

Web Service Security
Scenarios, Patterns, and Implementation Guidance
for Web Services Enhancements (WSE) 3.0

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
MSDN, and Visual Studio are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Forewards v

Preface viii

Introduction 1
Overview. 1
Common Scenarios . 5

Part I
Core Web Service Security Patterns 23

Chapter 1
Authentication Patterns 24

Introduction . 24
Direct Authentication . 33
Brokered Authentication . 38
Brokered Authentication: Kerberos . 44
Brokered Authentication: X.509 PKI . 52
Brokered Authentication: Security Token Service (STS) . 59
More Information . 72

Chapter 2
Message Protection Patterns 73

Introduction . 73
Data Confidentiality . 76
Data Origin Authentication . 83
More Information . 90

Chapter 3
Implementing Transport and Message Layer Security 91

Introduction . 91
Implementing Direct Authentication with UsernameToken in WSE 3.0. 97
Implementing Message Layer Security with Kerberos in WSE 3.0. 120
Implementing Message Layer Security with X.509 Certificates in WSE 3.0. 138
Implementing Message Layer Security with

a Security Token Service (STS) in WSE 3.0 . 159
References for Transport Layer Security . 160
More Information . 165

iv Contents

Part II
Additional Web Service Security Patterns and Guidance 167

Chapter 4
Resource Access Patterns 168

Introduction . 168
Trusted Subsystem . 172
Protocol Transition with Constrained Delegation Technical Supplement 179
More Information. 192

Chapter 5
Service Boundary Protection Patterns 193

Introduction . 193
Message Replay Detection . 194
Implementing Message Replay Detection in WSE 3.0 . 199
Message Validator. 219
Implementing Message Validation in WSE 3.0 . 223
Exception Shielding . 238
Implementing Exception Shielding . 242
More Information. 251

Chapter 6
Service Deployment Patterns 253

Introduction . 253
Perimeter Service Router . 254
Implementing Perimeter Service Router in WSE 3.0 . 259
More Information. 269

Chapter 7
Technical Supplements 270

Introduction . 270
Kerberos Technical Supplement for Windows . 271
X.509 Technical Supplement . 290
More Information. 300

Appendix 302
Introduction . 302
Problem/Solution Index . 302
WSE 3.0 Security: Interoperability Considerations. 312
Policy Advisor for WSE 3.0 . 317
Patterns: A Common Vocabulary for Information Technology Professionals 324
Glossary . 333

Bibliography 338
Additional Resources 348

Forewards

Foreword by Alex Stamos and Scott Stender
As consultants for iSEC Partners, we have helped our customers develop and
deploy Web service-based systems in environments that range from financial services
to health care, and have helped multiple industry-leading independent software
vendors integrate Web services into their products. We have shared our experience
of testing and deploying secure Web services in multiple speaking opportunities,
including in academic settings, at OWASP chapter and national meetings, and at
conferences including SyScan and BlackHat.

In almost every presentation we have given, we are asked how to protect against
security risks in a Web services world, and where developers can look for advice on
writing secure Web services. Unfortunately, quality content and guidance has been
hard to find.

The content provided by Microsoft’s patterns & practices team addresses this
dire need. The design and implementation guidance will help developers identify
application-level security risks in their Web service deployments and implement
standard practices to mitigate those risks. We recommend that Web service
developers, particularly those using the .NET Framework, review this content and
implement its suggestions to help improve security in an increasingly interconnected
world. The design and implementation guidance provided in this guide increases
understanding of this complex space, and should prove of significant use in the
Web service development lifecycle.

Alex Stamos and Scott Stender
Founding Partners
iSEC Partners
November 2005

Alex Stamos is a founding partner of iSEC Partners, a strategic digital security organization.
Alex is an experienced security engineer and consultant specializing in enterprise application
security and has taught multiple classes in network and application security. Before he helped
form iSEC Partners, Alex spent two years as a Managing Security Architect with @stake,
performing advanced application security research and consulting. Alex has also run security
for a large managed services company and has worked at a DoE national laboratory. He holds
a BSEE from the University of California, Berkeley. Alex can be reached at
alex@isecpartners.com.

mailto:alex@isecpartners.com

vi Web Service Security

Scott Stender is a founding partner of iSEC Partners, a strategic digital security organization.
Scott brings with him several years of experience in large-scale software development and
security consulting. Prior to helping form iSEC Partners, Scott specialized in application
security consulting with @stake. In his research, Scott focuses on secure software engineering
methodology and security analysis of core technologies. Most recently, Scott was published in
the January-February 2005 issue of IEEE Security & Privacy, where he co-authored a paper
entitled Software Penetration Testing and presented on Attacking Web Services at BlackHat
USA 2005. He holds a BS in Computer Engineering from the University of Notre Dame.
Scott can be reached at scott@isecpartners.com.

Foreword by Rudolph Araujo
Web services have, for a few years now, promised to be the future of the Internet and
the World Wide Web. The ability to build rich federated environments that enable
complex business-to-business scenarios and allow organizations to expose powerful
line of business applications is tremendously exciting. All of this is possible using
existing IT assets and investments and by adhering to universal standards that allow
for interoperability between disparate technology solutions. With all that potential,
the question often raised is why Web services have continued to remain on the
“brink of deployment” in many organizations for so long.

In talking to many organizations, I have found that one of the biggest stumbling
blocks tends to be the lack of a clear understanding of what it means to securely
build and deploy a Web service, and create these truly federated scenarios.
Customers complain about information overload with the host of three letter *ML
acronyms and WS-* based standards. While a lot of these have been documented
by various industry-wide bodies, little or no effort has been made in educating
the practitioners in the thick of the battle — the architects, developers and testers
building applications — about what they have to offer, how to use them and the
tradeoffs and concerns to bear in mind while making design and implementation
decisions.

Having been involved in this project right from the start as a technical reviewer,
I believe that the Web Services Security guide from the patterns & practices group at
Microsoft fills just this void. By providing accurate, timely, and relevant information,
this guidance plays a crucial role in making some of the WS-Security standards easier
to understand and thus allowing for an increase in the adoption and deployment of
Web services. Further, by providing detailed but easy to comprehend explanations
of the underlying protocols, such as Kerberos, the authors have ensured that even
readers with a limited background in security will have adequate information and
pointers, helping them gain valuable insights into this field.

mailto:scott@isecpartners.com

 Forewards vii

Security personnel reading this guidance should focus on planning deployment
scenarios based on the architectural and design patterns. The common scenario
driven approach can prove to be of special value and relevance for this use case.
On the other hand, developers are well advised to focus on the implementation
patterns and technical supplements, which will introduce them to the topics and
help them obtain a clear idea of the correct choices to make when faced with similar
decisions in their own environments.

Rudolph Araujo
Principal Software Security Consultant
Foundstone Professional Services
November 2005

Rudolph Araujo is a Principal Software Security Consultant and trainer at Foundstone where
he is responsible for creating and delivering the threat modeling and security code review
service lines. He is also responsible for content creation and training delivery for Foundstone’s
Building Secure Software and Writing Secure Code — ASP.NET class. Rudolph has many
years of software development experience on both UNIX and Windows environments in
C/C++ and C#. Prior to Foundstone, Rudolph led the checks development team for BindView
bv-Control for Internet Security — a vulnerability assessment product and was a software
developer at Morgan Stanley. Rudolph’s research interests also span the domain of Web
service security and reliability. Rudolph holds a Masters Degree from Carnegie Mellon
University with a focus on computer security and is the developer of Foundstone’s
.NET Security Toolkit, SSLDigger and Hacme Bank tools. Rudolph is also a Microsoft
Visual Developer — Security MVP and a contributor to multiple journals such as
Software Magazine where he writes a column on software security.

Foundstone

Foundstone Professional Services, a division of McAfee, offers a unique combination of
services and education to help organizations continuously and measurably protect the most
important assets from the most critical threats. Through a strategic approach to security,
Foundstone helps organizations design and engineer secure software. Foundstone’s services
include source code audits, software design and architecture reviews, threat modeling and
Web application penetration testing. For more information about Foundstone S3i services
and training, go to www.foundstone.com/s3i.

Preface

Welcome to Web Service Security: Scenarios, Patterns, and Implementation Guidance
for Web Services Enhancements (WSE) 3.0. The purpose of this guide is to help you
successfully make the necessary decisions while you are securing your Web services.
Like most decisions you make about solutions you are building, choosing the right
security-related options are largely based on the requirements of the solution. The
goal of this guide is to help you quickly make the most appropriate security decisions
in the context of your solution’s requirements while providing the rationale and
education for each option. There are three different ways you can navigate this guide.
● Read it from start to finish. You will learn the most by doing this, but some of

what you learn may not apply to the solutions you are building.
● Use the decision matrices. These exist in the chapter introductions and will help

you refine your options for meeting your security needs.
● Find a similar scenario. If your solution resembles one of the four scenarios

described in the Introduction, you can start by reading the sections that apply
to that scenario.

Intended Audience
The target audiences for this guide are architects and developers who are designing
or implementing Web services. Specifically, it is assumed that you either have
experience designing and developing Web service solutions or solutions with security
requirements (such as authentication, authorization, or encryption). This assumption
does not mean this content may not be useful to individuals who do not meet these
assumptions — it will just take them longer to realize the benefits of this guidance.

To experience the most value from this guide, you should have a basic understanding
of how entities in a distributed application interact, and the security considerations of
those interactions. This guidance does not explicitly cater to security experts, but an
understanding of various security topics such as authentication, authorization,
encryption, and digital signatures will help your comprehension. Likewise,
a deep understanding of Web services is not required, but it can help.

 Preface ix

How This Guide Is Organized
The majority of the content in this guide is presented in the form of patterns.
A pattern describes a recurring problem that occurs in a particular situation and —
based on a set of guiding forces called requirements — recommends a solution.
Patterns exist at different levels of abstraction, including:
● Architecture patterns. These describe how to structure an application at the

highest level.
● Design patterns. These describe how to structure subsystems or components

within a system.
● Implementation patterns. These describe low-level patterns that are specific to a

particular platform. In this case, using the Microsoft .NET Framework and Web
Services Enhancements (WSE) 3.0.

A pattern is usually described with the following key elements:
● Name. The name is the simplest label that you can identify that captures what you

are trying to achieve in solving the problem.
● Context. The context sets the stage of what artifacts within a problem domain you

are working within.
● Problem. The problem is what you want to achieve or deal with within the

context.
● Forces. The forces are identified key elements that must be handled in the context

and affect the problem. Forces are conditions that exist within the context.
● Solution. The solution is a way to resolve the forces to solve the problem within a

context. When you start looking at how you must deal with those forces, you end
up with a resulting context.

The patterns in this guide are grouped into two main parts: Part I: Core Web Service
Security Patterns and Part II: Additional Web Service Security Patterns and Guidance.
Part I contains a core set of patterns that are often inter-related and used together.
The implementation of these patterns is demonstrated by composite implementation
patterns, which are patterns implemented in combination with other related patterns.
Part II contains additional patterns, which should also be applied in many cases —
but they can typically be applied after you have selected the core patterns you are
implementing.

Note: This guide is intended as an additional resource to the Microsoft patterns & practices
Improving Web Application Security: Threats and Countermeasures guide, which incorporates detailed
information about how to determine your security requirements using a technique called threat
modeling.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp

x Web Service Security

Community
This guide, like many patterns & practices deliverables, is associated with a
community workspace. On this community workspace, you can post questions,
provide feedback, or connect with other users for sharing ideas. Community
members can also download additional content such as extensions, QuickStarts,
and training material and can provide feedback that will help Microsoft plan and
test future patterns.

Access to the Web Service Security community is available from the following
Web site: http://go.microsoft.com/fwlink/?LinkId=57044.

Feedback and Support
Questions? Comments? Suggestions? To provide feedback about this guidance, or to
get help with any problems, visit the Web Service Security community workspace.
The message board on the community site is the preferred feedback and support
channel because it allows you to share your ideas, questions, and solutions with the
entire community. Alternatively, you can send e-mail directly to the Microsoft
patterns & practices team at devfdbck@microsoft.com, although we are unable to
respond to every message.

The Team Who Brought You This Guide
Thanks to the following individuals who assisted in the content development,
QuickStart development, test, and documentation experience:
● Lead authors: Jason Hogg, Don Smith, Fred Chong, Microsoft Corporation;

Dwayne Taylor, Lonnie Wall, RDA Corporation; and Paul Slater, Wadeware LLC.
● Contributing authors: Tom Hollander, Wojtek Kozaczynski, Microsoft

Corporation.
● Test team: Larry Brader, Microsoft Corporation; Sajjad Nasir Imran,

Mohanakrishan Shankar, Dhamotharan Bethanasamy, Subha Vaitheeswaran,
Muralidharan C Narayanan, Venkat Narayan S., Sumit Baurai, Infosys
Technologies Ltd.

● Development team: Diego Gonzalez, Pablo Cibraro, Ariel Szklarkiewicz,
Lagash Systems SA.

●

● Editors and graphic artist: Nelly Delgado, Microsoft Corporation; Sharon Smith,
Linda Werner & Associates; Tina Burden McGrayne, Melissa Seymour, TinaTech
Inc.; John Cobb, Wadeware LLC; Claudette Siroky, CI Design Studio.

Pattern workshop facilitator: Ward Cunningham.

http://go.microsoft.com/fwlink/?LinkId=57044
http://go.microsoft.com/fwlink/?LinkId=57044
mailto:devfdbck@microsoft.com?subject=Web%20Service%20Security%20guide

 Preface xi

Many thanks to the following individuals who provided invaluable feedback and
assistance:
● External reviewers: Rudolph Araujo, Foundstone, Inc.; Scott Stender, Alex Stamos,

Information Security Partners, LLC; Dr. Ivan Djordjevic, Security Research Centre,
BT GCTO; David Mowers, Securitay, Inc.; Steve Stefanovich, RDA; Edward
Bakker, LogicaCMG; Norman Headlam, Fidelity Investments; Jörg Bartholdt,
Siemens AG; Anil John, Johns Hopkins University—Applied Physics Lab; Julia
Lerman, The Data Farm; Keith Brown, Pluralsight; Vivek Vaid, Thoughtworks;
Jason Ward; Munawar Hafiz, Patrick Delfert, University of Illinois at Urbana-
Champaign; David Francis, HBOS Plc.

● Microsoft reviewers and contributors: Chris Keyser, Marc Goodner, David
Trowbridge, Jonathan Wanagel, Mark Fussell, Jan Alexander, Sidd Shenoy,
HongMei Ge, Tomasz Janczuk, David M. Bradley, Vijay Gajjala, Paul Leach,
Hervey Wilson, Doug Walter, Martin Gudgin, Kannan C. Iyer, Heikki Ritvanen,
J.D. Meier, Ron Jacobs, Doug Orange, Vittorio Bertocci, Kirk Allen Evans, Sam
Keall, Vajira Weerasekera, Matt Deacon, Andy Gordon, Karthik Bhargavan,
Cedric Fournet.

● Finally, thanks to Alan Ridlehoover, Blaine Wastell, Brad Wilson, Carlos Farre,
Darrell Snow, Edward Jezierski, Edward Lafferty, Eugenio Pace, J.D. Meier,
Ken Perilman, Michael Kropp, Mohammad Al-Sabt, Naveen Yajaman, Per Vonge
Nielsen, Peter Provost, Rick Maguire, RoAnn Corbisier, Sanjeev Garg, Scott
Densmore, Shaun Hayes, Srinath Vasireddy, Steve Elston, Vicky Titus, William
Loeffler, Microsoft Corporation.

For more information about Web service security, see the following patterns &
practices team blogs:
● Jason Hogg: http://blogs.msdn.com/thehoggblog
● Don Smith: http://blogs.msdn.com/donsmith

http://blogs.msdn.com/thehoggblog
http://blogs.msdn.com/donsmith

Introduction

To design, develop, and deploy secure Web services, architects and developers
must learn new technologies and consider new threats associated with exposing
functionality on potentially unsecured networks. To prepare you to meet these
challenges today (both now on Microsoft® Web Services Enhancements 3.0 and in the
future with Windows® Communication Foundation [WCF]), the Microsoft patterns &
practices team has created Web Service Security: Scenarios, Patterns, and Implementation
Guidance for Web Services Enhancements (WSE) 3.0.

Architects and developers responsible for Web service security have a considerable
number of options available to them. These options are further complicated by the
fact that different projects and different organizations have different security
requirements.

To help you consider alternative approaches to securing your Web services, this
guide provides a scenario-driven approach to demonstrate situations where different
security patterns are successful. The guide also combines a series of decision matrices
to assist you in applying your own criteria to use the Web service security patterns to
meet the requirements of your environment.

Overview
This guidance supports the following major phases of a software development life
cycle:
● Evaluation. This phase includes four common Web service security scenarios, an

analysis of their key requirements, and a summary of how the decision matrices
were used to select a series of design and architecture patterns to meet each
scenario’s requirements.

● Design. This phase includes the security decision matrices that you can combine
with architectural and design patterns to assist you in making key design choices.

● Implementation. This phase includes composite patterns and implementation
patterns that provide in-depth implementation details, including code examples
that you can customize to meet the needs of your environment. Implementation
patterns are provided for isolated challenges, and where appropriate, composite
patterns organize critical patterns together.

● Deployment. This phase includes composite patterns and technical supplements
that provide additional information to help you understand critical challenges in
the deployment life cycle.

2 Web Service Security

Key guidance topics that the Web Service Security guide discusses include:
● Choosing between message layer security and transport layer security.
● Choosing a client authentication technology, from basic direct authentication

to more sophisticated brokered solutions, including an in-depth look at X.509
certificates, using the Kerberos version 5 protocol, and solutions involving a
Security Token Service (STS).

● Protecting confidentiality of messages.
● Detecting tampered messages.
● Prventing the processing of replayed messages.
● Accessing remote resources and flowing identities across tiers.
● Preventing exceptions from revealing sensitive implementation details.
● Protecting Web services from malformed or malicious messages.

This guidance is designed to assist those who currently use the Microsoft Visual
Studio® 2005 development system and WSE 3.0. It will also be of significant use
to architects and developers who plan to provide solutions using WCF.

Navigating the Web Service Security Guide
There are many different options available to help secure your Web services, and
different organizations have different criteria that drive their security decisions.
This guide can of course be read from start to finish, and while this is the most
comprehensive approach, you may find that you only require guidance in specific
areas. In an attempt to make the guidance more productive for you, this guide uses
decision matrices to help highlight key criteria that should be considered when
selecting one approach over another. Figure 1 illustrates an excerpt from the
authentication decision matrix that helps lead you through the process of choosing
between the direct authentication and brokered authentication techniques.

Figure 1
An excerpt from the authentication decision matrix

 Introduction 3

Decision matrices are included in the introductions to many of the chapters in this
guide. They can help you select which of the following to use:
● Direct authentication or brokered authentication.
● The Kerberos protocol, X.509 certificates in a Public Key Infrastructure (PKI), or a

Security Token Service (STS).
● Message layer security or transport layer security.
● Message protection requirements.
● Resource access techniques.

This guide also contains other tools to help you get the most out of the guidance.
The Appendix to this guide includes a “Problem/Solution Index,” where you can
map specific problems to sections in the guide. This introduction also includes
scenarios that share commonalities with the majority of Web services that companies
are building today. The “Common Scenarios” section introduces four different
scenarios that provide examples of common Web service interactions.

If you choose to read the chapters in this guide sequentially, you will benefit by
understanding the importance of the sequence. The guide is divided into two parts.
Part I covers core Web service security patterns, and includes three chapters:
● Chapter 1, “Authentication Patterns,” helps you make the most appropriate

decision regarding authentication, because many of the following Web service
decisions depend on your choices for authentication.

● Chapter 2, “Message Protection Patterns,” helps you understand the different
message protection capabilities to determine which ones are appropriate to meet
your requirements.

● Chapter 3, “Implementing Transport and Message Layer Security,” helps you
decide between using message layer security and transport layer security, and
provides you with the implementation patterns in WSE 3.0.

Part II of the guide covers additional Web service security patterns and guidance.
This information should normally be considered after you have already reviewed
Part I. Part II consists of four chapters, which discuss resource access patterns, service
boundary protection patterns, service deployment patterns, and technical
supplements.

Additional useful information appears in the Appendix. The Appendix contains
information about Web service interoperability, the Policy Analyzer for WSE 3.0, and
a white paper about using patterns as a common vocabulary for individuals involved
in the Information Technology industry. A glossary of commonly used terms and the
“Problem/Solution Index” are also included in the Appendix.

4 Web Service Security

Important Concepts
There are some important concepts you should understand before reviewing the
different scenarios. These include:
● Brokered authentication. This is a type of authentication where a trusted

authority is used to broker authentication services between a client and a service.
You can use a broker to perform authentication.

● Client. The client accesses the Web service. The client provides credentials for
authentication during the request to the Web service.

● Credentials. A set of claims used to prove the identity of a client. They contain
an identifier for the client and a proof of the client’s identity, such as a password.
They may also include information, such as a signature, to indicate that the issuer
certifies the claims in the credential.

● Direct authentication. A type of authentication where the service validates
credentials directly with an identity store, such as a database or directory service.

● Impersonation. The act of assuming a different identity on a temporary basis
so that a different security context or set of credentials can be used to access a
resource.

● Message layer security. Represents an approach where all the information that is
related to security is encapsulated in the message. In other words, with message
layer security, the credentials are passed in the message.

● Mutual authentication. This is a form of authentication where the client
authenticates the server in addition to the server that authenticates the client.

● Security token. A set of claims used to prove the identity of a client. They contain
an identifier for the client and a proof of the client’s identity such as a password.
They may also include information, such as a signature, to indicate that the issuer
certifies the claims in the credential. Most security tokens will also contain
additional information that is specific to the authentication broker that issued
the token.

