
Extracting Euler Angles from a Rotation Matrix 
 

Mike Day, Insomniac Games 
mday@insomniacgames.com 

 
 
This article attempts to fix a problem which came up when implementing Ken Shoemake’s Euler angle 
extraction in the context of a single-precision floating point library. The original Shoemake code uses 
double precision, which presumably maintains sufficient precision for the problem not to arise. 
 
We’ll follow the notational conventions of Shoemake’s “Euler Angle Conversion”, Graphics Gems IV, pp. 
222-9, with the exception that our vectors are row vectors instead of column vectors. Thus, all our 
matrices are transposed relative to Shoemake’s, and a sequence of rotations will be written from left to 
right. We’ll simplify the discussion by ignoring the various possible axis permutations, and will instead 
focus on one particular order of applying rotations to illustrate the problem. 
 
Consider the following sequence of rotations:    about the x-axis, then    about the y-axis, then    
about the z-axis, each rotation being applied about one of the world axes as opposed to one of the body 
axes. This can be written 
 

                      
   
     
      

   
      
   
     

   
     
      
   

  

 

  

           
                          
                          

  

 
 
with         ,         , etc. 
 
Now suppose we are given a matrix 
 

   

         

         

         

  

 
and are required to extract Euler angles corresponding to the above rotation sequence, i.e. find angles 
  ,   ,    which make the two matrices equal. 
 
In the general case, Shoemake’s code proceeds as follows. First    is extracted using 
 

                   
 

                   
 
Next,    is computed using using 
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and hence    using 
 

                   
 
Finally    is obtained using 
 

                   
 

                   
 
 
which is problematic when     and     are both very small or zero. We may note that this will also 
cause     and     to be very small or zero (since     will be near   ), making the extraction of    
equally problematic. Shoemake’s solution is to test the value computed for    against a tiny threshold – 
if it falls below this threshold then the matrix elements reduce to approximately the following: 
 

 
       

                     
                     

  

 
and in this case the angles    and    are extracted by a different code path. This matrix provides an 
example of the phenomenon of gimbal lock, in which the 1st and 3rd axes are brought into alignment by 
the 2nd rotation, effectively losing a degree of freedom because now    and    act in combination as 
though they were a single parameter. Shoemake handles this case by forcing    to zero –  which is ok, 
because gimbal lock allows us to arbitrarily set one of θ1 and θ3 and then derive the other. This further 
reduces the matrix to the following form: 
 

 
       
      
       

  

 
from which    is easily extracted using  
 

                    
 
This works perfectly well for cases which fall within the small threshold, which is 16*FLT_EPSILON in 
Shoemake’s code. (I wasn’t able to tell where this magic value came from – maybe it’s just a very long-
lived fudge factor.) However, it can be dangerous to use in cases which fall just outside the threshold. 
 
When the routine is passed a real-world single-precision matrix whose elements are subject to some 
typical rounding errors,    can be expected to take on a fairly chaotic set of values. This is not surprising, 
as we expect near-gimbal-lock orientations to produce wild jumps in the angle values, and any 
numerical errors can accentuate these jumps. This in itself is not a major issue because of the close 
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relationship between    and    near the gimbal lock orientations. Any wobble in the value of    can be 
counteracted by a suitable anti-wobble in the value of   . 
 
 However, we have a couple of major expectations of the extracted angles. First, they should 
approximately reproduce the original matrix when passed to the inverse function. Second, although we 
may not be able to extract an accurate    or    in isolation, we still expect their resultant angle to be 
correct: the extracted values should not be independent. 
 
In Shoemake’s version, in cases which fall outside the threshold, the angles    and   , while 
algebraically dependent, are numerically independent in the sense that rounding errors in one are not 
compensated for in the other. In single-precision code these rounding errors can be very large, leading 
to completely erroneous results when the computed angles are used in an attempt to reconstruct the 
original matrix. 
 
This theory is easily tested by passing to the Shoemake version a gimbal locked matrix with a couple of 
the zeros slightly jiggled by amounts just larger than 16*FLT_EPSILON – i.e. of the order 10-6, which 
could easily arise from rounding errors in real-world single-precision matrices. Sure enough, the result of 
passing the extracted angles into the inverse function is often a completely different matrix. That’s a 
bug, because we’d like it to be insensitive to rounding errors of order 10-6. We might try substantially 
increasing the threshold, to make the results less sensitive to rounding error, but the trouble with this 
approach is that the approximation used in the gimbal lock cases would no longer be valid. 
 
Have we all simply lived with this problem? Perhaps the errors in double precision matrices tend to be 
sufficiently small that the bad cases never arise, but this reliance doesn’t seem like a robust approach, 
and is certainly not the way to go for a single-precision library. 
 
Fortunately, there seems to be an easy fix: compute the rotation generated by the first and second 
extracted angles, and work out the rotation needed in the third angle to match the target matrix. This is 
easily derived by pre-multiplying the target matrix by the transpose of the reconstructed first-and-
second-angle matrix. So we need to compute the following: 
 

      
   
     
      

  
      
   
     

  

 

 

         

         

         

  

 
 

   
      
          
           

 

 

 

         

         

         

  

 
 

   

          
      
           

  

         

         

         

  

 
 
If this product represents a pure rotation about the z-axis, it must be of the following form: 
 



    
     
      
   

  

 
and extraction of    should be straightforward. In practice we don’t even need to compute a full matrix 
product. Reading across the middle row of   , we obtain 
 

                                       
 
and hence 
 

                                   
 
which requires that we compute the sine and cosine of the value we extracted for   . This way, any 
gimbal lock instability in the value of    is fed back into the extraction process, and will be counteracted 
in the value computed for   . Note that this method of extracting the 3rd angle makes no assumptions 
about the other two angles, so that it can be applied in the non-gimbal lock cases too, and no 
conditional branches are needed. 
 
The final calculation is 
 

                   
 

       
     

  
 

                   
 

                         
 

                                   
 


