage Collection) 방식에서 Card table의 사용 의미
; https://www.sysnet.pe.kr/2/0/12649

.NET Framework: 1060. 닷넷 GC에 새롭게 구현되는 DPAD(Dynamic Promotion And Demotion for GC)
; https://www.sysnet.pe.kr/2/0/12653

.NET Framework: 2024. .NET 7에 도입된 GC의 메모리 해제에 대한 segment와 region의 차이점
; https://www.sysnet.pe.kr/2/0/13083

닷넷: 2209. .NET 8 - NonGC Heap / FOH (Frozen Object Heap)
; https://www.sysnet.pe.kr/2/0/13536




C# - GC 호출로 인한 메모리 압축(Compaction)을 확인하는 방법

GC의 동작으로 인해 메모리 압축이 일어난 경우를 간단하게 재현해 볼까요? ^^

using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
class Program
{
    uint _n = 0xffffffff;

    static unsafe void Main(string[] args)
    {
        Program pg1 = new Program();
        Program pg2 = new Program();

        ShowAddress("pg1", pg1);
        ShowAddress("pg2", pg2);

        Console.WriteLine();

        for (int i = 0; i <= GC.MaxGeneration; i++)
        {
            GC.Collect(i, GCCollectionMode.Forced);
        }

        ShowAddress("pg1", pg1);
        ShowAddress("pg2", pg2);
    }

    private static IntPtr ShowAddress(string title, object instance, bool output = true)
    {
        IntPtr ptr = GetRefAddress(instance);

        if (output)
        {
            Console.WriteLine($"{title}: " + ptr.ToInt64().ToString("x") + $", {GC.GetGeneration(instance)}");
        }

        return ptr;
    }

    private unsafe static IntPtr GetRefAddress(object obj)
    {
        TypedReference refA = __makeref(obj);
        return **(IntPtr**)&refA;
    }
}

위의 코드에서는 (pg1 이전에 닷넷 프로그램 실행 자체의 힙 할당이 있었을 것이므로) GC 호출로 인해 pg1과 pg2의 메모리 이동이 발생할 것으로 예상됩니다. 하지만 실제로 실행해 보면 다음과 같이 GC 전/후의 결과가 같습니다.

// x86 + Release 빌드 - 출력 결과
pg1: 4f0aa9c, 0
pg2: 4f0aaa8, 0

pg1: 4f0aa9c, 2
pg2: 4f0aaa8, 2

(pg2와 pg1의 주소 차이가 0x0c인데 이에 대해서는 "일반 참조형의 기본 메모리 소비는 얼마나 될까요?" 글에서 자세히 다루고 있습니다.)

테스트 결과로만 보면 GC는 소규모 변화인 경우 메모리 이동까지는 굳이 하지 않는 듯합니다. 이에 대한 테스트로 다음과 같이 pg1 인스턴스 생성 이전에 좀 더 많은 개체를 생성하는 코드를 넣어보면 알 수 있습니다.

MakeObject();

Program pg1 = new Program();
Program pg2 = new Program();

private static void MakeObject(int count = 1000)
{
    for (int i = 0; i < count; i++)
    {
        Program pgt1 = new Program();
    }
}

재미있는 것은, 위와 같이 1,000 ~ 3,000개 정도로는 여전히 메모리 이동이 없고 "MakeObject(4000)" 정도는 해야 다음과 같이 메모리 이동을 확인할 수 있습니다.

pg1: 4eb6744, 0
pg2: 4eb6750, 0

pg1: 4eaa9f4, 2
pg2: 4eaaa00, 2




이쯤에서 그럼 GC.Collect의 동작을 살짝 살펴볼까요? ^^ 우선, 본문에서 사용한 GC.Collect(Int32, GCCollectionMode) 메서드의 도움말을 보면,

Forces a garbage collection from generation 0 through a specified generation, at a time specified by a GCCollectionMode value.


의미 상으로 0 ~ n까지 GC를 수행하는 걸로 보이는데, 실제로 이것은 다음의 코드를 통해 확인할 수 있습니다.