● Service. A Web service that requires authentication.
● Transport layer security. Represents an approach where security protection is

enforced by lower level network communication protocols.
● Trusted subsystem. This is a process where a trusted business identity is used

to access a resource on behalf of the client. The identity could belong to a service
account or it could be the identity of an application account created specifically for
access to remote resources.

For a complete list of security terms used throughout this guidance, see the Glossary
in the Appendix.

 Introduction 5

Common Scenarios
To familiarize you with the guidance provided by the decision matrices, this section
introduces several common scenarios that illustrate Web service solutions. It provides
some requirements for each scenario, and then extracts the key points from the
relevant decision matrices that were used for deciding one approach over another.
This approach should help you better understand how to use the decision matrices to
determine appropriate solutions for your own requirements. The scenarios also aim
to show how a series of patterns can be used together to increase the security of your
Web applications.

The following four scenarios provide examples of common Web service interactions:
● Public Web service. This scenario describes the decision criteria used to choose

transport layer confidentiality with HTTPS and UsernameToken support in
WSE 3.0 for authentication.

● Intranet Web service. This scenario describes the decision criteria used to
choose message layer security with the Kerberos protocol for an internal banking
solution. It also provides a high-level description of the Kerberos design.

● Internet business-to-business. This scenario describes a business-to-business
solution that uses message layer security with the Kerberos protocol within the
organization and X.509 certificates between businesses.

● Multiple Internet Web services. This scenario describes the decision criteria
used to choose a Security Token Service (STS) for a travel agency application
that is accessible from the Internet. This section also describes how both direct
authentication and brokered authentication are used to implement the solution.

Note: The scenarios are just examples to illustrate different security considerations as you navigate
through the Web Service Security guide. They are not meant to represent the only way to implement
these types of Web service solutions. Instead, they show you how information related to
authentication, message protection, and protection scope can be used to navigate through
the various patterns.

Each scenario starts with a high-level description of the application followed by
a Web service profile that identifies the business requirements for the application.
Some of these requirements are also included as security considerations in the
solution approach.

Following the high-level description is a solution approach that examines factors
related to the existing security infrastructure, organization security policies, and
security threats that can lead to other security considerations. Each of these security
considerations is categorized into three areas that directly relate to the chapter
content in the Core Web Service Security Patterns part of this guidance.

6 Web Service Security

The three categories and the chapters that they relate to are:
● Authentication. This category is associated with Chapter 1, “Authentication

Patterns.”
● Message Protection. This category is associated with Chapter 2, “Message

Protection Patterns.”
● Protection Scope. This category is associated with Chapter 3, “Implementing

Transport and Message Layer Security.”

The security consideration related to each category is then used to navigate through
the appropriate decision matrices in the introduction to each chapter.

The last section in each scenario identifies patterns that were used for the candidate
solution and how the solution was implemented. Additional patterns that could have
been considered as part of the solution are also identified.

Public Web Service Scenario
A large clothing distributor uses Web services to provide catalog information to
merchants that provide online shopping services. The merchants access the Web
service from their Web applications to display current items available from the
distributor.

Figure 2 illustrates how the online merchants access the Web service.

Distributor
Service

Catalog
Data

Merchant
Web Application

Figure 2
A distributor Web service

The following sections provide an overview of the distributor Web service
requirements.

 Introduction 7

Distributor Web Service Profile
A distributor Web service has the following requirements:
● The merchant Web application requires direct access to the distributor’s

Web service.
● Merchants accessing the Web service must be authenticated.
● Data passed between the merchant and distributor contains some information,

such as merchant account information, that must be protected.

Solution Approach
Table 1 lists security factors that were considered for the distributor Web service and
how each factor maps to a specific category.

Table 1: Distributor Web Service Factors

Factor Security consideration Category

Security
infrastructure

Merchant accounts are stored in a custom
database or directory service.

Authentication

Security threats Message data is sensitive and must be protected
against unauthorized access.

Message Protection

The information in Table 1 is combined with business requirements related to
security, and then it is grouped by category. Each category represents one or more
decision matrices. The next step is to apply the security considerations to the
appropriate matrices to make security decisions. In this example, you would examine
the authentication decision matrices in Chapter 1, “Authentication Patterns,” and the
message protection decision matrix in Chapter 2, “Message Protection Patterns.”

Table 2 provides a summary of the decisions that were made after applying the
security considerations from Table 1, and the related business requirements to the
appropriate decision matrices.

Table 2: Summary of Security Decisions

Factor Security consideration Security decision

Authentication Merchant accounts are stored in
a custom database or directory
service.

UsernameToken can be used with
custom authentication, Windows
authentication or any other directory
service that provides authentication.

Authentication Merchants accessing the Web
service must be authenticated.

UsernameToken provides the ability to
authenticate the merchants.

Message Protection Message data is sensitive and
must be protected against
unauthorized access.

HTTPS protects the message data while
in transit between the merchant and
distributor.

8 Web Service Security

Candidate Solution
This solution uses the following patterns to implement direct authentication with
UsernameToken and HTTPS to provide message protection:
● Direct Authentication in Chapter 1, “Authentication Patterns.”
● Data Confidentiality in Chapter 2, “Message Protection Patterns.”
● Implementing Direct Authentication with UsernameToken in WSE 3.0

in Chapter 3, “Implementing Transport and Message Layer Security.”
● Trusted Subsystem in Chapter 4, “Resource Access Patterns.”

Figure 3 illustrates the distributor Web service security solution.

Figure 3
The security solution for a distributor Web service

The distributor Web service security solution is implemented in the following way:
● The distributor Web service uses a server certificate to establish secure

communications with the merchant Web application using HTTPS.
● The merchant Web application passes a UsernameToken to the distributor

Web service for authentication.
● The UsernameToken information is used to authenticate the merchant Web

application.
● The distributor Web service uses a trusted subsystem to access catalog data.

 Introduction 9

Additional patterns that could have been considered include:
● Perimeter Service Router in Chapter 6, “Service Deployment Patterns.”
● Message Validator in Chapter 5, “Service Boundary Protection Patterns.”
● Exception Shielding in Chapter 5, “Service Boundary Protection Patterns.”

Intranet Web Service Scenario
A national bank uses Web services to provide operations that are accessed by
an internal banking application. Figure 4 illustrates how the banking application
accesses the Web service.

Account
Database

Withdrawal
Web Service

Banking
Application

Intranet Banking Application

Figure 4
An intranet banking application Web service

The banking application is a Windows client that directly accesses a Web service.
The Web services access a bank account database for information. The following
sections provide an overview of the banking application requirements.

Banking Application Profile
The banking application has the following features:
● The banking application is used in bank branches.
● The user of the application is a customer service representative (CSR).
● The CSR must be authenticated as a valid user to use the banking application.
● Banking regulations require that the account activities that the CSR performs must

be audited.

10 Web Service Security

Solution Approach
Table 3 lists factors that were considered for the banking intranet scenario and how
each factor maps to a specific category.

Table 3: Intranet Banking Application Factors

Factor Security consideration Category

Security infrastructure Active Directory® directory service is
implemented on a computer running Microsoft
Windows Server™ 2003.

Authentication

Security infrastructure CSR users are located in Active Directory. Authentication

Organization security
policies

Mutual authentication is required for all Web
service interactions.

Authentication

Organization security
policies

Applications must support single sign on (SSO)
capabilities.

Authentication

Security treats Message data is sensitive and must be
protected against unauthorized access.

Message Protection

Security treats The message must not be tampered with during
transit.

Protection Scope

The information in Table 3 is combined with business requirements related to
security, and then it is grouped by category. Each category represents one or more
decision matrices. The next step is to apply the security considerations to the
appropriate matrices to make security decisions. In this example, you would examine
the authentication decision matrices in Chapter 1, “Authentication Patterns,” the
message protection decision matrix in Chapter 2, “Message Protection Patterns,”
and the protection scope decision matrix in Chapter 3, “Implementing Transport
and Message Layer Security.”

 Introduction 11

Table 4 provides a summary of the decisions that were made after applying the
security considerations from Table 3 and the related business requirements to the
appropriate decision matrices.

Table 4: Summary of Security Decisions

Category Security consideration Security decision

Authentication CSR users are located in Active
Directory on a computer running the
Windows Server 2003 operating
system.

Active Directory supports the
use of the Kerberos protocol.

Authentication Applications must support SSO
capabilities.

The Kerberos protocol provides
support for SSO capabilities.

Authentication Mutual authentication is required. Because the KerberosToken
contains both requestor and
service information, it can be
used for mutual authentication.

Authentication Account activities carried out by CSR
users must be audited.

The Kerberos protocol also
supports impersonation and
delegation, which means that
auditing can be performed.

Message Protection Message data is sensitive and must be
protected against unauthorized access.

The KerberosToken can be
used to encrypt a message.

Protection Scope The message must not be tampered
with during transit.

The KerberosToken can be
used to sign a message, which
provides data integrity and data
origin authentication.

Candidate Solution
This solution uses the following patterns to implement message layer security with
the Kerberos protocol:
● Brokered Authentication in Chapter 1, “Authentication Patterns.”
● Brokered Authentication: Kerberos in Chapter 1, “Authentication Patterns.”
● Data Confidentiality in Chapter 2, “Message Protection Patterns.”
● Data Origin Authentication in Chapter 2, “Message Protection Patterns.”
● Implementing Message Layer Security with Kerberos in WSE 3.0 in Chapter 3,

“Implementing Transport and Message Layer Security.”

12 Web Service Security

Figure 5 illustrates the intranet banking application security solution.

Figure 5
The security solution for the intranet banking application Web service

The intranet banking security solution is implemented in the following way:
● The user’s credentials are used to obtain a security token from the Kerberos Key

Distribution Center (KDC) implemented in Active Directory.
● The security token is used to sign and encrypt messages sent to the service.
● The security token is used to obtain additional information about the user from

Active Directory.
● Impersonation with delegation is used to access the database.

Note: For information about impersonation and constrained delegation, see Chapter 4, Resource
Access Patterns.

Additional patterns that could have been considered include:
● Exception Shielding in Chapter 5, “Service Boundary Protection Patterns.”
● Message Validator in Chapter 5, “Service Boundary Protection Patterns.”

 Introduction 13

Internet Business-to-Business Scenario
A supply chain application uses internal Web services to perform operations. The
internal Web services may need to access external Web services provided by another
company. Figure 6 provides a high-level view of a procurement operation.

Ordering
Web Service

Supplier

Procurement
Web Service

Supply Chain
Application

Business-to-Business Supply Chain
Management Application

Internet

Figure 6
A business-to-business supply chain management application

Figure 6 illustrates an operation where the supply chain application interacts with the
procurement Web service through an intranet. The procurement Web service accesses
an external ordering Web service over the Internet. The following sections provide an
overview of the supply chain application requirements.

Supply Chain Management Application Profile
The supply chain management application has the following features:
● The manufacturing company gets parts from a business partner.
● Parts are ordered through an internal line-of-business supply chain management

application.
● Factory floor supervisors are the users of the application.
● The application communicates with a procurement Web service that places orders

with an ordering Web service hosted by the supplier. This way, only the two Web
services have to agree on the external service contract.

● The procurement Web service is one of a few other internal Web services that the
supply chain management application uses. Maintaining an SSO user experience
is an important requirement.

14 Web Service Security

Solution Approach
There are actually two parts in this scenario to analyze: the intranet communication
between the supply chain application and the procurement Web service, and the
Internet communication between the procurement Web service and the ordering
Web service.

Table 5 provides a list of factors considered for the Internet business-to-business
scenario and how each factor maps to a specific category.

Table 5: Internet Business-to-Business Application Factors

Factor Security consideration Category

Security infrastructure Active Directory is implemented
on a computer running
Windows Server 2003.

Authentication

Security infrastructure Application users are located in
Active Directory.

Authentication

Security infrastructure The external Web service is
hosted in an unknown
environment.

Authentication

Organization security policies Mutual authentication is
required for all Web service
interactions.

Authentication

Organization security policies Applications must support SSO
capabilities.

Authentication

Security treats Factory parts and associated
pricing information is sensitive.
As a result, the data must be
protected against unauthorized
access.

Message Protection

Security treats The message must not be
tampered with during transit.

Protection Scope

The information in Table 5 is combined with the business requirements related to
security, and then it is grouped by category. Each category represents one or more
decision matrices. The next step is to apply the security considerations to the
appropriate matrices to make security decisions. In this example you would examine
the authentication decision matrices in Chapter 1, “Authentication Patterns,” the
message protection decision matrix in Chapter 2, “Message Protection Patterns,”
and the protection scope decision matrix in Chapter 3, “Implementing Transport
and Message Layer Security.”

 Introduction 15

Table 6 provides a summary of the decisions that were made after applying the
security considerations from Table 5 and the related business requirements to the
appropriate decision matrices.

Table 6: Summary of Security Decisions

Category Security consideration Security decision

Authentication Supply chain application users
are located in Active Directory
on a computer running
Windows Server 2003.

Within the intranet, the Kerberos protocol is
supported by Active Directory.

Authentication Applications must support SSO
capabilities.

The Kerberos protocol provides support for
SSO capabilities within the supply chain
application intranet.

Authentication The external Web service is
hosted in an unknown
environment.

Interaction between the internal and external
Web services does not require the credentials
of the user. As a result, an alternate form of
authentication can be used, such as message
layer security with X.509 certificates.

Authentication The external Web service is
hosted in an unknown
environment.

X.509 certificates represent a well-known
protocol that supports interoperability with
other platforms.

Authentication Mutual authentication is
required.

Both message layer security with the Kerberos
protocol and message layer security with
X.509 certificates support mutual
authentication.

Message
Protection

Data must be protected
against unauthorized access.

Message layer security with the Kerberos
protocol supports both data confidentiality
and data origin authentication.

Message layer security with X.509 certificates
also supports data confidentiality and data
origin authentication.

Protection
Scope

The message must not be
tampered with during transit.

The KerberosToken can be used to sign a
message, which provides data integrity and
data origin authentication.

16 Web Service Security

Candidate Solution
This solution uses the following patterns to implement message layer security with
the Kerberos protocol in the intranet environment, and message layer security with
X.509 certificates between the procurement Web service and the ordering Web
service:
● Brokered Authentication in Chapter 1, “Authentication Patterns.”
● Brokered Authentication: Kerberos in Chapter 1, “Authentication Patterns.”
● Brokered Authentication: X.509 PKI in Chapter 1, “Authentication Patterns.”
● Data Confidentiality in Chapter 2, “Message Protection Patterns.”
● Data Origin Authentication in Chapter 2, “Message Protection Patterns.”
● Implementing Message Layer Security with Kerberos in WSE 3.0 in Chapter 3,

“Implementing Transport and Message Layer Security.”
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0 in

Chapter 3, “Implementing Transport and Message Layer Security.”
● Perimeter Service Router in Chapter 6, “Service Deployment Patterns.”

Figure 7 illustrates the security solution that was developed for the supply chain
management application.

Figure 7
The security solution for the supply chain management application

 Introduction 17

The supply chain management security solution is implemented in the
following way:
● The user’s credentials are used to obtain a security token from the Kerberos KDC

implemented in Active Directory.
● The security token is used to sign and encrypt messages sent to the service.

The supplier’s security solution is implemented in the following way:
● X.509 certificates are issued and imported into appropriate certificate stores.
● X.509 certificates are used to provide mutual authentication, data confidentiality,

and data origin authentication for interactions between the procurement Web
service and the ordering Web service.

● A perimeter service router is used to accept requests from the supply chain
application and send them to the ordering Web service.

Note: For information about configuring X.509 certificates, see the X.509 Technical Supplement in
Chapter 7, “Technical Supplements.”

Additional patterns which could have been considered include:
● Message Validator in Chapter 5, “Service Boundary Protection Patterns.”
● Exception Shielding in Chapter 5, “Service Boundary Protection Patterns.”

18 Web Service Security

Multiple Internet Web Services Scenario
A travel booking franchise provides a Web application that travel agents can use to
search for and book travel packages. The Web application uses several Web services
to perform the operations of searching for and booking packages. Figure 8 illustrates
a high-level view of the configuration.

Customer
Booking
Database

Online Booking
Web Service

Travel Booking
Web Application

Travel Packages
Web Service

Internet Travel Application

Product
Catalog

Figure 8
An Internet-based travel booking application

The travel booking Web application is accessible from the Internet. However, only
the Web application can access the Web services that the application calls. Each Web
service has an independent data store. The following sections provide an overview
of the travel booking application requirements.

 Introduction 19

Travel Booking Application Profile
The travel booking application has the following features:
● Travel agents in a travel franchise help customers book tour packages.
● Two Web services are used: a travel packages Web service, and an online booking

Web service.
● The travel packages Web service provides travel product catalog information such

as tour dates, itineraries, and prices.
● The online booking Web service allows travel agents to book tour packages on

behalf of the customers.
● Identity propagation is needed for the online booking Web service because the

database needs to keep a record of each travel agent who makes a travel request.
Customers can go to any travel agent in the franchise to book a tour.

● During peak travel seasons, user activity is high. This means that performance
must be considered.

Solution Approach
Table 7 lists factors considered for the Internet-based travel booking scenario and
how each factor maps to a specific category.

Table 7: Internet Travel Booking Application Factors

Factor Security consideration Category

Security infrastructure Travel agent user accounts are stored in a
database.

Authentication

Security infrastructure Servers used to host the Web services are
behind a firewall.

Protection Scope

Security infrastructure The travel agent franchise does not have a PKI. Authentication

Organization security
policies

Mutual authentication is required for all Web
service interactions.

Authentication

Organization security
policies

Applications must support SSO capabilities. Authentication

Security treats The online booking service handles sensitive
data that must be protected against
unauthorized access.

Message Protection

20 Web Service Security

The information in Table 7 is combined with the business requirements related to
security, and then it is grouped by category. Each category represents one or more
decision matrices. The next step is to apply the security considerations to the
appropriate matrices to make security decisions. In this example, you would examine
the authentication decision matrices in Chapter 1, “Authentication Patterns,” the
message protection decision matrix in Chapter 2, “Message Protection Patterns,”
and the protection scope decision matrix in Chapter 3, “Implementing Transport
and Message Layer Security.”

Table 8 provides a summary of the decisions that were made after applying the
security considerations from Table 7 and the related business requirements to the
appropriate decision matrices.

Table 8: Summary of Security Decisions

Category Security consideration Security decision

Authentication Travel agent user accounts
are stored in a database.

When user credentials are stored in a database,
Direct authentication is used to authenticate
the user. To support SSO capabilities, Direct
authentication can be combined with brokered
authentication using a Security Token Service
(STS).

Authentication Mutual authentication is
required.

The use of a shared symmetric key with STS
provides mutual authentication.

Authentication SSO support is required. The security token issued by an STS can be
used to access multiple Web services.

Authentication Performance must be
considered.

Brokered authentication speeds up operations
when multiple Web services are accessed. In
other words, authentication is performed only
once. Encryption with a shared symmetric key is
much faster than asymmetric methods. Only one
of the Web services requires encryption.

Protection Level Sensitive data must be
protected against
unauthorized access.

The security token issued by an STS can be
used to provide data confidentiality and data
origin authentication.

Protection Scope Web services are behind a
firewall.

Message layer protocols are easier to
implement when passing through firewalls
because additional ports do not need to be
opened.

 Introduction 21

Solutions Description
This solution uses the following patterns to implement a combination of direct
authentication and brokered authentication:
● Direct Authentication in Chapter 1, “Authentication Patterns.”
● Brokered Authentication in Chapter 1, “Authentication Patterns.”
● Data Confidentiality in Chapter 2, “Message Protection Patterns.”
● Brokered Authentication: Security Token Service (STS) in Chapter 1,

“Authentication Patterns.”
● Implementing Direct Authentication with UsernameToken in WSE 3.0 in

Chapter 3, “Implementing Transport and Message Layer Security.”
● Trusted Subsystem in Chapter 4, “Resource Access Patterns.”

Direct authentication would be used to access a Security Token Service (STS) using
WSE 3.0. The security token that is returned would then be used for brokered
authentication against the Web services. The security token can also be used to
provide data confidentiality and data origin authentication support as needed.

Figure 9 illustrates the security solution developed for the travel booking application.

Figure 9
The security solution for the Internet-based travel booking application

22 Web Service Security

The Internet travel booking security solution is implemented in the following way:
● The STS uses a server certificate to establish secure communications with the

travel booking Web application using HTTPS.
● The travel booking Web application passes a UsernameToken to the STS for

authentication.
● The STS returns a security token for interaction with both the travel packages

Web service and the online booking Web service.
● Encryption is not required when accessing the travel package Web service.

However, the STS security token is used to sign the messages to provide
authentication.

● The STS security token is used to sign and encrypt messages sent to the online
booking Web service.

● A trusted subsystem is used to access the product catalog and customer booking
database.

● Impersonation is not required for auditing. Instead, the agent’s ID is retrieved
from the security token and passed to the customer booking database as part of
the request.

Additional patterns that could have been considered include:
● Perimeter Service Router in Chapter 6, “Service Deployment Patterns.”
● Message Validator in Chapter 5, “Service Boundary Protection Patterns.”
● Exception Shielding in Chapter 5, “Service Boundary Protection Patterns.”

Part I
Core Web Service Security Patterns

In This Part:
● Authentication Patterns
● Message Protection Patterns
● Implementing Transport and Message Layer Security

1
Authentication Patterns

Introduction
As computer systems have increased in complexity, the challenge of authenticating
users has also increased. As a result, there are a variety of models for authentication.
For example, clients accessing a Web application may directly provide credentials,
such as a user name and password for authentication. However, a third-party broker,
such as a Kerberos domain controller, may be used to provide a security token for
authentication. These two models are referred to as direct authentication and
brokered authentication.

