
Extracting Euler Angles from a Rotation Matrix

Mike Day, Insomniac Games
mday@insomniacgames.com

This article attempts to fix a problem which came up when implementing Ken Shoemake’s Euler angle
extraction in the context of a single-precision floating point library. The original Shoemake code uses
double precision, which presumably maintains sufficient precision for the problem not to arise.

We’ll follow the notational conventions of Shoemake’s “Euler Angle Conversion”, Graphics Gems IV, pp.
222-9, with the exception that our vectors are row vectors instead of column vectors. Thus, all our
matrices are transposed relative to Shoemake’s, and a sequence of rotations will be written from left to
right. We’ll simplify the discussion by ignoring the various possible axis permutations, and will instead
focus on one particular order of applying rotations to illustrate the problem.

Consider the following sequence of rotations: about the x-axis, then about the y-axis, then
about the z-axis, each rotation being applied about one of the world axes as opposed to one of the body
axes. This can be written

with , , etc.

Now suppose we are given a matrix

and are required to extract Euler angles corresponding to the above rotation sequence, i.e. find angles
 , , which make the two matrices equal.

In the general case, Shoemake’s code proceeds as follows. First is extracted using

Next, is computed using using

mailto:mday@insomniacgames.com

and hence using

Finally is obtained using

which is problematic when and are both very small or zero. We may note that this will also
cause and to be very small or zero (since will be near), making the extraction of
equally problematic. Shoemake’s solution is to test the value computed for against a tiny threshold –
if it falls below this threshold then the matrix elements reduce to approximately the following:

and in this case the angles and are extracted by a different code path. This matrix provides an
example of the phenomenon of gimbal lock, in which the 1st and 3rd axes are brought into alignment by
the 2nd rotation, effectively losing a degree of freedom because now and act in combination as
though they were a single parameter. Shoemake handles this case by forcing to zero – which is ok,
because gimbal lock allows us to arbitrarily set one of θ1 and θ3 and then derive the other. This further
reduces the matrix to the following form:

from which is easily extracted using

This works perfectly well for cases which fall within the small threshold, which is 16*FLT_EPSILON in
Shoemake’s code. (I wasn’t able to tell where this magic value came from – maybe it’s just a very long-
lived fudge factor.) However, it can be dangerous to use in cases which fall just outside the threshold.

When the routine is passed a real-world single-precision matrix whose elements are subject to some
typical rounding errors, can be expected to take on a fairly chaotic set of values. This is not surprising,
as we expect near-gimbal-lock orientations to produce wild jumps in the angle values, and any
numerical errors can accentuate these jumps. This in itself is not a major issue because of the close

http://en.wikipedia.org/wiki/Gimbal_lock

relationship between and near the gimbal lock orientations. Any wobble in the value of can be
counteracted by a suitable anti-wobble in the value of .

 However, we have a couple of major expectations of the extracted angles. First, they should
approximately reproduce the original matrix when passed to the inverse function. Second, although we
may not be able to extract an accurate or in isolation, we still expect their resultant angle to be
correct: the extracted values should not be independent.

In Shoemake’s version, in cases which fall outside the threshold, the angles and , while
algebraically dependent, are numerically independent in the sense that rounding errors in one are not
compensated for in the other. In single-precision code these rounding errors can be very large, leading
to completely erroneous results when the computed angles are used in an attempt to reconstruct the
original matrix.

This theory is easily tested by passing to the Shoemake version a gimbal locked matrix with a couple of
the zeros slightly jiggled by amounts just larger than 16*FLT_EPSILON – i.e. of the order 10-6, which
could easily arise from rounding errors in real-world single-precision matrices. Sure enough, the result of
passing the extracted angles into the inverse function is often a completely different matrix. That’s a
bug, because we’d like it to be insensitive to rounding errors of order 10-6. We might try substantially
increasing the threshold, to make the results less sensitive to rounding error, but the trouble with this
approach is that the approximation used in the gimbal lock cases would no longer be valid.

Have we all simply lived with this problem? Perhaps the errors in double precision matrices tend to be
sufficiently small that the bad cases never arise, but this reliance doesn’t seem like a robust approach,
and is certainly not the way to go for a single-precision library.

Fortunately, there seems to be an easy fix: compute the rotation generated by the first and second
extracted angles, and work out the rotation needed in the third angle to match the target matrix. This is
easily derived by pre-multiplying the target matrix by the transpose of the reconstructed first-and-
second-angle matrix. So we need to compute the following:

If this product represents a pure rotation about the z-axis, it must be of the following form:

and extraction of should be straightforward. In practice we don’t even need to compute a full matrix
product. Reading across the middle row of , we obtain

and hence

which requires that we compute the sine and cosine of the value we extracted for . This way, any
gimbal lock instability in the value of is fed back into the extraction process, and will be counteracted
in the value computed for . Note that this method of extracting the 3rd angle makes no assumptions
about the other two angles, so that it can be applied in the non-gimbal lock cases too, and no
conditional branches are needed.

The final calculation is