ShowGCCount();

for (int i = 0; i <= GC.MaxGeneration; i++)
{
    GC.Collect(i, GCCollectionMode.Forced);
}

ShowGCCount();

private static void ShowGCCount()
{
    Console.WriteLine($"GC0: {GC.CollectionCount(0)}, GC1: {GC.CollectionCount(1)}, GC2: {GC.CollectionCount(2)}");
}

/* 출력 결과
GC0: 0, GC1: 0, GC2: 0
GC0: 3, GC1: 2, GC2: 1
*/

따라서, 그냥 전 세대의 GC를 수행하는 경우 저렇게 세대별로 GC.Collect를 할 필요 없이 그냥 단일 호출로 해도 되고, 또는 GC.Collect()를 호출해도 같은 효과를 갖습니다.

GC.Collect(2, GCCollectionMode.Forced);
// == GC.Collect(); // Forces an immediate garbage collection of all generations.

ShowGCCount();

/* 출력 결과
GC0: 1, GC1: 1, GC2: 1
*/

참고로, 아래는 GC.Collect의 원본 소스 코드입니다.

public static void Collect()
{
    _Collect(-1, 2);
}

public static void Collect(int generation, GCCollectionMode mode)
{
    Collect(generation, mode, blocking: true);
}

public static void Collect(int generation, GCCollectionMode mode, bool blocking)
{
    Collect(generation, mode, blocking, compacting: false);
}

public static void Collect(int generation, GCCollectionMode mode, bool blocking, bool compacting)
{
    if (generation < 0)
    {
        throw new ArgumentOutOfRangeException("generation", Environment.GetResourceString("ArgumentOutOfRange_GenericPositive"));
    }

    if (mode < GCCollectionMode.Default || mode > GCCollectionMode.Optimized)
    {
        throw new ArgumentOutOfRangeException(Environment.GetResourceString("ArgumentOutOfRange_Enum"));
    }

    int num = 0;
    if (mode == GCCollectionMode.Optimized)
    {
        num |= 4;
    }

    if (compacting)
    {
        num |= 8;
    }

    if (blocking)
    {
        num |= 2;
    }
    else if (!compacting)
    {
        num |= 1;
    }

    _Collect(generation, num);
}

[DllImport("QCall", CharSet = CharSet.Unicode)]
[SecurityCritical]
[SuppressUnmanagedCodeSecurity]
private static extern void _Collect(int generation, int mode);




위의 소스 코드에서 GC.Collect(int generation, GCCollectionMode mode, bool blocking, bool compacting) 버전을 보면 알겠지만, 사실 메모리 이동을 명시하는 compacting 변수를 설정하면 이 글의 예제를 다음과 같이 다시 테스트해볼 수 있습니다.

Program pg1 = new Program();
Program pg2 = new Program();

ShowAddress("pg1", pg1);
ShowAddress("pg2", pg2);
Console.WriteLine();

GC.Collect(0, GCCollectionMode.Forced, true, true);

ShowAddress("pg1", pg1);
ShowAddress("pg2", pg2);

/* 출력 결과
pg1: 527aaac, 0
pg2: 527aab8, 0

pg1: 527a924, 1
pg2: 527a930, 1
*/

즉, compacting 값이 true인 경우 GC는 강제로 메모리 이동을 하지만, false인 경우에는 상황에 따라 필요하면 메모리 이동을 한다고 보면 됩니다.

그런데 compacting 변수를 명시하는 경우, 재미있는 현상이 하나 있습니다. "Internals of the POH" 글에 보면,

Usually when a GC of generation G happens, objects that were in G would be in (G+1), but we may choose to leave a pinned object that was in generation G still in G, instead of promoting it to (G+1). This is called demotion.


Pinning 개체의 경우 GC가 수행돼도 세대가 올라가지 않는다는 "demotion"에 대해 설명하고 있는데요, 이것을 다음과 같이 테스트해볼 수 있습니다.

static unsafe void Main(string[] args)
{
    Program pg1 = new Program();
    MakeObject(1000);
    Program pg2 = new Program();

    GCHandle pinPg2 = GCHandle.Alloc(pg2, GCHandleType.Pinned);

    ShowAddress("pg1", pg1);
    ShowAddress("pg2", pg2);
    Console.WriteLine();
    GC.Collect(2, GCCollectionMode.Forced, true, true);

    ShowAddress("pg1", pg1);
    ShowAddress("pg2", pg2);
    Console.WriteLine();

    GC.Collect(2, GCCollectionMode.Forced, true, true);
    ShowAddress("pg1", pg1);
    ShowAddress("pg2", pg2);
}

/* 출력 결과
pg1: 509aac0, 0
pg2: 509da4c, 0

pg1: 509a938, 1
pg2: 509da4c, 0

pg1: 509a914, 2
pg2: 509da4c, 0
*/

보는 바와 같이 pg2 개체는 pg1과는 달리 GC.Collect에 따라 세대가 올라가지 않고 여전히 0에 머물고 있습니다. 그렇다고 해서 pg2 개체의 pinning 상태가 해제될 때까지 언제까지나 0 세대에 머무는 것은 아닙니다. 가령 compacting == false로 GC.Collect를 수행하면 정상적으로 세대가 올라갑니다.