This chapter provides architectural patterns for direct authentication and brokered
authentication, along with three brokered authentication design patterns that
illustrate authentication using the Kerberos protocol, X.509, and a Security Token
Service (STS). Figure 1.1 is a pattern map that illustrates how these patterns are
related to one another.

 Chapter 1: Authentication Patterns 25

Design

Architecture

WEB SERVICE SECURITY (Authentication)

Brokered
Authentication

Kerberos
Security Token

Service

P P P

P

Direct
Authentication

P

X.509 PKI

PatternP

Figure 1.1
Authentication patterns

Authentication is considered to be a primary security feature because mechanisms
used for authentication often influence mechanisms used for enabling other security
features, such as data confidentiality and data origin authentication. For example,
consider a case where the Kerberos protocol is used for message layer authentication.
After a Kerberos session is set up between the client and service, it is possible to
derive encryption keys from the Kerberos session key to encrypt application
messages. From an architecture perspective, this is an advantage because you do
not have to consider another security mechanism and infrastructure just to satisfy
the data confidentiality needs.

Note: This introduction also discusses authorization, a concept that is intrinsically linked to
authentication. However, the subject of authorization is already extensively documented, so the
content in this chapter is intended to be only an introduction to the subject. An update to this
guide is scheduled to coincide with the release of the Windows Communication Foundation (WCF).
The update will incorporate patterns associated with distributed authorization.

26 Web Service Security

Important Concepts
To fully understand authentication and authorization, it is important to understand
the following concepts:
● Authentication. Authentication is the process of identifying an individual using

the credentials of that individual. For example; with the driver’s license example,
a bank teller may be required to authenticate who you are by examining your
driver’s license. Authentication typically occurs immediately after identification.

● Authorization. Authorization is the process of determining whether an
authenticated client is allowed to access a resource or perform a task within a
security domain. Authorization uses information about a client’s identity and/or
roles to determine the resources or tasks that a client can perform.

● Credentials. A set of claims used to prove the identity of a client. They contain
an identifier for the client and a proof of the client’s identity such as a password.
They may also include information, such as a signature, to indicate that the issuer
certifies the claims in the credential. A driver’s license is an example of a credential
in the real world. It contains data representing your identity and capabilities. It
contains proof of possession in the form of your picture ID. It is issued by a trusted
authority, such as your state department of licensing.

● Identification. Represents the use of an identifier that allows a system to
recognize a particular subject and distinguish it from other users of the system.

Direct Authentication vs. Brokered Authentication
Both the Direct Authentication pattern and the Brokered Authentication pattern focus
on the relationships that exist between a client and service participating in a Web
service interaction. When both the client and service participate in a trust relationship
that allows them to exchange and validate credentials including passwords, direct
authentication can be performed, as shown in Figure 1.2.

Figure 1.2
Direct authentication when a client and service share a trust relationship

 Chapter 1: Authentication Patterns 27

An example of when this might be appropriate is where client applications and the
service are able to establish credentials prior to the client using the Web service’s
capabilities. For example, before accessing a company’s stock tracking service, you
first establish an ID and password with the provider that you can then use to call its
Web service. Another example is where the Web service wraps a legacy application
that incorporates a custom authentication implementation that requires a user name
and password to authenticate the client using information from a database.

In a situation where the client and service do not share a direct trust relationship, you
can use a broker to perform authentication, as shown in Figure 1.3.

Figure 1.3
Using a broker to perform authentication when client and service do not share trust relationship

The broker authenticates the client and then issues a security token that the service
can use to authenticate the client. The security token is always verified, but typically,
the service does not need to interact with the broker to perform the verification. This
is because the token itself can contain proof of a relationship with the broker, which
can be used by the service to verify the token.

28 Web Service Security

In addition to the different relationships, there are other security considerations
that may support one approach over the other. For example, message protection
requirements may dictate the use of brokered authentication when direct
authentication is available. The support for different security infrastructures also
has an influence on the authentication method used. Table 1.1 represents a decision
matrix that lists security considerations related to authentication and how each one is
supported by direct authentication methods or brokered authentication methods.

Table 1.1: Authentication Decision Matrix

Security Consideration Direct Brokered

What will the service require to
prove the client’s identity for
authentication? Passwords,
certificates, or something else?

Direct authentication requires
the presentation of credentials,
which are typically a user name
and password. The service
uses these credentials to
authenticate the request.

Credentials are used to
authenticate with the broker,
which issues a security token.
The security token is then used
to authenticate with services.

Will the Web service be able
to communicate with the
authentication service that can
validate the client’s credentials
for authentication?

Because authentication is
performed, direct access to the
authentication service is
required.

Most implementations of
brokered authentication do not
require direct access to the
authentication service.

Is there existing infrastructure
to leverage?

Direct authentication works
with any infrastructure used to
provide credential
management.

Brokered authentication
requires an infrastructure in
place that supports the type of
security token that is used.

Is single sign on (SSO) support
required?

Requires authentication for
every call. The process of
authenticating the client on
every call can have a negative
impact on performance.

Uses a security token that
allows access to services after
authentication has been
performed. This same token
could be used to access all
services within an organization.

Will your application need to
make multiple calls to the
same service? In other words,
should a security session be
established?

It is possible to cache the user
name and password; however,
that is not a recommended
procedure.

Security tokens can be used
to establish a security session.
Most tokens have a short
lifetime and can safely be
cached for multiple calls.

Is Windows impersonation or
delegation required?

If a user name and password
are sent with the message, it is
possible to impersonate the
client. This works only if the
client has a Windows account.

The Kerberos protocol provides
the ability to implement
delegation.

One thing to keep in mind is that these are just some of the security considerations
that need to be examined. Other considerations related to security policies and
threats identified during a security analysis should also be examined.

 Chapter 1: Authentication Patterns 29

Brokered Authentication Options
The three main security tokens provided by WSE support brokered authentication.
These tokens are X.509, KerberosToken, and a custom security token issued by a
Security Token Service (STS).

Table 1.2 represents a decision matrix that lists security considerations related to
authentication and how each one is supported by different security tokens.

Table 1.2: Security Token Decision Matrix

Security
Consideration

X.509

KerberosToken

Custom (STS)

Existing infrastructure Requires support
for a Public Key
Infrastructure (PKI),
which can be
expensive to set up
and maintain. In cases
where a limited
number of certificates
are needed, an
external certificate
authority (CA) can be
used.

Requires an identity
provider that supports
the Kerberos protocol,
such as Active
Directory.

Requires an STS
implementation that
issues and manages
security tokens.

The client and
the service reside
within the same
organizational
boundary

X.509 certificates
can be used across
organizational
boundaries.
Management of
certificates can
become difficult with
a large number of
partners.

The Kerberos protocol
is used to authenticate
clients within a
domain. Cross-domain
trusts can be
established but are
typically limited within
an organization.

A custom STS can
provide authentication
across organizational
boundaries if both
parties can
standardize on the
verification and
processing of the
token.

Support for Windows
impersonation or
delegation

Can be used for
impersonation when a
certificate is mapped
to a client within Active
Directory.

Supports both
impersonation and
delegation.

Not supported.

Support for security
sessions

Most X.509
implementations, such
as SSL, exchange a
symmetric session key
that is used for
encryption.

Service tickets are
session-based tokens
that can be used for
confidentiality and
integrity.

Custom security
tokens can be used
for session based
operations.

(continued)

30 Web Service Security

Table 1.2: Security Token Decision Matrix (continued)

Security
Consideration

X.509

KerberosToken

Custom (STS)

Interoperability with
other platforms or
technologies

Based on industry
standards and
supported on many
platforms. Often used
for interoperability with
Java.

Based on industry
standards, with
availability on most
major platforms;
however, adoption is
probably not as
extensive as X.509.

Based on the
implementation
of the STS.

Support for message
protection

Can be used to provide
confidentiality and
data origin
authentication at the
message layer and
transport layer.

Supports
confidentiality
and data origin
authentication at the
message layer and
supports transport
layer when used with
IPSec.

Supports
confidentiality
and data origin
authentication at the
message layer only.

Your application has a
requirement to support
non-repudiation and
auditing

Signatures created
using X.509
certificates can be
mapped to a particular
participant in a
conversation —
assuming both
participants have
unique certificates.
The identity of a
particular client can
be mapped to a
certificate.

Kerberos tokens can
be used for
impersonation and
delegation, which
makes them the ideal
choice for auditing.

Based on the
implementation of
the STS.

Keep in mind that these are some of the main security considerations. Other
considerations related to security policies or a threat analysis will also influence your
choice.

Authorization Methods
The .NET Framework currently supports two different methods for performing
authorization, role-based authorization and resource-based authorization.

 Chapter 1: Authentication Patterns 31

Role-Based Authorization
Role-based authorization is used to associate clients and groups with the permissions
that they need to perform particular functions or access resources. When a user or
group is added to a role, the user or group automatically inherits the various security
permissions. Role-based authorization can be declarative or imperative.

Note: Authorization can be based on any attribute of a security principal. However, the majority of
non-resource–based authorization methods use roles for authorization purposes.

Declarative

Declarative role-based authorization can be added to application code at design time.
Required access for a particular method or class is declared as an attribute in code.
Attribute metadata is discoverable using reflection; this makes it easier to track at
design time the security principals that are allowed to access the method. The
following code is an example of declarative security in .NET that uses an attribute
on a method to require that the current principal on the thread belongs to the
Administrators group.

using System.Security.Permissions;
...
 [PrincipalPermissionAttribute(SecurityAction.Demand, Role = "Administrators")]
 public static void PrivateInfo()
 {
 //Print secret data.
 Console.WriteLine("\n\nYou have access to the private data!");
 }

Imperative

Imperative role-based authorization is written into the application code to make
authorization decisions at run time. Imperative security is useful when the resource
to be accessed or action to be performed is not known until run time or when finer-
grained access control beyond the level of a code method is required. The following
code is an example of imperative security in .NET that checks role membership at
run time.

using System.Security.Principal;
using System.Threading;
...

WindowsPrincipal MyPrincipal = (Thread.CurrentPrincipal as WindowsPrincipal);
if (MyPrincipal.IsInRole("Administrator"))
{
 // Permit access to some code.
}

32 Web Service Security

Unlike declarative security, role checking when using imperative security does not
have to be performed on the application thread’s current principal. A reference to a
security principal can be obtained at run time to check roles for a user that may not
be currently logged into the application.

Resource-based Authorization
Resource-based authorization is performed declaratively on a resource, depending on
the type of the resource and the mechanism used to perform authorization. Resource-
based authorization can be based on access control lists (ACLs) or URLs.

Access Control List (ACL)

Individual resources, such as files, are secured using Windows ACLs that specify
the type of operation a particular security principal or group to which a security
principal belongs can perform on the object. The application impersonates the caller
prior to accessing resources; because of this, the operating system can perform
standard access checks. All resource access is performed using the original caller’s
security context.

URL Authorization

URLs are declared with permissions for the URL to define who is authorized to
access the URL in question. Typically, this approach is linked to an authorization store
such as Authorization Manager (AzMan), which defines access entitlements for a
specific URL and maps those entitlements to user logons.

Policy
Policy provides a means to declaratively enforce security on SOAP request and
response messages through policy assertions. The policy implementations in WSE are
based on the WS-SecurityPolicy and WS-PolicyAssertions specifications. Policies for
an application are stored in a cache file that is referenced in the WSE configuration
section of the application’s configuration file. A policy consists of one or more
assertions that express a security requirement, capability, or preference for an
inbound or outbound SOAP message. Required claims on a security token attached
to a message can be used to authorize access to a Web service or a specific operation
on a Web service.

WSE policy is used to provide confidentiality, integrity, and data origin
authentication, as shown in the following patterns in Chapter 3, “Implementing
Transport and Message Layer Security”:
● Implementing Direct Authentication with UsernameToken in WSE 3.0
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0
● Implementing Message Layer Security with Kerberos in WSE 3.0

 Chapter 1: Authentication Patterns 33

Authorization in Windows Communication Foundation

Windows Communication Foundation (WCF) will integrate seamlessly with the role-based security
features that are built into the .NET Framework. WCF will communicate the sender’s credentials
to the receiving code using the usual Thread.CurrentPrincipal property. Because of this, you can
perform authorization either declaratively using PrincipalPermissionAttribute or imperatively using
IPrincipal.IsInRole.

WCF will also incorporate a sophisticated claims-based authorization infrastructure exposed through
an object named “authorization context.” This allows more complex authorization decisions to be
made based on additional claims provided in tokens within an incoming message.

Guidance for authorization using WCF will be incorporated in an updated version of this guidance
that will also incorporate implementations using WCF.

For a complete description of authorization on the .NET Framework, see
Authentication and Authorization on MSDN®.

The remainder of this chapter contains the architecture and design patterns related to
authentication. The architecture patterns are the following:
● Direct Authentication
● Brokered Authentication

The design patterns are the following:
● Brokered Authentication: Kerberos
● Brokered Authentication: X.509 PKI
● Brokered Authentication: Security Token Service (STS)

Direct Authentication

Context
A client needs to access a Web service. The Web service requires the client to present
credentials for authentication so that additional controls such as authorization and
auditing can be implemented.

Problem
How does the Web service verify the credentials that are presented by the client?

http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetch03.asp

34 Web Service Security

Forces
Any of the following conditions justifies using the solution described in this pattern:
● The credentials that the client presents to the Web service are based on shared

secrets, such as passwords. Authentication of individual users is often performed
with passwords. Computers and applications often use higher quality secrets that
are more secure than passwords. The client and the Web service must exchange
the shared secrets securely before interaction is possible. The exchange of shared
secrets must occur through an out-of-band mechanism.

● The Web service can validate credentials from the client against an identity
store. The Web service must have direct access to the identity store, including
appropriate permissions for accessing identity information.

● The Web service is relatively simple, and does not require support for
capabilities such as single-sign on (SSO) or support for non-repudiation.
In these circumstances an effective, low cost solution that does not use an
authentication broker may be possible.

● The client and the Web service trust one another to manage credentials securely.
In this situation, both parties should consider the credentials as equal in value to
the information and services they protect. If either the Web service or the client
manage the credentials in an insecure manner, neither party can be sure that the
mishandled credentials prove the identity of the user or application.

Solution
Use direct authentication where the Web service acts as an authentication service
to validate credentials from the client. The credentials, which include proof-of-
possession that is based on shared secrets, are verified against an identity store.

Participants
Direct authentication involves the following participants:
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to authorizing the client.
● Identity store. The entity that stores a client’s credentials for a particular identity

domain.

 Chapter 1: Authentication Patterns 35

Process
Figure 1.4 identifies the tasks that occur during direct authentication.

Response

Request

ServiceClient Identity Store

1

3

Validate
Credentials2

Figure 1.4
The direct authentication process

As illustrated in Figure 1.4, the following steps describe the direct authentication
process:
1. The client sends a request to the Web service, attaching credentials to the request

message.
2. The Web service validates the credentials against an identity store and makes

authorization decisions about the client.
3. The Web service returns a response to the client. (This step is optional.)

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of using the Direct Authentication pattern include the following:
● It represents an uncomplicated model for authenticating clients without the need

for an authentication broker.
● If the shared secret between a requester and service is compromised, only the

relationship between those two parties is compromised and not the entire model.

36 Web Service Security

Liabilities
The liabilities associated with the Direct Authentication pattern include the following:
● Direct authentication does not provide single sign on capabilities. Without single

sign on, the client may be forced to authenticate prior to every Web service call
or to cache the user’s credentials within the application. If the user’s credentials
include a password, caching the password is not recommended because it may
pose a security risk.

● The decentralized nature of direct authentication requires that the trust
relationship be managed between each point in the communication, as shown
in Figure 1.5.

Client or Service

Identity Store

Figure 1.5
Trust relationships between points of communication in direct authentication

Each line in Figure 1.5 represents a discreet trust relationship established by
authentication with a shared secret. As the number of discreet relationships
between clients and services increases, each with potentially different identity
stores, the challenges of managing and distributing secrets becomes more
complicated.

 Chapter 1: Authentication Patterns 37

● If a client calls a Web service frequently, the use of direct authentication can
increase latency, because the Web service typically authenticates against a remote
identity store.

● Data ownership and synchronization issues can occur if each of several services
has its own identity store to authenticate the same client. This is because the
client’s credentials may need to be duplicated across multiple identity stores.

Security Considerations
Security considerations associated with the Direct Authentication pattern include the
following:
● An attacker can impersonate the client if he or she intercepts the client’s shared

secret. The identity secret may be obtained if it is unprotected in transit or
successfully guessed offline. You should use encryption to provide data
confidentiality for this data. For more information, see Data Confidentiality
in Chapter 2, “Message Protection Patterns.”

● A shared secret is sensitive data and must be secured whenever it is persisted —
even if it will be held for only a short time in a message queue. Shared secrets
must be protected when stored in an identity store. If an attacker gains
unauthorized access to an identity store that stores passwords in plaintext, all
passwords in the identity store are immediately compromised. This allows the
attacker to impersonate any user. Most authentication services such as Active
Directory and Lightweight Directory Access Protocol (LDAP)-enabled directory
services use identity stores that store passwords as either hashed, encrypted, or
both. However, if you implement a custom identity store such as a database, you
must ensure that the passwords are protected. Although a brute force or pre-
computed dictionary attack is possible against a hashed password, hashing the
passwords in the database will protect them from immediate disclosure in the
event that an attacker gains access to them. For more information about how
to hash passwords in a database, see Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3, “Implementing Transport and
Message Layer Security.”

● If a client calls a Web service after a user has authenticated, it must cache the
username and password locally for presentation on subsequent calls to the Web
service for direct authentication. Caching secrets, such as passwords, increases
the risk of disclosure if an attacker is able to gain access to the cache or flush the
contents of the cache to an accessible location. You should secure the cache
mechanism so that its confidentiality and integrity can be maintained to prevent
disclosure or tampering. If the client is a Web application in a Web farm, you may
want to consider brokered authentication instead of direct authentication.
Otherwise, the user may be forced to re-authenticate if a request is routed
to a different server in the farm after the user has authenticated.

38 Web Service Security

Related Patterns
Three types of patterns are related to this pattern: child patterns, alternate patterns,
and additional patterns.

The following child patterns are related to the Data Authentication pattern:
● Implementing Direct Authentication with UsernameToken in WSE 3.0.

This implementation pattern focuses on using direct authentication at the
message layer.

● Implementing Transport Layer Security Using HTTP Basic over HTTPS.
This reference provides information about implementing direct authentication
using Internet Information Services (IIS) with X.509 certificates at the transport
layer.

The following alternate pattern is related to the Direct Authentication pattern:
● Brokered Authentication. This pattern is an alternative to direct authentication

that describes how to prove a client’s identity to an authentication broker for
issuance of a security token, and then use the issued security token to authenticate
with a service.

The following pattern may use the Direct Authentication pattern:
● Brokered Authentication. This pattern may use variations of direct authentication

to prove a client’s identity to an authentication broker for issuance of a security
token.

Brokered Authentication

Context
A client needs to access a Web service. The Web service requires the application
to present credentials for authentication so that additional controls such as
authorization and auditing can be implemented.

Problem
How does the Web service verify the credentials that are presented by the client?

 Chapter 1: Authentication Patterns 39

Forces
Any of the following conditions justifies using the solution described in this pattern:
● The client accesses additional services, which results in the need for a single

sign on (SSO) solution. Without a single sign on solution, the client may be forced
to authenticate prior to every Web service call or cache the user’s credentials
within the application. If the user’s credentials include a password, caching
the password is not recommended because it may pose a security risk.

● The client and the Web service do not trust each other directly. The client and
the Web service may not trust one another to manage or exchange shared secrets
securely. Establishing trust directly between a client and Web service often
requires out of band interactions that can hinder clients and services from
interacting dynamically.

● The Web service and the identity store do not trust each other directly. The Web
service may be unable to communicate with the identity store directly, because of
access control restrictions, network restrictions, or organizational policy.

The following condition is an additional reason to use the solution.
● The client and Web service share a standard access control infrastructure.

You can simplify the development of new Web services by standardizing and
centralizing the issuance and verification of credentials. You can also centralize the
management of data associated with credentials; this reduces the costs associated
with identity management.

Solution
Use brokered authentication where the Web service validates the credentials
presented by the client, without the need for a direct relationship between the two
parties. An authentication broker that both parties trust independently issues a
security token to the client. The client can then present credentials, including the
security token, to the Web service.

Participants
Brokered authentication involves the following participants:
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to authorizing the client.
● Authentication broker. The authentication broker authenticates clients and

maintains authoritative control over security tokens. It also vouches for the client
by issuing it a security token.

● Identity store. The entity that stores a client’s credentials for a particular identity
domain.

40 Web Service Security

Process
Figure 1.6 depicts the interactions that are performed during brokered authentication.

Figure 1.6
Brokered authentication process

 Chapter 1: Authentication Patterns 41

As illustrated in Figure 1.6, the following steps describe the brokered authentication
process:
1. The client submits an authentication request to the authentication broker.
2. The authentication broker contacts the identity store to validate the client’s

credentials.
3. The authentication broker responds to the client, and if authentication is

successful, it issues a security token. The client can use the security token to
authenticate with the service. The security token can be used by the client for a
period of time that is defined by the authentication broker. The client can then use
the issued security token to authenticate requests to the service throughout the
lifetime of the token.

4. A request message is sent to the service; it contains the security token that is issued
by the authentication broker.

5. The service authenticates the request by validating the security token that was sent
with the message.

6. The service returns the response to the client.

There are different types of authentication brokers. Each type uses different
mechanisms to broker authentication between a client and a service. Common
examples of an authentication broker include the following:
● X.509 PKI
● Kerberos protocol
● Web Service Security Token Service (STS)

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

42 Web Service Security

Benefits
The benefits of using the Brokered Authentication pattern include the following:
● The authentication broker manages trust centrally. This eliminates the need for

each client and service to independently manage their own trust relationships,
as shown in Figure 1.7.