GC.Collect(2, GCCollectionMode.Forced, true, false);
ShowAddress("pg2", pg2);
GC.Collect(2, GCCollectionMode.Forced, true, false);
ShowAddress("pg2", pg2);

/* 출력 결과
pg2: 509da4c, 1
pg2: 509da4c, 2
*/

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/17/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  [8]  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13430정성태10/30/20232667닷넷: 2153. C# - 사용자가 빌드한 ICU dll 파일을 사용하는 방법
13429정성태10/27/20232953닷넷: 2152. Win32 Interop - C/C++ DLL로부터 이중 포인터 버퍼를 C#으로 받는 예제파일 다운로드1
13428정성태10/25/20233016닷넷: 2151. C# 12 - ref readonly 매개변수
13427정성태10/18/20233201닷넷: 2150. C# 12 - 정적 문맥에서 인스턴스 멤버에 대한 nameof 접근 허용(Allow nameof to always access instance members from static context)
13426정성태10/13/20233368스크립트: 59. 파이썬 - 비동기 호출 함수(run_until_complete, run_in_executor, create_task, run_in_threadpool)
13425정성태10/11/20233170닷넷: 2149. C# - PLinq의 Partitioner<T>를 이용한 사용자 정의 분할파일 다운로드1
13423정성태10/6/20233148스크립트: 58. 파이썬 - async/await 기본 사용법
13422정성태10/5/20233288닷넷: 2148. C# - async 유무에 따른 awaitable 메서드의 병렬 및 예외 처리
13421정성태10/4/20233347닷넷: 2147. C# - 비동기 메서드의 async 예약어 유무에 따른 차이
13420정성태9/26/20235530스크립트: 57. 파이썬 - UnboundLocalError: cannot access local variable '...' where it is not associated with a value
13419정성태9/25/20233190스크립트: 56. 파이썬 - RuntimeError: dictionary changed size during iteration
13418정성태9/25/20233887닷넷: 2146. C# - ConcurrentDictionary 자료 구조의 동기화 방식
13417정성태9/19/20233424닷넷: 2145. C# - 제네릭의 형식 매개변수에 속한 (매개변수를 가진) 생성자를 호출하는 방법
13416정성태9/19/20233235오류 유형: 877. redis-py - MISCONF Redis is configured to save RDB snapshots, ...
13415정성태9/18/20233728닷넷: 2144. C# 12 - 컬렉션 식(Collection Expressions)
13414정성태9/16/20233486디버깅 기술: 193. Windbg - ThreadStatic 필드 값을 조사하는 방법
13413정성태9/14/20233684닷넷: 2143. C# - 시스템 Time Zone 변경 시 이벤트 알림을 받는 방법
13412정성태9/14/20236962닷넷: 2142. C# 12 - 인라인 배열(Inline Arrays) [1]
13411정성태9/12/20233461Windows: 252. 권한 상승 전/후 따로 관리되는 공유 네트워크 드라이브 정보
13410정성태9/11/20234981닷넷: 2141. C# 12 - Interceptor (컴파일 시에 메서드 호출 재작성) [1]
13409정성태9/8/20233840닷넷: 2140. C# - Win32 API를 이용한 모니터 전원 끄기
13408정성태9/5/20233803Windows: 251. 임의로 만든 EXE 파일을 포함한 ZIP 파일의 압축을 해제할 때 Windows Defender에 의해 삭제되는 경우
13407정성태9/4/20233558닷넷: 2139. C# - ParallelEnumerable을 이용한 IEnumerable에 대한 병렬 처리
13406정성태9/4/20233525VS.NET IDE: 186. Visual Studio Community 버전의 라이선스
13405정성태9/3/20233969닷넷: 2138. C# - async 메서드 호출 원칙
13404정성태8/29/20233485오류 유형: 876. Windows - 키보드의 등호(=, Equals sign) 키가 눌리지 않는 경우
1  2  3  4  5  6  7  [8]  9  10  11  12  13  14  15  ...