Figure 1.7
An authentication broker centrally managing trust

● Solutions built around brokered authentication with a centralized identity
provider are often easier to maintain than direct authentication solutions. When
new users who require access to any of the clients or Web services are added to the
identity store, their credentials are maintained in one central point.

● Two parties participating in brokered authentication do not require prior
knowledge of one another to communicate. If a client is modified to call a
Web service it has never used before, the Web service requires no changes to
its configuration or data to authenticate credentials presented by the client.

● Trust relationships can be established between different authentication brokers.
This means that an authentication broker can issue security tokens that are used
across organizational boundaries and autonomous security domains.

 Chapter 1: Authentication Patterns 43

Liabilities
The liabilities associated with the Brokered Authentication pattern include the
following:
● The centralized trust model that is used by Brokered authentication can sometimes

create a single point of failure. Some types of authentication brokers, such as the
Kerberos Key Distribution Center (KDC), must be online and available to issue
a security token to a client. If the authentication broker somehow becomes
unavailable, none of the parties that rely on the authentication broker to issue
security tokens can communicate with each other. This problem of a single point
of failure can be mitigated by implementing redundant or back-up authentication
brokers, although this increases the complexity of the solution.

● Any compromise of an authentication broker results in the integrity of the trust
that is provided by the broker also being compromised. If an attacker does
successfully compromise the authentication broker, it can use the authentication
broker to issue security tokens, and conduct malicious activity against parties that
trust the authentication broker.

Security Considerations
Security considerations associated with the Brokered Authentication pattern include
the following:
● Claims held in security tokens often contain sensitive data, and must be protected

in transit, either by using message layer security, or transport level security.
● Security tokens must be signed by the issuing authentication broker. If they are

not, their integrity cannot be verified. This could result in attackers trying to issue
false tokens.

● A Time of Change/Time of Use vulnerability may exist if the client’s account
status, identity attributes, or authorization attributes are modified by an account
administrator. If these changes are not reflected in the security token, it creates a
vulnerability that may lead to invalid clients interacting with the service with
elevated privileges.

Related Patterns
Three types of patterns are related this pattern: child patterns, alternate patterns,
and additional patterns.

The following child patterns are related to the Brokered Authentication pattern:
● Brokered Authentication: X.509 PKI. This pattern describes a specialized

authentication broker based on the X.509 PKI standard.
● Brokered Authentication: Kerberos. This pattern describes a specialized

authentication broker based on the Kerberos authentication protocol.
● Brokered Authentication: Security Token Service (STS). This pattern describes a

specialized authentication broker in the form of a Security Token Service.

44 Web Service Security

The following alternate pattern is related to the Brokered Authentication pattern:
● Direct Authentication. This pattern is an alternative to brokered authentication

where authentication is based on an identifier and a shared secret, such as
username and password.

One additional pattern is related to the Brokered Authentication pattern:
● Broker. This pattern is in Enterprise Solution Patterns Using Microsoft .NET on the

MSDN Web site. This pattern shows how to hide the implementation details of
remote service invocation.

Brokered Authentication: Kerberos

Context
Web services must authenticate clients so that additional controls, such as
authorization and auditing, can be implemented. The organization has decided to use
an authentication broker to provide a common access control infrastructure for a group
of applications. The authentication broker negotiates trust between client applications
and Web services, which removes the need for a direct relationship. The
authentication broker should issue signed security tokens that can be used for
authentication.

Problem
How does the Web service verify the credentials presented by the client application?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Users access multiple clients that call Web services, resulting in the need

for single sign on (SSO) capabilities. To ensure a good user experience, users
should only have to enter a username and password when they logon to their
workstations. They should not need to re-enter them multiple times to access
multiple clients.

● Centralized authentication of clients is required. Management of user and
computer credentials must be centralized to minimize security risks associated
with persisting credentials and to reduce maintenance overhead.

● Clients that require authentication are implemented on a variety of platforms
within the organization, and the organization has identified a need for
interoperability between those platforms. The easiest way to attain
interoperability between different platforms is to use a standards-based
mechanism for authentication.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesBroker.asp

 Chapter 1: Authentication Patterns 45

● Clients may exist in an untrusted network environment. You may not be able to
guarantee the security of the computers on the network or of the network itself.
User credentials must be protected from malicious attackers that may have gained
access to the network inappropriately.

The following condition is an additional reason to use the solution:
● Applications require some of the extended capabilities associated with a

particular implementation of the Kerberos protocol. For example, the Windows
Server 2003 implementation of the Kerberos protocol provides capabilities, such as
protocol transition, constrained delegation, and integration with Active Directory.

Solution
Use the Kerberos protocol to broker authentication between clients and Web services.

The client requests a ticket from an authentication broker, which returns a service
ticket and session key used to create a Kerberos security token. The security token
includes the service ticket and a data structure called an authenticator, which is
encrypted by using the session key retrieved from the broker. Then the Kerberos
security token is sent with a request message to the Web service.

When the Web service receives a Kerberos security token, it extracts the service ticket
and uses a long-term service key to decrypt the service ticket. The Web service uses
the session key from the service ticket to decrypt the authenticator and authenticate
the client.

Note: The term Kerberos security token is used to represent a data structure that contains a service
ticket and authenticator. For more information on Kerberos tickets and authenticators, see Kerberos
Technical Supplement for Windows in Chapter 7, “Technical Supplements.”

Participants
Brokered authentication using the Kerberos protocol involves the following
participants:
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to authorizing the client.
● Key Distribution Center (KDC). The KDC is the authentication broker that is

responsible for authenticating clients and issuing service tickets. On the Windows
platform, the KDC is implemented in Active Directory.

46 Web Service Security

The Kerberos protocol is an authentication protocol that requires the following
additional components.
● Account database. This is an identity store that the Kerberos KDC uses to check

client credentials presented for authentication. Master keys for the client and
service are also stored in this database. If the Kerberos protocol is implemented
on a Windows Server 2003 domain controller or on a Windows 2000 domain
controller, then Active Directory provides this function.

Note: The term master key refers to a long-term key, which is described in the Kerberos Technical
Supplement for Windows in Chapter 7, “Technical Supplements.”

● Kerberos policy. This is a security policy that defines behavior for a Kerberos
realm, which is also an Active Directory domain. Policy settings include user
logon restrictions, service ticket lifetime, user ticket lifetime, and clock
synchronization.

Note: There is some inconsistency in how service tickets are described in Kerberos documents.
The names service ticket and session ticket are used interchangeably. When you encounter the
phrase session ticket, remember that this is a service ticket.

The relationship between participants is shown in Figure 1.8.

Figure 1.8
Relationship between participants

 Chapter 1: Authentication Patterns 47

Process
Brokered authentication with the Kerberos protocol consists of the following high-
level tasks:
1. The client authenticates with the broker (KDC). The client is authenticated with

the broker, and given access to a ticket-granting ticket (TGT) that can be used to
request access to a service.

2. The client authenticates with the service. The client uses the TGT to request
access to a particular service, and then it receives a service ticket. The service uses
the service ticket to validate credentials.

Note: The Windows implementation of the Kerberos protocol uses many components and interfaces
that are beyond the scope of this pattern. The process described in this pattern focuses on the
interaction of primary components that the Kerberos protocol uses to authenticate with a Web
service, and not on the low-level implementation of the Kerberos protocol on the Windows platform.

Client Authenticates with Broker (KDC)

Clients can be authenticated through a wide variety of techniques, including:
● Workstation user login using the secure attention sequence

(CTRL+ALT+DELETE).
● Windows integrated authentication used to access a Web application.
● IIS process identity authentication used when the process starts.
● Protocol transition used to transition clients authenticated using a non-Windows

protocol into a Kerberos security context.

The actual process of authenticating a client is beyond the scope of this pattern.
However, it’s important to understand that the client must first be authenticated with
the broker and have access to a TGT before it can request access to a service.

For detailed information about the process of authenticating clients and issuing
ticket-granting tickets on the Windows platform, see Kerberos Technical Supplement
for Windows in Chapter 7, “Technical Supplements.”

For information about protocol transition, see Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4, “Resource Access Patterns.”

48 Web Service Security

Client Authenticates with Service

The process of authenticating with a service is shown in Figure 1.9.

Figure 1.9
Service Authentication

The following steps describe the process of service authentication depicted in
Figure 1.9:
1. The client sends a TGT in a message to the KDC to request a service ticket for

communication with a specific Web service.
2. The KDC creates a new session key and service ticket that will be used for

communication with the requested service. The service ticket contains the client’s
authorization data and the new session key. The KDC encrypts the service ticket
with the Web service’s master key. The service ticket and encrypted session key
are returned to the client.
Both the new session key and service ticket represent credentials used to create
a security token that allows access to the Web service. The client decrypts the
session key and then uses the key to encrypt an authenticator, which contains
a timestamp and other information. The authenticator and session ticket are
included in the new Kerberos security token. The session key is not included in
the token; however, it is included in the service ticket, which is what the service
uses to validate the token.

 Chapter 1: Authentication Patterns 49

3. A request message, which contains the Kerberos security token created in the
previous step, is sent to the service.

4. The service uses its master key to decrypt the service ticket found in the security
token and to retrieve the session key. The session key is used to decrypt the
authenticator and validate the security token. When it is validated, the service
accepts the security token and uses it to initialize a security context based on the
client information contained in the service ticket.

5. (optional)The service returns a response to the client. To provide mutual
authentication, the response should contain unique information that is encrypted
with the session key to prove to the client that the service knows the session key.

The Kerberos protocol follows the basic pattern of brokered authentication, but it has
properties that differentiate it from other types of brokered authentication, including
the following:
● The Kerberos protocol supports the notion of ticket renewal, but it does not

automatically revoke tickets. By default, Kerberos tickets have a fixed lifetime of
8 hours; however, the Windows implementation uses a fixed lifetime of 10 hours.

● The KDC does not terminate a service ticket when an authenticated client is
finished communicating with a service. Instead, it lets the ticket expire at the end
of its normal lifetime. Because tickets are used for authentication, if the ticket
expires during communication with a service, the expiration will not affect current
operations. Clients are not notified when a ticket is about to expire.

For more information on Kerberos tickets and ticket lifetime, see Kerberos Technical
Supplement for Windows in Chapter 7, “Technical Supplements.”

The Kerberos protocol can be used for brokering authentication at either the transport
layer or message layer. Some implementations of Kerberos authentication include the
following:
● Transport-layer Kerberos authentication, which includes:

● Windows Integrated Security
● IP Security Protocol with Internet Key Exchange (IPSec/IKE)

● Message-layer Kerberos authentication, which includes:
● Web Service Enhancements (WSE) 2.0 KerberosToken2
● Web Service Enhancements (WSE) 3.0 KerberosToken

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

50 Web Service Security

Benefits
The benefits of using the Brokered Authentication: Kerberos pattern include:
● The Kerberos protocol provides SSO capabilities, which allow a client to

authenticate only once per logon session.
● The Kerberos protocol has broad acceptance as a brokered authentication protocol

and is in use in the majority of large organizations that have a centralized
authentication infrastructure.

● The Kerberos protocol is closely integrated with the Windows operating system
(Windows 2000 and later). This enables the operating system to provide additional
capabilities, such as user impersonation/delegation, authorization, and auditing.

● Kerberos supports mutual authentication when a service sends a response that
contains data encrypted with the shared session key.

Liabilities
The liabilities associated with the Brokered Authentication: Kerberos pattern include:
● The centralized nature of the Kerberos protocol requires a KDC, which acts as an

authentication broker, to be available at all times. If the KDC fails, clients will not
be able to establish new trust relationships with a service. You should consider
using redundant KDCs or providing an alternative mechanism, such as X.509
certificates, for authentication. With Active Directory, KDC availability can be
improved by establishing secondary domain controllers. This creates a redundant
set of Kerberos KDCs.

● The Kerberos protocol is only useful for online authentication and secure
communication. Kerberos is not useful for long-term persistence because of the
limited lifetime of tickets and session keys used for encryption and signing.

● The Kerberos protocol cannot establish proof of authentication for a client outside
of its security realm (Active Directory domain) unless a trust relationship has been
established with the other security realm.

Security Considerations
Security considerations associated with the Brokered Authentication: Kerberos
pattern include:
● Clients must keep their master keys secret. If an intruder somehow compromises a

client’s key, it will be able to masquerade as that client or impersonate any server
to the legitimate client.

● With the Kerberos protocol, password guessing attacks can occur against
messages encrypted with a password equivalent derived from the client’s
password. (For client authentication, this is the client’s password. For service
authentication, this is the password of the service account.) The Kerberos protocol
uses this derived key to encrypt data in the authentication request. To discover the
password, an attacker could mount an offline dictionary attack by repeatedly
attempting to decrypt the data in the authentication request sent to the KDC.

 Chapter 1: Authentication Patterns 51

● The Kerberos protocol does not implement authorization, although it is typically
coupled with an identity store that may store authorization information for a
client. Resources may control access based on the client’s authorization
information, which is contained in the service ticket.

● The Kerberos protocol cannot be used for non-repudiation because the client’s
identity secret is shared with the KDC.

● Each host on the network must have a clock that is loosely synchronized to the
time of the other hosts. This synchronization reduces the bookkeeping needs of
application servers when they do replay detection. You can configure the degree
of looseness on a per-server basis. If the clocks are synchronized over the network,
the clock synchronization protocol itself must be secured from network attackers.

Related Patterns
Three types of patterns are related to this pattern: parent patterns, child patterns and
alternate patterns.

The following parent pattern is related to the Brokered Authentication: Kerberos
pattern:
● Brokered Authentication. This pattern describes how to prove a client’s identity

to an authentication broker so that the broker can issue a security token.

The following child patterns are related to the Brokered Authentication: Kerberos
pattern:
● Implementing Brokered Authentication Using Windows Integrated Security

on IIS. This reference provides a concise reference on how to use Windows
Integrated Security on IIS.

● Implementing Message Layer Security with Kerberos in WSE 3.0. This pattern
provides implementation guidelines for using the Kerberos protocol in WSE 3.0 to
implement brokered authentication, authorization, data integrity, and data origin
authentication.

● Protocol Transition with Constrained Delegation Technical Supplement.
This technical supplement describes different scenarios for using protocol
transition, and then provides step-by-step details for implementing protocol
transition. In addition, this pattern describes how a protocol transition can be
used with constrained delegation to access downstream resources.

The following alternate patterns are related to the Brokered Authentication: Kerberos
pattern:
● Brokered Authentication: X.509 PKI. This pattern describes a specialized

authentication broker based on the X.509 PKI standard.
● Brokered Authentication: Security Token Service (STS). This pattern describes a

specialized authentication broker based on using a security token service.

52 Web Service Security

Brokered Authentication: X.509 PKI

Context
Web services must authenticate clients so that additional controls, such as
authorization and auditing, can be implemented. The organization has decided to
use brokered authentication, based on the need for a single sign on (SSO) solution and
to allow multiple Web services to share a standard access control infrastructure. The
authentication broker should issue signed security tokens that can be used for
authentication.

Problem
How does the Web service verify the credentials presented by the client?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● The environment includes multiple organizational boundaries or autonomous

security domains. The authentication broker must be able to issue security tokens
that can be used across organizational boundaries.

● The client and the Web service do not trust each other. The client and the Web
service may not trust one another to manage or exchange shared secrets securely.
Establishing trust directly between a client and Web service could require offline
interactions that can hinder clients and services from interacting dynamically.

● The authentication broker might be offline or unavailable on some occasions.
The Web service must be able to validate authentication credentials when the
authentication broker is not available. This ensures that the Web service can
continue to process requests, even if the authentication broker becomes
unavailable.

● Clients that require authentication are implemented on a variety of platforms
within the organization, and interoperability is required between those
platforms. Using a standards-based mechanism for authentication helps
ensure interoperability between different platforms.

● The organization may need to trace particular actions to a specific client or
service. A record of transactions allows an organization to provide evidence that a
particular action was requested and/or performed. This could be useful if a user
denies that he or she performed an action or if a client needs to verify that a
service has performed a specific task.

 Chapter 1: Authentication Patterns 53

Solution
Use brokered authentication with X.509 certificates issued by a certificate authority
(CA) in a public key infrastructure (PKI) to verify the credentials presented by the
requesting application.

The client application attaches credentials (or a reference to credentials) to the request
message and digitally signs the message with the client’s private key. When a service
receives the message, it uses the public key, which is included with the X.509
certificate, to validate the signature. Additional validation may be required to ensure
that the X.509 certificate has not expired and was issued by a CA that the service
trusts.

Participants
Brokered authentication with X.509 certificates issued by a certificate authority in a
PKI involves the following participants:
● Certificate authority (CA). A CA is an authentication broker that is responsible for

authenticating clients and issuing valid X.509 certificates.
● Certificate store. This is where the X.509 certificates are located.
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to authorizing the client.

Process
A mutually trusted CA must issue an X.509 certificate before brokered authentication
using X.509 can complete. You can obtain an X.509 certificate in one of the following
ways:
● Purchase an X.509 certificate from a public CA.
● Configure a PKI server, such as Windows Certificate Services, to create an X.509

certificate, and then use the PKI CA to sign the certificate.
● Use a tool such as MakeCert to create a self-signed certificate (this is not suitable

for production purposes).

After an X.509 certificate is issued, local repositories, such as a machine certificate
store, are used to store information about the X.509 certificate. The actual process of
issuing and distributing X.509 certificates is beyond the scope of this pattern. For
detailed information, see X.509 Technical Supplement in Chapter 7, “Technical
Supplements.”

54 Web Service Security

The process of using an X.509 certificate for authentication is shown in Figure 1.10.

Response

Request

Client Credentials

1
2

4

Validate Certificate

3 Verify Signature

Client Service

Figure 1.10
Authentication using an X.509 certificate

As illustrated in Figure 1.10, the following steps describe the process of
authentication using an X.509 certificate:
1. The client sends a message to the service. The message includes the client’s

credentials, signed with the private key that is paired with the public key in
the client’s X.509 certificate. The client can also attach its X.509 certificate to the
message if the service does not store or have access to the X.509 certificates out
of band. If the X.509 certificate is not attached, the client attaches a certificate
identifier to the request message so that the service can retrieve the client’s X.509
certificate from a certificate repository and verify the message signature.

2. The service validates the certificate, by performing a number of checks, including:
● Verifying that the certificate has not expired. If the expiration date in the

certificate is past the current date, then the certificate is not valid.
● Verifying that the certificate is internally consistent. The service checks that the

data in the certificate has not been tampered with by verifying the certificate
contents against the signature of the issuing CA.

● Verifying the issuing CA of the client’s X.509 certificate. This is done by
comparing the issuer signature on the user’s X.509 certificate with the X.509
certificate of the issuing CA. For this step to be of any value to either party,
the CA that issued the client’s X.509 certificate must be trusted by both the
client and service.

● Verifying that the issuing CA has not revoked the certificate. The service checks
this by making sure that the X.509 certificate does not appear on a certificate
revocation list (CRL) published by the issuing CA. The service can check the
revocation status of the certificate by directly accessing it from the CA or by
checking against a CRL that was previously downloaded from the issuing CA
to the certificate repository used by the service to look up X.509 certificates.

 Chapter 1: Authentication Patterns 55

3. The service uses the public key in the client’s X.509 certificate to verify the client’s
signature. This allows the service to authenticate the client and ensure that the
signed data has not been tampered with after the message was signed.

4. (Optional) The service may send a response back to the client.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of using the Brokered Authentication: X.509 PKI pattern include the
following:
● Authentication can occur over well known Internet firewall-friendly ports through

well-known protocols (for example, HTTP/HTTPS over port 80/443).
● X.509 certificates can be used to authenticate clients and protect messages across

organizational boundaries and security domains because the X.509 certificates are
based on a broadly accepted standard. PKI using X.509 certificates has the capacity
to establish a common basis of trust beyond the scope of individual organizations.
Only a relatively small number of certificate issuers are widely trusted across
public networks, which simplifies the management of trust with those issuers.

● The X.509 CA supports renewal and revocation of X.509 certificates, as follows:
● An agent, acting on the client’s behalf, can renew an X.509 certificate to extend

the life time of the certificate. When an X.509 certificate is renewed, a new copy
of the certificate is generated with a new expiration date, sometimes along with
a corresponding new public/private key pair.

● X.509 certificates may be revoked if any of the client’s information in the X.509
certificate has changed or if the X.509 certificate’s private key has been
compromised.

● X.509 certificates can be distributed openly and used by anyone to encrypt
messages to a client or to verify the digital signature of the client. For more
information about protecting confidential data, see Data Confidentiality in
Chapter 2, “Message Protection Patterns.”

● Digital signatures provide a means of supporting non-repudiation. This is because
access to the private key is usually restricted to the owner of the key, which makes
it easier to verify proof-of-ownership. For more information about non-
repudiation, see Data Origin Authentication in Chapter 2, “Message Protection
Patterns.”

● Authentication does not require a direct relationship between every client and
service.

56 Web Service Security

Liabilities
The liabilities associated with the Brokered Authentication: X.509 PKI pattern include
the following:
● Private keys need to be stored securely (such as on a smart card or your computer)

and are therefore not as portable as passwords. An attacker could use a private
key to impersonate the client. Therefore, you must make sure that the private key
is not compromised.

● Generating and verifying digital signatures in X.509 is computationally intensive.
If the client sends frequent request messages to the service during a normal
interaction, you should consider a means to optimize communication between
the two parties, such as secure conversation.

● Certificates by themselves are not well suited to provide role-based security,
because role assignment tends to change relatively frequently and X.509
certificates typically have a long life time. However, you can supplement
X.509 certificate authentication with a role store to provide more fine-grained
authorization capabilities. One possible solution is to combine X.509
authentication with a Lightweight Directory Access Protocol (LDAP) directory
or Active Directory with certificate mapping enabled.

● Organizations could require additional infrastructure to support an X.509 PKI.
The benefits gained from using an X.509 PKI must be compared with the
investment required to use it.

Security Considerations
Security considerations associated with the Brokered Authentication: X.509 PKI
pattern include the following:
● It is critical to safeguard the private key associated with the X.509 certificate. If the

private key is compromised, the integrity of the corresponding X.509 certificate is
violated because another entity besides the client is capable of generating digital
signatures that represent the client’s identity. If a private key is compromised,
the CA can revoke the X.509 certificate, which causes it to become unusable for
encryption and digital signatures.

● The life time of an X.509 certificate is considerably greater than that of other
authentication broker token types. Most tokens from an authentication broker
expire minutes or hours from their time of issue, whereas an X.509 certificate can
be valid for several months.

● Regardless of whether an X.509 certificate is renewed or revoked and a new
X.509 certificate is re-issued, the X.509 certificate should use a newly generated
public/private key pair. For existing X.509 certificates that are being renewed,
this is known as re-keying the X.509 certificate.

● Only one copy of the client’s X.509 certificates private key should exist when it
is used to support non-repudiation through digital signatures. This private key
should be accessible to the client only.

 Chapter 1: Authentication Patterns 57

● If private keys are centrally managed — for example, by using a key escrow —
and the centralized store is compromised, you may not be able to use digital
signatures to strongly attribute an action to a specific party.

● In some cases, after a service has authenticated a client, it will need to authorize
the client based on the client identity. The service must be able to either recognize
the client individually or verify that the client belongs to a limited population.
The service can accomplish this in one of the following ways:
● By defining a policy that only allows requests to be processed that are signed

by specific X.509 certificates.
● By requiring verification of X.509 client certificates against a very restricted

trust chain. This allows you to closely regulate the population of clients from
which the server will accept requests. For more information about X.509
certificate trust chains and trust anchors, see X.509 Technical Supplement in
Chapter 7, “Technical Supplements.”

● Messages that are signed and encrypted with X.509 certificates are susceptible to
surreptitious forwarding attacks. In this type of attack, the recipient of a signed and
encrypted message decrypts the message, encrypts it using a third-party’s public
key, and then sends it on to that third party with the original signature still in the
message. In this case, the message can appear as though it was sent to the third
party from the original sender. To mitigate this type of attack, the original sender
can sign some information that binds the message to the intended recipient, such
as the WS-Addressing headers that specify the intended recipient of the message.

● If an authentication broker is compromised, the integrity of the trust that the
broker provides is also compromised. If a CA is compromised, an attacker could
issue certificates to himself/herself to act as a valid client within the CA’s trust
chain. An attacker could use these certificates to perform malicious actions while
posing as a trusted client.

● You should use mutual authentication to be sure that each party using X.509 is
who they claim to be. With mutual authentication, the client authenticates the
service and the service authenticates the client. For authentication with X.509
certificates, each party must be able to verify a piece of signed data provided by
the other party with that party’s X.509 certificate. Alternatively, if only one party
has an X.509 certificate, shared keys can be combined with X.509 certificates
to provide mutual authentication. For an example of such an approach, see
Implementing Message Layer Security with X.509 Certificates in WSE 3.0 in
Chapter 3, “Implementing Transport and Message Layer Security.”

58 Web Service Security

Related Patterns
Four types of patterns are related to this pattern: parent patterns, child patterns,
alternate patterns, and patterns that use the Brokered Authentication: X.509 PKI
pattern.

The following parent pattern is related to the Brokered Authentication: X.509 PKI
pattern:
● Brokered Authentication. This pattern describes how to prove a client’s identity

to an authentication broker so that the broker can issue a security token.

The following child patterns are related to the Brokered Authentication: X.509 PKI
pattern.
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0. This

pattern explains how to implement brokered authentication, authorization, data
integrity, and data origin authentication using X.509 certificates in WSE 3.0.

● Implementing Transport Layer Security Using X.509 Certificates and HTTPS.
This reference provides a concise reference on how to use SSL for data
confidentiality and data integrity and how to use SSL client certificates for
brokered authentication and data origin authentication.

The following alternate patterns are related to the Brokered Authentication: X.509 PKI
pattern:
● Brokered Authentication: Kerberos. This pattern provides an alternative to X.509

based on the Kerberos authentication protocol.
● Brokered Authentication: Security Token Service (STS). This pattern provides an

alternative to X.509 that is highly interoperable between platforms, security
protocols, and credential types.

The following pattern uses the Brokered Authentication: X.509 PKI pattern:
● Implementing Direct Authentication with UsernameToken in WSE 3.0. This

pattern relies on relies on X.509 certificates, to ensure that sensitive credentials
can be propagated securely.

 Chapter 1: Authentication Patterns 59

Brokered Authentication: Security Token Service (STS)
Context
Web services need to authenticate clients in a heterogeneous environment so that
additional controls such as authorization and auditing can be implemented. The
organization has decided to use an authentication broker to provide a common access
control infrastructure for a group of applications. The authentication broker
negotiates trust between client applications and Web services; this removes the need
for a direct relationship. The authentication broker should issue signed security
tokens that can be used for authentication.

Problem
How does the Web service verify the credentials presented by the client?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Clients requiring authentication are implemented on a variety of platforms

within the organization, and interoperability is required between those
platforms. Using a standards based mechanism for authentication helps ensure
interoperability between different platforms.

● The organization has identified a need for security tokens that are extensible
and include claims that support additional security functions. The
authentication broker must be flexible enough to receive and issue tokens that
support additional functionality such as authorization, auditing, and custom
authentication.

The following condition is an additional reason to use the solution:
● The environment includes organizational boundaries that are protected by

firewalls. The authentication broker must be able to issue security tokens that can
traverse these boundaries, including passing through ports that are commonly
enabled on firewalls.

The following conditions are not resolved by the base pattern, but they are resolved
by the extensions provided at the end of this pattern:
● Users access multiple clients that call Web services, resulting in the need for

single sign on (SSO) capabilities. To ensure a positive user experience, users
should have to enter a user name and password only when logging on to a
workstation; users should not have to re-enter them multiple times when
accessing multiple clients.

● The environment includes multiple security domains. Clients must be able
to obtain security tokens, so that resources such as services can be accessed in
a different security domain using a security token issued by the authentication
broker in its own security domain.

60 Web Service Security

Solution
Use brokered authentication with a security token issued by a Security Token Service
(STS). The STS is trusted by both the client and the Web service to provide
interoperable security tokens.

The client sends an authentication request, with accompanying credentials, to the
STS. The STS verifies the credentials presented by the client, and then in response,
it issues a security token that provides proof that the client has authenticated with
the STS. The client presents the security token to the Web service. The Web service
verifies that the token was issued by a trusted STS, which proves that the client has
successfully authenticated with the STS.

The protocol used for issuing security tokens is based on WS-Trust. WS-Trust is a
Web service specification that builds on WS-Security. It describes a protocol used for
issuance, exchange, and validation of security tokens. WS-Trust provides a solution
for interoperability by defining a protocol for issuing and exchanging security tokens,
based on token format, namespace, or trust boundaries.

In WS-Trust, the type of message sent to an STS to request issuance of a security
token is known as a Request Security Token (RST) message. The RST message
contains credentials for the client to be authenticated, such as the user ID and
password contained in a UsernameToken. The response message from the STS is
known as a Request Security Token Response (RSTR) message. The RSTR contains
a security token, such as an XML Security Assertion Markup Language (SAML).
For more information about WS-Trust, see Web Services Trust Language (WS-Trust)
on MSDN.

SAML Tokens

SAML (Security Assertion Markup Language) tokens are standards-based XML tokens that are used
to exchange security information, including attribute statements, authentication decision statements,
and authorization decision statements. SAML tokens are also extensible; this means you can extend
the schema of the token to meet additional requirements.

SAML tokens are important for Web service security because they provide cross-platform
interoperability and a means of exchanging security information between clients and services that do
not reside within a single security domain. They can be used as part of an SSO solution allowing a
client to talk to services running on disparate technologies.

The SAML specifications cover a broad range of topics — from the format of the actual SAML token
to a protocol that can be used for token request and issuance. Microsoft products use the WS-*
specifications, which include the use of SAML assertions but not the SAML protocol. Instead of
the SAML protocol, token issuance and federation uses the WS-Trust and WS-Federation set of
specifications. Currently, ADFS in Windows Server 2003 R2 uses SAML 1.1 tokens and the
WS-Federation passive client profile specification to enable SSO scenarios within Web applications.
For more information about ADFS, see Introduction to ADFS on Microsoft TechNet. Future support
for active client scenarios (such as SSO support for Web services) is under development.

(continued)

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e-092696f40c171033.mspx

 Chapter 1: Authentication Patterns 61

SAML Tokens (continued)

The SAML standard is still evolving from version to version, and the versions are not currently
interoperable. At the time of this writing, there is increasing adoption of the SAML 1.1 specification,
but implementations may need to be modified to support future versions of the SAML standard if
SAML tokens are used.

For more information about the SAML 1.1 specification, including the protocol for request and
issuance of SAML tokens, see the OASIS Web site.

Participants
Brokered authentication with STS involves the following participants:
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● STS. The STS is the Web service that authenticates clients by validating credentials

that are presented by a client. The STS can issue to a client a security token for a
successfully authenticated client.

● Service. The service is the Web service that requires authentication of a client prior
to authorizing the client.

Process
Figure 1.11 illustrates the process by which a security token is issued to the client by
the STS and then used to authenticate with a service, which then returns a response
to the client.

Figure 1.11
STS token issuance and request/response

http://www.oasis-open.org/specs/index.php#samlv1.1

62 Web Service Security

As illustrated in Figure 1.11, the following steps describe STS token issuance and
request/response process:
1. The client initializes and sends authentication request to the STS.

The authentication request to the STS is in the form of an RST message. This
step can be performed by presenting the client’s identifier and proof-of-possession
(such as user name and password) directly to the STS or by using a token issued
by an authentication broker (such as an X.509 digital signature or Kerberos
tokens).
The RST message contains a security token that holds the client’s credentials,
which are required to authenticate the client. Claims in the client’s credentials,
such as a password, may be sensitive in nature, so it is very important to secure
the RST. The specific security mechanism used for securing the RST depends on
the relationship between the client and the STS. For example, the client and STS
may use Kerberos tokens or X.509 certificates to sign and encrypt messages
sent between them. For more information about securing messages, see Data
Confidentiality and Data Origin Authentication in Chapter 2, “Message
Protection Patterns.”

2. The STS validates the client’s credentials. After the STS determines that the
client’s credentials are valid, it may also decide whether to issue a security token
for the authenticated client. For example, the STS may have a policy where it
issues tokens only for users who belong to a specific role or for valid X.509
certificates that can be validated through a specific trust chain.

3. The STS issues a security token to the client. If the client’s credentials are
successfully validated, the STS issues a security token (such as a SAML token) in
an RSTR message to the client; typically, the security token contains claims related
to the client. The security token is usually signed by the STS; when the security
token is signed by STS, the service can confirm that the token was issued by the
STS and that the security token was not tampered with after it was issued.

4. The client initializes and sends a request message to the service. After the client
receives a security token from the STS, it initializes a request message that includes
the issued security token, and then it sends the request message to the service.

5. The service validates the security token and processes the request. The security
token is validated by the service to verify that the token was issued by the trusted
STS and that the token was not tampered with after it was issued. After the token
is validated by the service, it is used to establish security context for the client, so
the service can make authorization decisions or audit activity.

6. (Optional) The service initializes and sends a response message to the client.
A response is not always required. Frequently, the response message contains
sensitive data, so it should be secured.

 Chapter 1: Authentication Patterns 63

A client may also specify the scope of the request for a security token to the STS.
Scope is a value that identifies the target of the client; it can be as granular as a single
operation of the Web service or as broad as an application domain. The token issued
by the STS can contain usage constraints that correspond to the scope of the request.

Scope can be used to provide resource level authorization, with the STS comparing
the value in the scope to a list of clients that are authorized to access the target.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of using the Brokered Authentication: Security Token Service (STS)
pattern include the following:
● This pattern provides a flexible solution for exchanging one type of security token

for another to accomplish a variety of goals in a Web service environment, such as
authentication, authorization, and exchanging session keys.

● The solution is not dependent on any one mechanism, such as the Kerberos
protocol or X.509 to secure messages. This makes it easier to enable different
authentication protocols to interoperate, by adding a level of abstraction on
top of existing protocols.

Liabilities
The layer of abstraction provided by the STS means that the STS must use another
underlying security protocol to provide functionality such as authentication and
authorization. This can make the STS a more difficult solution to implement,
particularly in cases where a custom solution is used.

64 Web Service Security

Security Considerations
Security considerations associated with the Brokered Authentication: Security Token
Service (STS) pattern include the following:
● Request and response messages between the client and the STS often contain

sensitive information, such as user passwords and session encryption/signature
keys, so they should be protected using data encryption and data origin
authentication. For more information about data encryption, see Data
Confidentiality in Chapter 2, “Message Protection Patterns.” For more information
about data origin authentication, see Data Origin Authentication in Chapter 2,
“Message Protection Patterns.”

● Request and response messages between the client and the STS and between
the client and the service may also be susceptible to message replay attacks if
communication is secured at the message layer. For information about preventing
an attacker from replaying messages, see Message Replay Detection in Chapter 5,
“Service Boundary Protection Patterns.”

Extensions
The extensions described here build on the base pattern to provide additional
capabilities.

Extension 1 — Establishing a Secure Conversation
This extension can be used to establish a secure conversation with the STS. There are
several reasons for establishing a secure conversation with the STS, including:
● Preventing the client from having to present a user name and password each time

it accesses a different service. This could involve the client having to cache the
client’s original credentials (which is not considered a safe security practice) or
prompting users to provide their credentials each time.

● Improving performance when resource-intensive forms of credentials, such
as X.509 digital signatures, are used. Creation and validation of X.509 digital
signatures is a computationally intensive process, so performance can be
improved if they are used less frequently.

 Chapter 1: Authentication Patterns 65

In this extension, the client obtains a Security Context Token (SCT) (which
demonstrates that the client has been authenticated) from the STS and caches it. After
the client is authenticated with the STS, the client can use the session token to request
a service token for communication with a service. The way the STS validates a
security token presented by a client and issues service tokens is similar to how the
Kerberos protocol validates a ticket-granting ticket and issues a service ticket. For
more information about the Kerberos protocol, see Brokered Authentication: Kerberos
in Chapter 1, “Authentication Patterns.” Figure 1.12 illustrates this behavior.

Figure 1.12
Establishing a secure conversation with the STS

This extension is based on the use of WS-SecureConversation to establish a session
between the client and the service. WS-SecureConversation is a Web service
specification that builds on WS-Security and WS-Trust. It describes how to establish a
lightweight security context between two parties. The security context uses session
keys; these session keys become the basis for encrypting and signing subsequent
message exchanges, which results in more efficient secure communications between
the two parties. For more information about WS-SecureConversation, see Web Services
Secure Conversation Language (WS-SecureConversation) on MSDN.

Note: The security of any conversation depends on the key exchange mechanism. Typically, the key
exchange mechanism is based on a key management infrastructure, such as one based on PKI or
shared secrets.

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf

66 Web Service Security

The secure conversation extension can also be applied to the other direct
authentication and brokered authentication patterns to optimize interactions between
two parties. In this instance, the secure conversation is applied to demonstrate how a
session can be established between a client and an STS.

While the establishment of a secure conversation with the STS logically includes three
parties — the client, the STS and the service — the solution is typically implemented
with the STS residing on the same node as the service. The STS issues SCTs to
maintain state between the client and the STS, and it also issues service tokens for
communication between the client and the service. The client can use the service
token to authenticate with the service, and may even establish a secure conversation
with the service.

This extension builds on the base pattern to provide additional capabilities.
In addition to resolving the forces stated for the base pattern, it also resolves
the following condition:
● Users access multiple clients that call Web services, resulting in the need for

single sign on (SSO) capabilities. To ensure a positive user experience, users
should have to enter a user name and password only when logging on to a
workstation; users should not have to re-enter them multiple times when
accessing multiple clients.

Process

This section describes the steps of the process illustrated in Figure 1.12.
It demonstrates how the STS issues Security Context Tokens (SCTs) to allow the client
to establish a session with STS. An SCT is a lightweight security token used to gain
access to the STS and to optimize secure communications between the client and
the STS.

Ad illustrated in Figure 1.12, the following steps describe the STS process:
1. The client initializes and sends an authentication request to the STS. The

authentication request to the STS is in the form of an RST message. This step can
be performed by presenting the client’s identifier and proof-of-possession (such
as user name and password) directly to the STS or by using a token issued by an
authentication broker (such as an X.509 digital signature or Kerberos protocol
Token). Information, such as a password, is sensitive in nature, so it is very
important to secure the RST using message protection. For more information see
Chapter 2, “Message Protection Patterns.”

2. The STS validates the client’s credentials. The client’s credentials are a series of
claims that prove the client’s identity or confirm that the client has successfully
authenticated with another trusted authentication broker such as an X.509 CA,
a Kerberos KDC, or another STS.

 Chapter 1: Authentication Patterns 67

3. The STS issues a Security Context Token (SCT) to the client. The SCT can be
used by the client each time additional security tokens are required, instead of the
client presenting the client’s original credentials each time. The scope of the issued
SCT is limited to the STS regardless of whether the client specified the scope in the
initial RST. This prevents the client from using the SCT to directly access a service.

4. The client caches the SCT. By caching the SCT, the client can establish a session
with the STS. Then the client can make subsequent requests to the STS without
having to present the client’s original credentials each time. The STS can include
claims about the client in the SCT, which the STS can use to make authorization
decisions.

5. The client requests a service token from the STS to communicate with the
service. When the client attempts to communicate with a specific service, it sends
another RST to the STS. This RST contains the SCT that was initially issued by the
STS for the authenticated client. In the RST, the client specifies the target Web
service as the scope of the request.

6. The STS responds to the service token request. The STS may have established a
policy to determine whether the client is authorized to access the service that is
specified in the scope. If the client is allowed access to that service, the STS issues
to the client a security token that is used to authenticate with the service.

7. The client initializes and sends request message to the service. After the client
obtains the required security token from the STS, it initializes a request message
that includes the issued service token, and sends it to the service.

8. The service validates service token and processes the request. The service
ensures that the security token was issued by the trusted STS and that the token
was not tampered with after it was issued. After the token is validated by the
service, it is used to establish a security context for the client, so the service can
make authorization decisions or audit activity.

9. Service initializes and sends response message to the client. The client may not
always expect a response from the service. The client knows whether to expect a
response from the service if it has been specified in the Web service contract using
Web Service Discovery Language (WSDL).

Note: It is also possible for the client to establish a secure conversation with the service. In this
case, Step 7 would be preceded by a request for a SCT from the service using the newly issued
service token (for example, a SAML token) as the basis for the initial authentication with the service.

68 Web Service Security

Extension 2 — Web Service Federation
A client may need to communicate with Web services that operate across
organizational boundaries. Typically, the different organizations each have their own
autonomous security domains established. In this situation, the client is authenticated
in the security domain where the client operates, but it must be authorized and
audited within the security domain where the service operates for the client to be
able to call the service.

This extension builds on the base pattern to provide additional capabilities. In
addition to resolving the forces stated for the base pattern, it also resolves the
following condition:
● The environment includes multiple security domains. Clients must be able to

obtain security tokens, so that resources such as services can be accessed in a
different security domain using a security token issued by the authentication
broker in its own security domain.

With security federation, security claims can be propagated and consumed across
different security domains to support identification, authentication, authorization,
and auditing.

After the client is authenticated, the token obtained from the STS is exchanged for a
token that is useable in the target security domain. Security domains can be federated
in different ways, depending on the operating environment and the security
requirements for applications within the federation.

Note: This extension demonstrates at a high level how a SAML STS can be used as part of a larger
federation solution. As such, a comprehensive discussion of federation is outside the scope of this
pattern. The federation solution described here would include support for additional capabilities,
such as mapping role information from one domain into equivalent role information in another
domain to provide support for authorization of the client.

 Chapter 1: Authentication Patterns 69

Figure 1.13 illustrates an example of interaction between a client and a service
in two different security domains that participate in a federation through their
respective STSs:

Figure 1.13
Obtaining a security token to authenticate with a service in a different security domain

Note: In this model of federation, the client is responsible for requesting the appropriate security
token, which is consumable by the target Web service, as shown in Figure 1.13. This example can be
used for active or passive clients. Support for passive clients is possible if the STS issues security
tokens that are useable through HTTPS and can be cached by the browser.

70 Web Service Security

As illustrated in Figure 1.13, the following steps describe Web service federation
process:
1. The client requests a security token to communicate with the STS in the target

security domain. The client presents authentication credentials, a security token
previously issued by the STS, or a security token issued by another trusted
authentication broker to obtain the security token for the target security domain.

2. The STS in the client’s domain validates the credentials or security token
presented by the client. The STS in the client’s security domain may make
authorization decisions about whether to issue a security token to the client
for use in the security domain where the target service operates.

3. The STS in the client’s domain issues a security token to the client that is used
to obtain a service token from the STS in the domain where the target service
operates. If the client is authenticated and authorized by the STS in the client’s
domain that STS issues a security token to the client to communicate with the STS
in the target domain where the Web service operates. Based on the target security
domain, the STS in the client’s domain knows the type and scope of security token
to issue.

4. The client requests a security token from the STS in the target security domain.
The client presents the token issued by its STS to communicate with the STS of the
target security domain.

5. The target STS validates the client’s security token. The STS in the target security
domain verifies that the token presented by the client originated from an STS in
a trusted security domain. After the STS in the Web service’s security domain
validates the security token presented by the client, it may make an authorization
decision about whether the client is authorized to access the requested service.

6. The target STS issues a security token to communicate with the service. If the
target STS decides that the request is valid and the client is authorized to
communicate with the service, it will issue a security token to the client that can
be used to communicate with the service.

7. The client sends a request message to the service. The client attaches the security
token it received from the STS in the target service’s security domain to the request
and sends it to the service.

8. The service validates the security token attached to the request. The service
verifies that the token presented by the client was issued by a trusted STS.

9. The service initializes and sends a response message to the client.

 Chapter 1: Authentication Patterns 71

Related Patterns
Three types of patterns are related to this pattern: parent patterns, child patterns,
and alternate patterns.

The following parent pattern is related to the Brokered Authentication: Security
Token Service (STS) pattern:
● Brokered Authentication. This pattern describes how to prove a client’s identity

to an authentication broker so that the broker can issue a security token.

The following child pattern is related to the Brokered Authentication: Security Token
Service (STS) pattern:
● Implementing Message Layer Security with a Security Token Service (STS) in

WSE 3.0. This pattern provides implementation guidelines for using an STS in
WSE 3.0 to implement brokered authentication. This pattern is currently still in
development, and is scheduled for completion in early 2006.

The following alternate patterns are related to the Brokered Authentication: Security
Token Service (STS) pattern:
● Brokered Authentication: Kerberos. The Kerberos protocol provides an

alternative to X.509 based on the Kerberos authentication protocol.
● Brokered Authentication: X.509 PKI. This pattern describes a specialized

authentication broker based on the X.509 PKI standard.

72 Web Service Security

More Information
For more information about authorization on the .NET Framework, see
“Authentication and Authorization” in Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication on MSDN:
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us
/dnnetsec/html/SecNetch03.asp.

For more information about Web services security, see OASIS Standards and
Other Approved Work (including WS-Security) on the OASIS Web site:
http://www.oasis-open.org/.

For more information about the Kerberos protocol specifications, see RFC 1510:
The Kerberos Network Authentication Service (V5):
http://www.faqs.org/rfcs/rfc1510.html.

For more information about Kerberos authentication in Windows Server 2003,
see “Kerberos Authentication Technical Reference” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef
/b748fb3f-dbf0-4b01-9b22-be14a8b4ae10.mspx.

For a general overview of PKI technologies, see “PKI Technologies” on Microsoft
TechNet: http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef
/6d5d9ef3-75ca-46c1-acf6-57dc7e9a6adf.mspx.

For more information about WS-Trust, see Web Services Trust Language (WS-Trust)
on MSDN: http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf.

For more information about ADFS, see “Introduction to ADFS” on Microsoft TechNet:
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e
-092696f40c171033.mspx.

For more information about Security Assertion Markup Language (SAML), go to
the OASIS Web site: http://www.oasis-open.org/specs/index.php#samlv1.1.

For more information about WS-SecureConversation, see Web Services
Secure Conversation Language (WS-SecureConversation) on MSDN:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf.

For more information about SAML token profile 1.0, see Web Security Services:
SAML Token Profile on the Oasis Web site:
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf.

http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetch03.asp
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.faqs.org/rfcs/rfc1510.html
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b748fb3f-dbf0-4b01-9b22-be14a8b4ae10.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b748fb3f-dbf0-4b01-9b22-be14a8b4ae10.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/6d5d9ef3-75ca-46c1-acf6-57dc7e9a6adf.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/6d5d9ef3-75ca-46c1-acf6-57dc7e9a6adf.mspx
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e-092696f40c171033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e-092696f40c171033.mspx
http://www.oasis-open.org/specs/index.php#samlv1.1
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

2
Message Protection Patterns

Introduction
Web services send and receive plaintext messages over standard Internet protocols
such as HTTP. Such plaintext messages can be intercepted by an attacker and
potentially viewed or even modified for malicious purposes. By using message
protection, you can protect sensitive data against threats such as eavesdropping and
data tampering. This chapter provides design patterns for data confidentiality and
data origin authentication.

This chapter provides design patterns for data confidentiality and data origin
authentication. Figure 2.1 is a pattern map that illustrates these patterns.

Design

Architecture

WEB SERVICE SECURITY (Message Protection)

Security Policy

Pattern Placeholder Pattern

Data Origin
Authentication

P

Data
Confidentiality

P P

HP

H

Message
Validator

Figure 2.1
Message protection patterns

74 Web Service Security

Note: The main factors that drive the type of message protection required are usually related to
security policies within your organization and threat analysis performed for a particular application.
It is strongly recommend that you perform a threat analysis to help understand your requirements.
For more information about threat modeling, see Threat Modeling Web Applications on MSDN.

Data Integrity, Data Origin Authentication, and Data Confidentiality
Message protection can be divided into three main categories:
● Data integrity is the verification that a message has not changed in transit.
● Data origin authentication takes data integrity a step further and supports the

ability to identify and validate the origin of a message.
● Data confidentiality is the encrypting of message data so that unauthorized

entities cannot view the contents of the message.

As shown in Figure 2.1, a pattern does not exist for data integrity. Instead of creating
a separate design pattern for data integrity, many of the implementation patterns
in Chapter 3, “Implementing Transport and Message Layer Security,” include data
integrity as a step in the process. Because you should consider data integrity issues
as you determine the message protection required in your environment, the decision
matrix in Table 2.1 includes a Data Integrity column. The other two columns are
mapped to design patterns in this chapter, which is consistent with other decision
matrices.

Table 2.1 represents a decision matrix that lists security considerations related to
message protection and how each one is supported by data integrity, data origin
authentication, and data confidentiality.

Table 2.1: Message Protection Decision Matrix

Security
Consideration

Data Integrity

Data Origin
Authentication

Data Confidentiality

You want to verify
that the contents of
a message were not
altered in transit.

Allows verification that a
message has not
changed in transit.

Supports the ability to
verify that a message
has not changed in
transit and verify the
origin of a message.

Encryption does not
prevent the contents
of a message from
being altered.

You want to verify
that the source of
the data is from the
sender you are
authenticating and
that the contents of
a message were not
altered in transit.

Allows verification that a
message has not been
changed, but this does
not necessarily imply that
the receiver can verify
the source of the data.

Supports the ability to
verify that a message
has not changed in
transit and verify the
origin of a message.

Encryption does not
prevent the contents
of a message from
being altered.

(continued)

http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp

 Chapter 2: Message Protection Patterns 75

Table 2.1: Message Protection Decision Matrix (continued)

Security
Consideration

Data Integrity

Data Origin
Authentication

Data Confidentiality

You want to restrict
access to the
contents of a
message to
authorized users
only.

Does not provide the
ability to protect
message contents from
unauthorized users.

Does not provide the
ability to protect
message contents from
unauthorized users.

Confidentiality can
be used to encrypt
the contents of a
message so that
only authorized
users can view the
message contents.

You are
implementing direct
authentication using
a shared secret and
want to prevent an
attacker getting the
secret.

Generating signatures
based on shared secrets
that may have low
entropy leaves the
message vulnerable to
offline cryptographic
guessing attacks; as
such, WSE 3.0
recommends you secure
direct authentication
using either HTTPS or
UsernameForCertificate
assertions.

Generating signatures
based on shared secrets
that may have low
entropy leaves the
message vulnerable to
offline cryptographic
guessing attacks;
as such, WSE 3.0
recommends you secure
direct authentication
using either HTTPS or
UsernameForCertificate
assertions.

Encryption combined
with data integrity
and data origin
authentication can
be used to protect
the shared secret.

You want to
implement the
Message Replay
Protection pattern to
prevent an attacker
from maliciously
replaying messages.

Replay detection
depends on the
ability to uniquely
identify messages.

This option is often
implemented using a
hashing function that
provides a unique
identifier that can be
used to determine if the
same message is
received multiple times.

This option is often
implemented using a
hashing function or
digital signature that
provides a unique
identifier that can be
used to determine if the
same message is
received multiple times.

Not applicable.

From the decision matrix in Table 2.1, you can see that data confidentiality is
recommended during authentication and any time sensitive data is sent in a message.

The remainder of this chapter focuses on the following design patterns:
● Data Confidentiality
● Data Origin Authentication

76 Web Service Security

Data Confidentiality

Context
Data passes between a client and a Web service, sometimes through one or more
intermediaries. Messages may also be kept in repositories, such as message queues
or databases. Some of the data within the messages is considered to be sensitive in
nature. There is a risk that an attacker can gain access to sensitive data, either by
eavesdropping on the network or accessing a repository.

Problem
How do you protect data within a message from being disclosed to unintended
parties?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Disclosure of sensitive data can result in loss or damage, such as identity theft,

lawsuits, loss of business, or regulatory fines. Any data that contains sensitive
information must be protected from unauthorized users.

● Sensitive data may pass across the network. Sensitive data must be protected
from disclosure in transit. An eavesdropper can gain access to sensitive data
whenever it leaves a secure area (such as a protected memory space) or crosses
a non-secure communication line (such as a public network).

● Sensitive data may be persisted for short periods of time, such as in a message
queue, or over longer periods of time in a database or a file. Sensitive data must
be protected from disclosure in locations where it is persisted.

Solution
Use encryption to protect sensitive data that is contained in a message. Unencrypted
data, which is known as plaintext, is converted to encrypted data, which is known as
ciphertext. Data is encrypted with an algorithm and a cryptographic key. Ciphertext
is then converted back to plaintext at its destination.

Participants
Data confidentiality involves the following participants:
● Sender. The sender is the originator of a message. A client can send a request

message to a Web service, and a Web service can send a response message back
to a client that has sent a request message.

● Recipient. The recipient is the entity that receives a message from the sender.
A Web service is the recipient of a request message that is sent by a client, and a
client is the recipient of a response message that it receives from a Web service.

 Chapter 2: Message Protection Patterns 77

Process
You can apply data confidentiality in two steps:
1. Encrypting the data. In this step, the sender converts plaintext to ciphertext,

rendering it unintelligible to parties other than the intended recipient.
2. Decrypting the data. In this step, ciphertext is rendered intelligible to the intended

recipient by converting it back to plaintext.

You can use two types of cryptography to provide data confidentiality: symmetric
and asymmetric. While both symmetric cryptography and asymmetric cryptography
follow the same basic process, they each have their own unique characteristics.

Symmetric Cryptography

With symmetric cryptography, both the sender and recipient share a key that is used
to perform both encryption and decryption. Symmetric cryptography is commonly
used to perform encryption. It also provides data integrity when symmetric keys are
used in conjunction with other algorithms to create Message Authentication Codes
(MACs). For more information about MACs, see Data Origin Authentication in
Chapter 2, “Message Protection Patterns.”

Figure 2.2 illustrates the process of encrypting and decrypting data with a shared
secret key.

Figure 2.2
The process of symmetric encryption

78 Web Service Security

As illustrated in Figure 2.2, symmetric encryption involves the following steps:
1. The sender creates a ciphertext message by encrypting the plaintext message with

a symmetric encryption algorithm and a shared key.
2. The sender sends the ciphertext message to the recipient.
3. The recipient decrypts the ciphertext message back into plaintext with a

shared key.

Numerous symmetric algorithms are currently in use. Some of the more common
algorithms include Rijndael (AES) and Triple DES (3DES). These algorithms are
designed to perform efficiently on common hardware architectures.

Symmetric cryptography is comparatively simple in nature, because the secret key
that is used for both encryption and decryption is shared between the sender and
the recipient. However, before communication can occur, the sender and the recipient
must exchange a shared secret key. In some cases (such as SSL), asymmetric
cryptography can be used to ensure that the initial key exchange occurs over a
secure channel.

Asymmetric Cryptography

With asymmetric cryptography (also known as public key cryptography), the sender
encrypts data with one key, and the recipient uses a different key to decrypt
ciphertext. The encryption key and its matching decryption key are often referred
to as a public/private key pair.

Note: In addition to providing encryption, you can use public key cryptography to provide digital
signatures, facilitating nonrepudiation, and for key management purposes. For more information,
see Data Origin Authentication in Chapter 2, “Message Protection Patterns.”

The public key of the recipient is used to encrypt data. It can be openly distributed to
those who want to encrypt a message to the recipient. The private key of the recipient
is used to decrypt messages, and only the recipient must be able to access it.

 Chapter 2: Message Protection Patterns 79

Figure 2.3 illustrates the process of asymmetric encryption and asymmetric
decryption.

Figure 2.3
The process of asymmetric encryption

As illustrated in Figure 2.3, asymmetric encryption involves the following steps:
1. The sender creates a ciphertext message by encrypting the plaintext message with

an asymmetric encryption algorithm and the recipient’s public key.
2. The sender sends the ciphertext message to recipient.
3. The recipient decrypts the ciphertext message back to plaintext using the private

key that corresponds to the public key that was used to encrypt the message.

Few asymmetric algorithms are currently in use. The most commonly used
asymmetric algorithm is the RSA algorithm.

Asymmetric encryption requires more processing resources than symmetric
encryption. For this reason, asymmetric encryption is usually optimized by adding a
one time high-entropy symmetric key to encrypt a message and then asymmetrically
encrypting the shared key. This reduces the size of the data that is asymmetrically
encrypted and also improves performance.

80 Web Service Security

In cases where more than one message exchange occurs between two parties, a high-
entropy shared secret can be negotiated between a sender and a receiver. In this case,
the first exchange includes a shared secret that is encrypted asymmetrically and
based on the shared secret, additional message exchanges are performed
symmetrically. Key derivation techniques are often used to add variability to shared
secrets that are used over multiple message exchanges. For more information, see
“Extension 1 — Establishing a Secure Conversation“ in Brokered Authentication:
Security Token Service (STS) in Chapter 1, “Authentication Patterns.”

Example
Global Bank publishes a Web service to provide business customers with the ability
to upload payroll account transfers. Direct deposit account information is considered
very sensitive for both the business and the customer. Compromising this
information can result in unauthorized account activity or disclosure of employee
salary information. For this reason, Global Bank requires that any messages
containing account data are encrypted as they pass between clients and the
Web service to provide data confidentiality.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
By blocking unauthorized parties from viewing messages, you can prevent financial
loss and legal liability because of the disclosure of sensitive information.

Liabilities
The liabilities associated with the Data Confidentiality pattern include the following:
● Cryptography operations are computationally intensive and impact system

resource usage. This affects the scalability and performance of the application.
● Key management, which safeguards encryption keys from being compromised,

can have significant administrative overhead. Factors that affect the administrative
complexity of key management include:
● The number and type of keys used.
● The type of encryption used (symmetric or asymmetric).
● The key management infrastructure in use.

 Chapter 2: Message Protection Patterns 81

Security Considerations
Security considerations associated with the Data Confidentiality pattern include the
following:
● Encryption does not prevent data tampering. For example, a man-in-the-middle

attack can replace the bits in transit, which can cause the receiver to decrypt
the data to something other than the original plaintext. Without data origin
authentication protection, the receiver has no way to verify that decrypted
ciphertext is the same as the original plaintext. For this reason, the implementation
patterns that implement data confidentiality also implement data origin
authentication.

● If too much data is encrypted with the same symmetric key, an attacker can
intercept several messages and attempt to cryptographically attack the encrypted
messages, with the goal of obtaining the symmetric key. To minimize the risk of
this type of attack, you should consider generating session-based encryption keys
with a relatively short life span. Typically, these session keys are derived from a
master symmetric key, such as a shared identity secret. Usually, the session key
is exchanged by using asymmetric encryption during the initial interaction of a
sender and recipient. Session keys should be discarded and replaced at regular
intervals, based on the amount of data or number of messages that they are used
to encrypt.

● Much of the strength of symmetric encryption algorithms comes from the
randomness of their encryption keys. If keys originate from a source that is not
sufficiently random, attackers may narrow down the number of possible values
for the encryption key. This can make it possible for a brute force attack to
discover the key value from encrypted messages that the attacker has intercepted.
For example, a user password that is used as an encryption key can be very easy
to attack because user passwords are typically a non-random value of relatively
small size that a user can remember without writing it somewhere.

● You should use published, well-known encryption algorithms that have withstood
years of rigorous attacks and scrutiny. Use of encryption algorithms that have not
been subjected to rigorous review by trained cryptologists may contain
undiscovered flaws that are easily exploited by an attacker.

● Each country may recognize different standards for data privacy/protection.
For example, in the U.S., regulations such as Sarbanes-Oxley, HIPAA, and the
Privacy Act of 1974 require that measures are taken to prevent disclosure of
sensitive personal information or that there is accountability for the management
of sensitive data. In the European Union (EU), regulations such as the Data
Protection Directive enforce stringent standards for data privacy.

82 Web Service Security

Related Patterns
The following child patterns are related to the Data Confidentiality pattern:
● Implementing Direct Authentication with UsernameToken in WSE 3.0.

This pattern focuses on using direct authentication at the message layer
in WSE 3.0.

● Implementing Message Layer Security with X.509 Certificates in WSE 3.0.
This pattern provides guidelines for implementing brokered authentication,
authorization, data integrity, and data origin authentication with X.509 certificates
in WSE 3.0.

● Implementing Message Layer Security with Kerberos in WSE 3.0. This pattern
provides guidelines for implementing brokered authentication, authorization, data
integrity, and data origin authentication with the Kerberos version 5 protocol in
WSE 3.0.

● Implementing Transport Layer Data Confidentiality Using HTTPS.
This reference provides concise information about using data confidentiality
and integrity with HTTPS.

● Implementing Transport Layer Security Using X.509 Certificates and HTTPS.
This reference provides concise information about how to use SSL for data
confidentiality and data integrity. It includes information about how to use SSL
client certificates for brokered authentication and data origin authentication.

 Chapter 2: Message Protection Patterns 83

Data Origin Authentication

Context
Data passes between a client and a Web service, sometimes through one or more
intermediaries. The data contained in the request message from the client influences
the Web service’s behavior. There is a risk that an attacker could manipulate
messages in transit between the client and the Web service to maliciously alter
the behavior of the Web service. Message manipulation can take the form of data
modification within the message, or even substitution of credentials, to change
the apparent source of the request message.

Problem
How do you prevent an attacker from manipulating messages in transit between a
client and a Web service?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● An altered message can cause the message recipient to behave in an unintended

and undesired way. The message recipient should verify that the incoming
message has not been tampered with.

● An attacker could pose as a legitimate sender and send falsified messages.
The message recipient should verify that incoming messages originated from
a legitimate sender.

The following condition is an additional reason to use the solution:
● The organization may need to trace particular actions to a specific client or

service. A record of transactions allows an organization to provide evidence that
a particular action was requested and/or performed. This could be useful if a user
denies that he or she performed an action or if a client needs to verify that a
service has performed a specific task.

Solution
Use data origin authentication, which enables the recipient to verify that messages
have not been tampered with in transit (data integrity) and that they originate from
the expected sender (authenticity).

84 Web Service Security

In cases where the client denies having performed the action (nonrepudiation), you
can use digital signatures to provide evidence that a client has performed a particular
action that is related to data. Digital signatures can be used for nonrepudiation
purposes, but they may not be sufficient to provide legal proof of nonrepudiation.
By itself, a digital signature is just a mechanism to capture a client’s association to
data. In cases where data has been digitally signed, the degree to which an individual
or organization can be held accountable is established in an agreement between the
party that requires digital signatures and the owner of the digital signature.

Security Concepts

Proof-of-possession is a value that a client presents to demonstrate knowledge of either a shared
secret or a private key to support client authentication.

Proof-of-possession using a shared secret can be established using the actual shared secret, such
as a user’s password, or a password equivalent, such as a digest of the shared secret, which is
typically created with a hash of the shared secret and a salt value.

Proof-of-possession can also be established using the XML signature within a SOAP message where
the XML signature is generated symmetrically based on the shared secret, or asymmetrically based
on the sender’s private key.

Participants
Data origin authentication involves the following participants:
● Sender. The sender is the originator of a message. A client can send a request

message to a Web service, and a Web service can send a response message back
to the client that has sent the request message.

● Recipient. The recipient is the entity that receives a message from the sender.
A Web service is the recipient of a request message sent by a client. A client is
the recipient of a response message that it receives from a Web service.

Process
Two types of signatures can be used to sign a message: symmetric and asymmetric.

Note: The following discussion refers to both XML signatures and digital signatures. XML signatures
are used for SOAP message security with either a symmetric algorithm or an asymmetric algorithm.
Digital signatures are created explicitly with an asymmetric algorithm and may or may not be used
for SOAP message security.

Symmetric Signatures

A symmetric signature is created by using a shared secret to sign and verify the
message. A symmetric signature is commonly known as a Message Authentication
Code (MAC). A MAC is created by computing a checksum with the message content
and the shared secret. A MAC can be verified only by a party that has both the shared
secret and the original message content that was used to create the MAC.

 Chapter 2: Message Protection Patterns 85

The most common type of MAC is a Hashed Message Authentication Code (HMAC).
The HMAC protocol uses a shared secret and a hashing algorithm (such as MD5,
SHA-1, or SHA-256) to create the signature, which is added to the message. The
message recipient uses the shared secret and the message content to verify the
signature by recreating the HMAC and comparing it to the HMAC that was sent
in the message.

If security is your primary consideration for choosing a hashing algorithm for an
HMAC, you should use SHA-256 where possible for the hashing algorithm to create
an HMAC. This is because it is the least likely algorithm to produce collisions (when
two different pieces of data produce the same hash value). MD5 provides a high-
performance method for creating checksums, though it is not a good choice for use
as an HMAC because it can be compromised by brute force attack in a relatively short
period of time. SHA-1 is currently the most widely adopted algorithm, so it may be
required for interoperability reasons. Because of recent advances in cryptographic
attacks against SHA-1, there is movement toward adopting more secure hash
algorithms, such as SHA-256, as the recommended standard.

To protect a signature from offline cryptanalysis — especially those created with an
older hash algorithm such as MD5 or SHA1 — the hash value should be encrypted
as sensitive data. The shared key and algorithm that are used to encrypt the hash
may depend on the symmetric algorithm used to encrypt sensitive data. (For more
information, see Data Confidentiality in Chapter 2, “Message Protection Patterns.”)
When it is used to create an HMAC, the names of these algorithms are preceded by
the term “HMAC” (for example, HMAC SHA-1 or HMAC MD5).

Figure 2.4 illustrates the process of using a MAC to sign a message.

Figure 2.4
Signing a message using a symmetric signature

86 Web Service Security

As illustrated in Figure 2.4, signing a message using a symmetric signature involves
the following steps:
1. The sender creates a MAC using a shared secret key and attaches it to the message.
2. The sender sends the message and MAC to the recipient.
3. The recipient verifies that the MAC that was sent with the message by using the

same shared secret key that was used to create the MAC.

By signing with a shared secret, both data integrity and data origin authenticity are
provided for the signed message content. However, symmetric signatures are not
usually used to provide nonrepudiation because shared secrets are known by
multiple parties. This makes it more difficult to prove that a specific party used
the shared secret to sign the message.

Asymmetric Signatures
An asymmetric signature is processed with two different keys; one key is used to
create the signature and the other key is used to verify the signature. The two keys
are related to one another and are commonly referred to as a public/private key pair.
The public key is generally available and can be distributed with the message; the
private key is kept secret by the owner and is never sent in a message. A signature
that is created and verified with an asymmetric public/private key pair is referred
to as a digital signature.

Figure 2.5 illustrates the process of using asymmetric keys to sign a message.

Figure 2.5
Signing a message with an asymmetric signature

 Chapter 2: Message Protection Patterns 87

As illustrated in Figure 2.5, signing a message with an asymmetric signature involves
the following steps:
1. The sender signs the message content using the sender’s private key and attaches

it to the message.
2. The sender sends the message and digital signature to the recipient.
3. The recipient verifies the digital signature using the sender’s public key that

corresponds to the private key that was used to sign the message.

The algorithm that is most commonly used to create a digital signature is the Digital
Signature Algorithm (DSA). DSA uses the public/private key pairs created for use
with the RSA algorithm to create and verify signatures. For more information, see
Data Confidentiality in Chapter 2, “Message Protection Patterns.”

For both signing and encryption purposes, asymmetric keys are often managed
through a Public Key Infrastructure (PKI). Information that describes the client
is bound to its public key through endorsement from a trusted party to form a
certificate. Certificates allow a message recipient to verify the private key in a client’s
signature using the public key in the client’s certificate. For more information about
X.509, see X.509 Technical Supplement in Chapter 7, “Technical Supplements.”

Typically, digital signatures are used to support requirements for nonrepudiation.
This is because access to the private key is usually restricted to the owner of the key,
which makes it easier to verify proof-of-ownership.

Asymmetric signatures require more processing resources than symmetric signatures.
For this reason, asymmetric signatures are usually optimized by hashing the message
content and then asymmetrically signing the hash. This reduces the size of the data
that the asymmetric operation is applied to.

In cases where more than one message is exchanged, it is also possible to first
exchange a high-entropy shared secret that is encrypted asymmetrically. Based on
the shared secret, additional message exchanges are secured symmetrically. Key
derivation techniques are often used to add variability to shared secrets that are used
over multiple message exchanges. For an example of this case, see “Extension 1 —
Establishing a Secure Conversation” in Brokered Authentication: Security Token
Service (STS) in Chapter 1, “Authentication Patterns.” It is important to remember
that this type of optimization can remove the ability of asymmetric signatures to
isolate which of the two parties signed a message.

88 Web Service Security

Example
When using message layer authentication, it is often necessary to include Data Origin
authentication as part of the authentication process. One example of this is the use of
X.509 certificates to perform message layer authentication. X.509 is based on public
key cryptography, so the type of data origin authentication that is used is an
asymmetric signature.

For example, a business customer at a bank may sign payroll transfers using his or
her certificate private key. The bank can then verify that the payroll transfer request
came from the correct business customer and that the message had not been
tampered with in transit between the business customer and the bank.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The Data Origin Authentication pattern makes it possible for the recipient to detect
whether a message has been tampered with. Also, the origin of the message can be
traced to an identifiable source.

Liabilities
The liabilities associated with the Data Origin Authentication pattern include the
following:
● Cryptographic operations, such as data signing and verification, are

computationally intensive processes that impact system resource usage.
This affects the scalability and performance of the application.

● Key management, which is responsible for maintaining the integrity of keys, can
have a significant administrative overhead. Factors that affect the administrative
complexity of key management include:
● The number and type of keys used.
● The type of cryptography used (symmetric or asymmetric).
● The key management infrastructure in use.

 Chapter 2: Message Protection Patterns 89

Security Considerations
Security considerations associated with the Data Origin Authentication pattern
include the following:
● If a message is being signed, you should ensure that the signature within the

message is encrypted. In many cases, a signature that is not encrypted can be
the target of a cryptographic attack.

● If too much data is encrypted with the same symmetric key, an attacker can
intercept several messages and attempt to cryptographically attack the encrypted
messages, with the goal of obtaining the symmetric key. To minimize the risk of
this type of attack, you should consider generating session-based encryption keys
that have a relatively short life span. Typically, these session keys are derived from
a master symmetric key such as a shared identity secret. Usually, the session key is
exchanged using asymmetric encryption during the initial interaction between a
sender and recipient. Session keys should be discarded and replaced at regular
intervals, based on the amount of data or the number of messages that they are
used to encrypt.

● Much of the strength of symmetric encryption algorithms comes from the
randomness of their encryption keys. If keys originate from a source that is not
sufficiently random, attackers may narrow down the number of possible values
for the encryption key. This makes it possible for a brute force attack to discover
the key value of encrypted messages that the attacker has intercepted. For
example, a user password that is used as an encryption key can be very easy
to attack because user passwords are typically a non-random value of relatively
small size that a user can remember it without writing it somewhere.

● You should use published, well-known encryption algorithms that have withstood
years of rigorous attacks and scrutiny. Use of encryption algorithms that have not
been subjected to rigorous review by trained cryptologists may contain
undiscovered flaws that are easily exploited by an attacker.

Related Patterns
The following child patterns are related to the Data Origin Authentication pattern:
● Implementing Direct Authentication with UsernameToken in WSE 3.0.

This pattern focuses on using direct authentication to verify message signatures
at the message layer in WSE 3.0.

● Implementing Message Layer Security with Kerberos in WSE 3.0. This pattern
provides guidelines for implementing brokered authentication, authorization, data
integrity, and data origin authentication with the Kerberos version 5 protocol in
WSE 3.0.

90 Web Service Security

More Information
For more information about threat modeling, see “Threat Modeling Web
Applications” on MSDN: http://msdn.microsoft.com/practices/Topics/security
/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp.

For more information about WS-Security version 1.0, see the OASIS Standards
and Other Approved Work (including WS-Security) on the OASIS Web site:
http://www.oasis-open.org/specs/index.php#wssv1.0.

For more information about threats and countermeasures, see Chapter 2,
“Threats and Countermeasures,” of Improving Web Application Security: Threats and
Countermeasures on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnnetsec/html/THCMCh02.asp.

For more information about HMAC, see RFC 2104 — HMAC: Keyed Hashing for
Message Authentication: http://www.ietf.org/rfc/rfc2104.txt?number=2104.

For more information about WS-Security version 1.0, see the OASIS Standards
and Other Approved Work (including WS-Security) on the OASIS Web site:
http://www.oasis-open.org/specs/index.php#wssv1.0.

For more information about threats and countermeasures, see the following:
● Security Challenges, Threats and Countermeasures Version 1.0 on the WS-I Web site:

http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf.
● Chapter 2, “Threats and Countermeasures,” of Improving Web Application Security:

Threats and Countermeasures on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/THCMCh02.asp.

http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp
http://www.oasis-open.org/specs/index.php#wssv1.0
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh02.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh02.asp
http://www.ietf.org/rfc/rfc2104.txt?number=2104
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh02.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh02.asp

3
Implementing Transport and
Message Layer Security

Introduction
This chapter builds on the first two chapters in this guide to demonstrate how you
can implement the patterns described in those chapters using Microsoft technologies.
The chapter is divided into two sections. The first section provides three
comprehensive composite patterns that focus predominantly on message layer
security. These composite patterns are implementations of a number of different
design patterns. The second section, “References for Transport Layer Security”
discusses how you can solve many of the same security challenges using transport
layer security.

92 Web Service Security

Figure 3.1 is a pattern map that illustrates the composite patterns and references
related to direct authentication.

Design

Architecture

WEB SERVICE SECURITY (Authentication)

Direct
Authentication

Implemtation

Pattern ReferenceRP

Direct Authentication
with Username

Token in WSE 3.0

Transport Security
using HTTP Basic

over HTTPS

R P

P

Figure 3.1
Direct authentication patterns and references

 Chapter 3: Implementing Transport and Message Layer Security 93

Figure 3.2 is a pattern map that illustrates the design patterns, composite patterns,
and references related to brokered authentication.

Design

Transport Layer
Security using

X.509 and HTTPS

Message Layer
Security with

X.509 in WSE 3.0

Architecture

WEB SERVICE SECURITY (Authentication)

Brokered
Authentification

Pattern Reference

KerberosX.509 PKI

Implementation

P P

R P

Brokered Auth
using Windows
Integrated on IIS

Message Layer
with Kerberos

in WSE 3.0

R P

RP

P

Security Token
Service

P

STS with
XML Token

Placeholder PatternH

H

Figure 3.2
Brokered authentication patterns and references

Note: An implementation pattern for Security Token Service (STS) is due for release early in 2006.

94 Web Service Security

Important Concepts
To fully understand transport layer security versus message layer security, it is
important to understand the following concepts:
● Credentials. Credentials are a set of claims used to prove the identity of a client.

They contain an identifier for the client and a proof of the client’s identity, such as
a password. They may also include information, such as a signature, to indicate
that the issuer certifies the claims in the credential.

● Digital signature. This is an asymmetric signature that is created with the private
key of a client. Digital signatures can be used to support nonrepudiation
requirements.

● Security token. A set of claims used to prove the identity of a client. They contain
an identifier for the client and a proof of the client’s identity, such as a password.
They may also include information, such as a signature, to indicate that the issuer
certifies the claims in the credential. Most security tokens will also contain
additional information that is specific to the authentication broker that issued
the token.

● Protection scope. This term describes the scope of protection for a Web service
message. Protection scope refers to the extent the message will be protected,
whether it is for its entire message lifetime or only while it is in transit between
servers. This is also used as a category to describe transport layer security and
message layer security in Table 3.1.

Transport Layer vs. Message Layer Security
Transport layer security represents an approach where the underlying operating
system or application servers are used to handle security features. For data
confidentiality, Secure Sockets Layer (SSL) is a common transport layer approach
that is used to provide encryption. Figure 3.3 illustrates transport layer security.

Figure 3.3
Transport layer security

 Chapter 3: Implementing Transport and Message Layer Security 95

If a message needs to go through multiple points to reach its destination, each
intermediate point must forward the message over a new SSL connection. In this
model, the original message from the client is not cryptographically protected
on each intermediary because it traverses intermediate servers and additional
computationally expensive cryptographic operations are performed for every new
SSL connection that is established. Figure 3.4 illustrates message layer security.

Figure 3.4
Message layer security

Message layer security represents an approach where all the information related to
security is encapsulated in the message. Securing the message using message layer
security instead of using transport layer security has several advantages that include:
● Increased flexibility. Parts of the message, instead of the entire message, can be

signed or encrypted. This means that intermediaries can view the parts of the
message that are intended for them. An example of this is a Web service that
routes a SOAP message and is able to inspect unencrypted parts of the message
to determine where to send the message, while other parts of the message remain
encrypted. For an example of this, see the Perimeter Service Router pattern in
Chapter 6, “Service Deployment Patterns.”

● Support for auditing. Intermediaries can add their own headers to the message
and sign them for the purpose of audit logging.

● Support for multiple protocols. You can send secured messages over many
different protocols such as Simple Mail Transfer Protocol (SMTP), File Transfer
Protocol (FTP), and Transmission Control Protocol (TCP) without having to rely
on the protocol for security.

96 Web Service Security

Table 3.1 shows a decision matrix that lists security considerations related to
protection scope and how each one is supported by transport or message layer
security.

Table 3.1: Protection Scope Decision Matrix

Security consideration Message layer Transport layer

Your application interacts
directly with the Web service.

Message layer protection is
usually more CPU intensive
than transport layer protection.

Transport layer HTTPS provides
full message protection.

Web services are hosted on a
system that does not support
Windows Integrated Security.

Authentication can be
performed by passing
credentials in the message.

Basic over HTTPS could be
implemented. However, it would
require manipulation of
message headers.

Your company has a firewall in
place between applications and
Web services.

Message layer security is not
affected by standard firewalls.

It is not uncommon for port
443 to be opened to support
HTTPS.

You have nonrepudiation
requirements.

Supports persistence of
messages that include digital
signatures, which can be used
to support nonrepudiation
requirements.

You can use authentication
with X.509 client certificates
to support nonrepudiation.

A Web service request can
pass through message queues
or routing servers.

Message data will be protected
as it passes through
intermediate servers.

The message data is not
protected as it passes through
the server, which leaves it
vulnerable to attack.

With message queues in
particular, it is possible that
a decrypted message will be
persisted until a dependent
application retrieves the
message.

Web services may require
support for multiple protocols,
including SMTP, FTP, HTTP,
and TCP.

You can apply message layer
protection to messages
independent of the protocol
that you used for transporting
the message.

Different protocols have
different built-in mechanisms
to support security, making it
difficult to standardize how
services are secured.

The Web service you are
designing will handle a high
concurrent load.

You can use security tokens to
establish a session. However,
message protection is usually
more CPU intensive.

You can use hardware
appliances to improve
performance with transport
layer message protection
protocols, such as SSL.

Table 3.1 lists some of the major security considerations you should examine when
deciding between message and transport layer security.

 Chapter 3: Implementing Transport and Message Layer Security 97

For more information on implementing message layer security, see the following
composite patterns:
● Implementing Direct Authentication with UsernameToken in WSE 3.0
● Implementing Message Layer Security with Kerberos in WSE 3.0
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0

There is already a lot of good information available on using transport layer security
to secure Web services, so this information is provided in the form of the following
references, which point you to appropriate guidance for implementing transport
layer security. For more information on implementing transport layer security, see the
following sections in References for Transport Layer Security:
● Implementing Brokered Authentication Using Windows Integrated Security on IIS
● Implementing Transport Layer Data Confidentiality Using HTTPS
● Implementing Transport Layer Security Using HTTPS Basic over HTTPS
● Implementing Transport Layer Security Using X.509 Certificates and HTTPS
● Implementing Transport Layer Security with Kerberos and IPSec on Windows

Server 2003

Implementing Direct Authentication with UsernameToken
in WSE 3.0

Context
You are implementing direct authentication for an online application that consumes a
Web service that uses Web Service Enhancements (WSE) 3.0. You are using message
layer authentication. The credentials used to prove the identity of the client are
validated by an authentication service.

Objectives
The objectives of this pattern are to:
● Implement direct authentication against Active Directory, Active Directory

Application Mode (ADAM), or a custom SQL Server™ database using a security
token that contains a user ID and password.

● Secure the communication channel by providing data confidentiality and data
integrity. You can do this either at the message layer or at the transport layer.

● Demonstrate how to develop a custom UsernameTokenManager to support
authentication against ADAM or a custom SQL database.

● Demonstrate how to use ASP.NET 2.0 membership providers for SQL Server and
a directory service.

98 Web Service Security

Content
This pattern consists of the following sections:
● Implementation Strategy: This section provides a high-level description of the

strategy used to implement the Direct Authentication pattern. The section also
discusses identity stores that you can use and different approaches to ensure
secure communication between the participants.

● Implementation Approach: This section describes the steps necessary to
implement this pattern:
● General setup
● Configure the client
● Configure the service

● Resulting Context: This section outlines the benefits, liabilities, and security
considerations related to this pattern.

● Variants: This section describes alternate choices to using Active Directory as an
identity store, demonstrating how to implement both a database and a directory
service as an identity store.

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

Implementation Strategy
The WSE 3.0 implementation of UsernameToken is used to implement direct
authentication at the message layer. The client passes the credentials to the Web
service as part of a secure message exchange. A password is sent in the message
as plaintext, which is data in its unencrypted or decrypted form. The Web service
decrypts the message, validates the credentials, verifies the message signature,
and then sends an encrypted response back to the client.

Identity Store Options
There are three options for this pattern to implement different types of identity stores
that the service can use to validate the credentials presented in a UsernameToken:
● Active Directory
● Database
● Directory service

Note: Direct authentication using Active Directory is described in the base pattern. The other two
options are described at the end of this pattern as variants.

http://go.microsoft.com/fwlink/?LinkId=57044

 Chapter 3: Implementing Transport and Message Layer Security 99

Active Directory

The ability to validate credentials presented in a UsernameToken to an Active
Directory domain is provided with the UsernameTokenManager in WSE 3.0.
Using Active Directory as an identity store has the following advantages:
● Unlike validating credentials using a database or a Lightweight Directory Access

Protocol (LDAP)-enabled directory service, credential validation using Active
Directory does not require a custom UsernameTokenManager class or an
ASP.NET 2.0 membership provider.

● Of the three approaches for this pattern, Active Directory is the simplest option to
implement in WSE 3.0.

● While Active Directory does require that users and their roles are maintained in
an Active Directory infrastructure so that the service can use them to validate
credentials, it does allow you to authenticate users without using Windows
Integrated Security.

Database

You can use a database to store credentials that the service can then validate. Using a
database as an identity store has the following advantages:
● It provides the capability to integrate with an existing database that is being used

as an identity store. If you use a custom database schema, it may require you to
implement a custom ASP.NET membership and possibly a role provider. For more
information about how to create a custom identity provider, see the “Variant 2 —
Using an LDAP Directory Service as the Identity Store” section later in this
pattern.

● It supports transactional and concurrent updates to user credentials. For example,
concurrent updates to security claims (such as role information for a single user)
could occur if the maintenance of user credentials in the database is delegated to
several different individuals. If concurrent updates are a concern, you should use
either a directory service that supports transactional updates or a database to store
user credentials and roles.

Using a database as an identity store does have the disadvantage that it is more
difficult to maintain if the database is not shared across multiples services that
authenticate the same users. This may cause data ownership and synchronization
issues when changes are made to one identity store that must be propagated to the
others.

For more information about using a database as an identity store, see the “Variant 1
— Using a Database as the Identity Store” section later in this pattern.

100 Web Service Security

Directory Service

You also can use an LDAP-enabled directory service to store credentials for validation
by the service. Using a directory service has the following advantages:
● It provides a viable alternative when you have an LDAP-enabled directory service

in place of an Active Directory infrastructure.
● It can be used when you need to authenticate users using ADAM or Active

Directory through LDAP ports due to firewall restrictions.

For more information about using a directory service as an identity store, see the
“Variant 2 — Using an LDAP Directory Service as the Identity Store” section later
in this pattern.

Providing Secure Communication
This implementation provides examples that show how to secure the communication
channel between the client and the service, using both the
usernameForCertificateSecurity and the usernameOverTransportSecurity
WSE 3.0 turnkey assertions. The communication channel is secured by providing
data confidentiality to prevent eavesdropping. Data origin authentication is also
provided to prevent tampering or message spoofing. For more information, see Data
Confidentiality and Data Origin Authentication in Chapter 2, “Message Protection
Patterns.”

The usernameForCertificateSecurity turnkey assertion secures the communication
channel between the client and the service at the message layer using the service’s
X.509 certificate. But it is not compatible with client computers that have
implemented WS-Security 1.0. This is because the usernameForCertificateSecurity
turnkey assertion depends on the ability to reference <EncryptedKey> elements as
security tokens, and enables the option for signature confirmation to correlate a
response message with the request that prompted it. Both of these features are only
available in WS-Security 1.1.

The usernameOverTransportSecurity turnkey assertion assumes that
communication between the client and service will be secured at the transport layer.
This approach is WS-Security 1.0 compatible, but it does not provide security features
at the message layer. It also does not ensure that the channel is secured at the
transport layer.

If you need to secure the communication channel between the client and service at
the message layer with a solution that is compatible with WS-Security 1.0, you will
need to create a custom policy assertion.

Note: At the time this pattern was published, most vendors supported WS-Security 1.0
implementations. WSE 3.0 supports features in WS-Security 1.1 and WS-Security 1.0. If you need to
interoperate with platforms that do not support WS-Security 1.1 features, choose an option that best
supports your interoperability requirements.

 Chapter 3: Implementing Transport and Message Layer Security 101

Participants
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to making access control decisions.
● Identity store. The entity that stores a client’s credentials for a particular identity

domain.

Process
The process section of Direct Authentication in Chapter 1, “Authentication Patterns,”
describes how identity and proof-of-possession are used for authentication. This
pattern provides a more refined description of that process within the context of the
implementation.

Figure 3.5 illustrates the direct authentication process.

Response

Request

ServiceClient Identity Store

1

3

Validate
Credentials2

Figure 3.5
The direct authentication process

The steps for this implementation are divided into two parts, based on what happens
with the client and what happens with the service:
● The client generates a Web service request.
● The service authenticates a client and returns a response.

The Client Generates a Web Service Request

This part of the process includes three steps:
1. Initialize the UsernameToken.
2. Establish message integrity.
3. Encrypt sensitive data in the message.

102 Web Service Security

Step One: Initialize the UsernameToken

This pattern implements a UsernameToken with the SendPlainText password option
to send the password over the network as plaintext. The plaintext value is the actual
password because Active Directory requires plaintext passwords for credential
validation. This option, which the default implementation of
UsernameTokenManager uses, is similar to basic authentication over HTTP. You
should always secure the communication between the client and server, either at
the transport layer using Secure Sockets Layer (SSL) or at the message layer with
WSE 3.0.

Step Two: Establish Message Integrity

Data origin authentication is established between the client and the service, either
implicitly or explicitly, depending upon one of the two following methods that you
can choose to secure messages between the client and the service:
● The usernameOverTransportSecurity turnkey assertion with HTTPS.
● The usernameForCertificateSecurity turnkey assertion.

HTTPS using the usernameOverTransportSecurity turnkey assertion provides data
confidentiality and data integrity when you use server certificates. If you require
data origin authentication from the client, you need to install and use a certificate for
the client. For more information, see the reference, Implementing Transport Layer
Security Using X.509 Certificates and HTTPS in Chapter 3, “Implementing Transport
and Message Layer Security.”

WSE 3.0 policy provides data confidentiality and data origin authentication when the
usernameForCertificateSecurity assertion is used. The client includes a derived key
token in the request message that is encrypted with a wrapped symmetric encryption
key. The wrapped symmetric key is encrypted with the service’s X.509 certificate
public key. This key is referred to as an encrypted key. Accompanied by a valid
UsernameToken, data origin authentication is provided when the client uses the
derived key token to sign the message. For more information about derived key
tokens, see Web Services Secure Conversation Language (WS-SecureConversation).

Step Three: Encrypt Sensitive Data in the Message

You should encrypt the message from the client to the service to ensure that only the
service, as the intended recipient of the message, can process it. The method that you
choose to secure the communication channel between the client and the service
should also provide data confidentiality.

http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf

 Chapter 3: Implementing Transport and Message Layer Security 103

The Service Authenticates the Client and Returns a Response

This part of the process has five steps:
1. Decrypt the request message.
2. Verify message integrity.
3. Validate the password.
4. Establish the response integrity
5. Encrypt the response.

Step One: Decrypt the Request Message

The option you choose to secure communication between the client and
the service determines how the request message is decrypted. The
usernameOverTransportSecurity assertion relies on SSL to decrypt the message
at the transport layer. WSE 3.0 policy using the usernameForCertificateSecurity
assertion decrypts the derived key token encrypted with the wrapped symmetric
key, and then uses the derived key token to decrypt the message signature,
UsernameToken, and any other message parts that the client encrypted.

Step Two: Verify Message Integrity

The option you chose to secure communication between the client and the
service determines how the message integrity is established and verified. The
usernameOverTransportSecurity assertion relies on SSL to verify message integrity.
If a client certificate is used for the client, the client also provides data origin
authentication. WSE 3.0 using the usernameForCertificateSecurity assertion verifies
the message integrity using the derived key token sent by the client that was
decrypted in Step One.

Step Three: Validate the Password

After the service receives the message, the information in UsernameToken is
verified by WSE 3.0 using the UsernameTokenManager class. WSE 3.0 uses the
AuthenticateToken method of the UsernameTokenManager class to validate the
information in the UsernameToken.

The UsernameTokenManager released with WSE 3.0 validates credentials against
an Active Directory domain controller. If either a directory service or a database is
used to store credentials for validation, then you will need to implement a custom
UsernameTokenManager class. For more information, see the “Variants” section later
in this pattern.

The UsernameTokenManager validates the username and password that was sent
in the message with Active Directory through the AuthenticateToken method. The
default UsernameTokenManager also establishes a WindowsPrincipal instance for
the authenticated client and attaches it to the token’s Principal property.

104 Web Service Security

Step Four: Establish the Response Integrity

The method used to establish the response message’s integrity depends upon
whether communication is secured at the message layer using WSE 3.0 or at the
transport layer using SSL. If communication is secured at the transport layer, message
integrity is provided through SSL. If communication is secured at the message layer,
the response message is signed with a key derived from the encrypted key that was
sent in the request message.

Step Five: Encrypt the Response

The method used to encrypt the response message depends upon whether
communication is secured at the message layer through WSE 3.0 or at the transport
layer using SSL. If communication is secured at the transport layer, the response
message is encrypted through SSL. If communication is secured at the message layer,
the response signature and message parts are encrypted with a key derived from the
encrypted key sent in the request message.

Implementation Approach
This section describes how to implement the pattern. This section is divided into
three major tasks:
1. General setup. This task provides the required steps for both the client and the

service.
2. Configure the client. This task provides the required steps to configure policy and

code on the client.
3. Configure the service. This task provides the required steps to configure policy

and code on the service.

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code, have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

General Setup
You must install WSE 3.0 on computers that you use to develop WSE-enabled
applications. After WSE 3.0 is installed, you must enable the client and the service
to support WSE 3.0. You can achieve this by performing the following steps.

f To enable a Visual Studio 2005 project to support WSE 3.0

1. In Visual Studio 2005, right-click the application project and select
WSE Settings 3.0.

2. On the General tab, select the Enable this project for Web Services
Enhancements check box, and then click OK.

 Chapter 3: Implementing Transport and Message Layer Security 105

If you are using the usernameForCertificateSecurity assertion to secure
communication at the message layer between the client and service, you must
configure the X.509 settings for WSE 3.0. For more information about setting up X.509
in WSE 3.0, see General Setup in the Implementing Message Layer Security with
X.509 Certificates in WSE 3.0 in Chapter 3, “Implementing Transport and Message
Layer Security.”

Note: WSE 3.0 offers four different protection levels that determine how messages are secured
using SOAP message security. Generally, you should use the Sign, Encrypt, and Encrypt Signature
setting for best message protection. This setting encrypts the message body and the XML signature,
which reduces the likelihood of a successful cryptographic guessing attack against the signature. For
this reason, all the composite implementation patterns use this value as default. If you want to use
this setting in new Web services you should change the messageProtectionOrder attribute to the
following value in your security policy:

messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"

Configure the Client
After enabling the client application to support WSE 3.0 during General Setup, you
must enable policy support for it. If your application does not currently have a policy
cache file, you can add one for this purpose, and enable policy support by
performing the following steps.

f To add policy support to a WSE 3.0-enabled Visual Studio 2005 project

1. In Visual Studio 2005, right-click the application project and select WSE Settings
3.0.

2. On the Policy tab, select the Enable Policy checkbox. Selecting this setting adds a
policy cache file with the default name wse3policyCache.config.

3. Under Edit Application Policy, click Add, and then type a policy friendly name
for the new application policy, such as “usernameTokenSecurity.”

4. Click OK to start the WSE Security Settings Wizard, and then click Next.
5. On the Authentication Settings page, the wizard provides a choice to secure a

service or a client. Select secure a client application to configure the client.
6. The wizard also provides a choice of authentication methods in the same step.

Select Username, and then click Next.
7. On the Optionally Provide Username and Password page, the wizard provides

you with options to define a user name and password. Ensure that the Specify
Username Token in code checkbox is selected and click Next.

106 Web Service Security

8. On the Message Protection page, you configure options for message protection.
For transport layer security, select None (rely on transport protection) for the
Protection Order to use the usernameOverTransportSecurity assertion. If you
select any other protection option, the policy assertion will be
usernameForCertificateSecurity.
You should select the option for Sign, Encrypt, Encrypt Signature. By default,
the Enable WS-Security 1.1 Extensions check box is enabled. This setting must be
enabled if you are using message layer security. For more information about these
settings, see the “Implementation Strategy” section earlier in this pattern.

9. Click Next.
10. If you selected None (rely on transport protection) to use transport security in

Step 8, skip this step. If you selected any other option, the wizard will prompt you
to select a server X.509 certificate for the service on the Server Certificate page.
Change the Store Location to LocalMachine instead of using the default value of
CurrentUser. Select the certificate for the service to use, and then click Next.

11. On the Create Security Settings page, review your settings, and then click Finish.

After you complete these tasks, your client security policy should look similar to the
following code example. Examples for both the usernameForCertificateSecurity and
usernameOverTransportSecurity assertions are included.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <extensions>
 </extensions>

 <!--Uncomment this policy to use the UsernameForCertificateSecurity scenario-->
 <policy name="usernameTokenSecurity">
 <usernameForCertificateSecurity establishSecurityContext="true"
renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"
requireDerivedKeys="true" ttlInSeconds="60">
 <serviceToken>
 <!-- WSE2 QuickStart Server Certificate -->
 <x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartServer" findType="FindBySubjectDistinguishedName" />
 </serviceToken>
 <protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp, IncludeSoapBody"
encryptBody="false" />
 </protection>
 </usernameForCertificateSecurity>
 <requireActionHeader />
 </policy>

(continued)

 Chapter 3: Implementing Transport and Message Layer Security 107

(continued)

 <!--Uncomment this policy to use the UsernameOverTransportSecurity scenario-->
 <!--<policy name="usernameTokenSecurity">
 <usernameOverTransportSecurity />
 <requireActionHeader />
 </policy>-->
</policies>

When you add a Web reference to the service from the client application, two proxies
are generated for the Web service — one is a non-WSE 3.0 proxy and the other is
WSE 3.0–enabled. In this guidance, Microsoft uses the WSE 3.0–enabled proxy class,
which is defined as name + “Wse.” For example, if your Web service is named
“MyService,” your WSE 3.0–enabled Web service proxy class name would be
“MyServiceWse.”

The following code example provides an example of how to initialize an instance of a
UsernameToken and to bind the appropriate policy defined in the preceding policy
file to the Web service proxy. You can copy and insert this code into a new code
module.

...
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;
...
try
{
 Service.ServiceWse proxy = new Service.ServiceWse();
 string userName = null;
 if (txtDomain.Text.Trim().Length > 0)
 {
 userName = String.Format(@"{0}\{1}", txtDomain.Text, txtUsername.Text);
 }
 else
 {
 userName = txtUsername.Text;
 }

 UsernameToken token = new UsernameToken(userName, txtPassword.Text,
PasswordOption.SendPlainText);

 proxy.SetClientCredential(token);

 proxy.SetPolicy("usernameTokenSecurity");

 Service.Product product = proxy.GetProductInformation(txtProduct.Text);

 lblResults.Text = String.Format(CultureInfo.InvariantCulture,
 "Product: {0}, Quantity {1}, Unit price {2}",
 product.Name, product.Quantity, product.UnitPrice);

(continued)

108 Web Service Security

continued)

}
catch (Exception ex)
{
 lblResults.Text = ex.ToString();
}
...

As appropriate, replace the Product class and code that processes the response
returned from the service used in the preceding code example for the object type
returned by your service.

Configure the Service
You must perform the following steps to configure the service to enable WSE 3.0
extensions.

f To enable a Visual Studio 2005 project to support WSE 3.0 SOAP extensions

1. In Visual Studio 2005, right-click the application project and select
WSE Settings 3.0.

2. On the General tab, select the Enable Microsoft Web Services Enhancement
SOAP Protocol Factory check box, and click OK.

After you enable the service application to support WSE 3.0 SOAP extensions,
you must enable policy support. If your application does not currently have a
policy cache file, you can add one and enable policy support by performing the
following steps.

f To add policy support to a WSE 3.0-enabled Visual Studio 2005 project

1. In Visual Studio 2005, right-click the application project and select
WSE Settings 3.0.

2. On the Policy tab, select the Enable Policy check box. Selecting this check box
adds the wse3policyCache.config file as the default name for the policy cache file.

3. Under Edit Application Policy, click Add and then type a policy friendly name
for the new application policy, such as “usernameTokenSecurity.”

4. Click OK to start the WSE Security Settings Wizard, and then click Next.
5. On the Authentication Settings page, the wizard provides you with options to

secure a service or a client. Select the secure a service application option button
to configure the service.

6. The wizard also provides you with authentication method choices on the same
page. Select Username and click Next.

 Chapter 3: Implementing Transport and Message Layer Security 109

7. On the Users and Roles page, you configure authorization based on the user
name or roles associated with the user represented in the UsernameToken. by
default, the perform authorization check box is cleared. If you want to perform
authorization through the policy assertion, select the perform authorization check
box, add users and roles as appropriate, and then click Next.

8. On the Message Protection page, you configure options for message protection.
For transport layer security, select None (rely on transport protection) for the
Protection Order to use the usernameOverTransportSecurity assertion.
If you select any other protection option, the policy assertion will use
usernameForCertificateSecurity. If you select any option under Protection Order
other than None (rely on transport protection), select the option for Sign,
Encrypt, Encrypt Signature.
By default, the Enable WS-Security 1.1 Extensions check box is selected. You
must enable this option if you are using certificate security. For more information
about these settings, see the “Implementation Strategy” section earlier in this
pattern.

9. Click Next.
10. If you opted to use transport security by selecting the None (rely on transport

protection) setting in step 8, skip this step. If you selected any other option, the
wizard will prompt you to select a server X.509 certificate for the service on the
Server Certificate page. Select the certificate that you want to use for the service,
click Next.

11. On the Create Security Settings page, review your settings, and then click Finish.

After you complete these tasks, your client security policy should look similar to the
following code example. Examples for both the usernameForCertificateSecurity and
usernameOverTransportSecurity assertions are included.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <!--Uncomment this policy to use the UsernameForCertificateSecurity scenario-->
 <policy name="usernameTokenSecurity">
 <authorization>
 <allow role="Users" />
 <deny role="*" />
 </authorization>
 <usernameForCertificateSecurity establishSecurityContext="true"
renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"
requireDerivedKeys="true" ttlInSeconds="60">
 <serviceToken>
 <!-- WSE2 QuickStart Server Certificate -->
 <x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartServer" findType="FindBySubjectDistinguishedName" />
 </serviceToken>
 <protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />

(continued)

110 Web Service Security

(continued)

 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp, IncludeSoapBody"
encryptBody="false" />
 </protection>
 </usernameForCertificateSecurity>
 <requireActionHeader />
 </policy>

 <!--Uncomment this policy to use the UsernameOverTransportSecurity scenario-->
 <!--<policy name="usernameTokenSecurity">
 <authorization>
 <allow role="Administrators" />
 <deny role="*" />
 </authorization>
 <usernameOverTransportSecurity />
 <requireActionHeader />
 </policy>-->
</policies>

The service’s policy configuration is identical to the client’s, except that the policy
assertions for the service can contain an <authorization> assertion. This assertion
allows users who belong to the Users group to call the service, and denies access to
all other users. The roles that this policy assertion evaluates are obtained when the
user is authenticated. The default UsernameTokenManager populates a security
principal containing the user’s roles in the Active Directory domain.

Note: WSE 3.0 uses the default UsernameTokenManager class to validate credentials presented in
a UsernameToken by calling the Win32 LogonUser function. In Windows XP and Windows 2000, the
service account, under which the Web application validating the credentials runs, can only call the
LogonUser function if it has Log on locally permissions to the server hosting the service.

The following code example demonstrates how to apply the policy provided earlier
when the service processes a request. You can copy and insert this code into a new
code module.

using System;
using System.Web.Services;

using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Security.Tokens;

using Microsoft.Practices.WSSP.WSE3.QuickStart.Common;

(continued)

 Chapter 3: Implementing Transport and Message Layer Security 111

(continued)

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.UsernameTokenWithWindows.Service
{
 /// <summary>
 /// This class represents a web service used to query products catalog, secured
with a UsernameToken
 /// </summary>
 [WebService(Namespace =
"http://schemas.microsoft.com/WSSP/WSE3/QuickStart/DirectAuthentication/2005-
10/UsernameTokenWithWindows.wsdl")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [Policy("usernameTokenSecurity")]
 public class Service : System.Web.Services.WebService
 {
 const string AdmistratorsRole = "Administrators";

 public Service()
 {
 }

 /// <summary>
 /// Returns some information about the specified product
 /// </summary>
 /// <param name="productName"></param>
 /// <returns></returns>
 [WebMethod]
 public Product GetProductInformation(string productName)
 {
 CheckPrincipalRoles();

 Product product = new Product();
 product.Name = productName;
 product.Quantity = 10;
 product.UnitPrice = 2.5M;
 return product;
 }

 /// <summary>
 /// Verifies if the user has permissions to execute this service
 /// </summary>
 private void CheckPrincipalRoles()
 {
 SecurityToken token = RequestSoapContext.Current.IdentityToken;
 bool isInRole = token.Principal.IsInRole(AdmistratorsRole);

 if (!isInRole)
 {
 throw new
UnauthorizedAccessException(string.Format(Resources.Messages.AuthorizationExceptio
n, AdmistratorsRole));
 }
 }
 }
}

112 Web Service Security

In the preceding code example, the Web service applies the appropriate policy
through the Policy attribute in the class declaration. Ensure that the value specified in
the Policy attribute matches the name of your policy assertion that you want to use.

The UnauthorizedAccessException class uses a string from a resource file to provide
a message for the exception. Alternatively, a simple string could be provided instead
of accessing a resource file.

If you secure communication at the transport layer using the
usernameForCertificateSecurity assertion, you must also install an X.509 certificate
into the local machine certificate store where the service is hosted. Also, you must
ensure that the service account under which the service is configured to run has read
permissions to the certificate private key. You can do this by using the Certificates
tool released with WSE 3.0. If you are running the service under the default service
account for ASP.NET, you need to grant read permissions to that account. On
Windows 2000 and Windows XP, the default account is ASPNET. On Windows
Server 2003, the default account is the NETWORK SERVICE account.

When securing direct authentication using X.509 certificates either at the message
layer or the transport layer, ensure that anonymous access is enabled for the virtual
directory where the service is hosted in Internet Information Services (IIS) 6.0.
Otherwise, the service may expect the client to authenticate at the transport layer
and reject the client’s attempts to authenticate at the message layer with a
UsernameToken.

f To enable a Anonymous Access on a virtual directory in IIS 6.0

1. In IIS 6.0, right-click the virtual directory where the service is hosted, and then
select Properties.

2. Click the Directory Security tab.
3. Under Authentication and access control, click Edit.
4. Ensure that the Enable anonymous access checkbox is selected, click OK, and

then click OK again.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

 Chapter 3: Implementing Transport and Message Layer Security 113

Benefits
The benefits of using the Implementing Direct Authentication with UsernameToken
in WSE 3.0 pattern include the following:
● The pattern provides interoperable password-based authentication at the message

layer.
● The pattern allows for flexibility to secure communication at either the message

layer or the transport layer.
● The pattern enables flexible configuration for using different authentication

services/identity stores to validate credentials presented in a UsernameToken.

Liabilities
The liabilities associated with the Implementing Direct Authentication with
UsernameToken in WSE 3.0 pattern include the following:
● When using UsernameTokens, you can configure WSE 3.0 to prevent replay

attacks by using a nonce and timestamp with a replay cache on the server
through configuring the <replayDetection> element. For more information about
this topic, see <replayDetection> Element. However, the replay cache is not shared
across a server farm. One solution you can use to mitigate this issue is to create
a replay cache that is shared across the server farm. If you are using the
usernameOverTransportSecurity assertion, the method used to secure
communication at the message layer (such as SSL) must provide message replay
detection because the message is not signed. For more information about message
replay detection, see Message Replay Detection and Implementing Message
Replay Detection in WSE 3.0 in Chapter 5, “Service Boundary Protection Patterns.”

● The usernameForCertificateSecurity assertion uses features that are introduced
in WS-Security 1.1, which makes it incompatible with Web services implementing
the WS-Security 1.0 specification.

● Implementing message layer security is likely to reduce the throughput and
increase the latency of Web services, due to the overhead of the cryptographic
operations that support canonicalization, XML signatures, and encryption. As part
of your development process, you should identify performance objectives for your
application and test the application against those objectives. For more information,
see Improving .NET Performance and Scalability.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b4fa188d-4804-40bd-877b-c01058555013.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp

114 Web Service Security

Security Considerations
Security considerations associated with the Implementing Direct Authentication with
UsernameToken in WSE 3.0 pattern include the following:
● The password in a UsernameToken should always be encrypted, using either

message layer security or transport layer security, such as SSL. This mitigates the
threat of an eavesdropper obtaining credentials from the UsernameToken.

● If SSL is implemented between several intermediaries providing point-to-point
security, the environment is vulnerable to man-in-the-middle and XML attacks.

Passwords are considered one of the weakest forms of identity used for
authentication, but they are also the most common. As a result, it is important to
understand threats and vulnerabilities associated with passwords. Passwords are
often based on words and phrases that users can remember. This makes it easier to
discover passwords through using brute force attacks that try thousands of common
passwords and word combinations. You can mitigate this vulnerability by using
complex passwords or password phrases, although if user passwords become too
difficult to remember, users are likely to write them down.

Variants
The following variants describe alternate choices to Active Directory as an identity
store, as discussed in the “Identity Store Options” section under the Implementation
Strategy section earlier in this pattern. Both the database and directory service
identity stores require a custom UsernameTokenManager class and an ASP.NET 2.0
membership provider that is configured for them.

Variant 1 — Using a Database as the Identity Store
Instead of validating credentials with an Active Directory domain controller as
described in the base pattern, this variant describes how to configure the
implementation to use a database as the identity store.

As previously stated in this pattern, whenever you use something other than
Active Directory to manage user credentials, WSE 3.0 requires you to use a custom
UsernameTokenManager class and an ASP.NET 2.0 membership provider that is
configured for the service. For instructions and examples about how to create and
configure a custom UsernameTokenManager class, see “Create a Custom
UsernameTokenManager” at the end of this section.

To use a database as an ASP.NET 2.0 membership provider, you must configure the
service to use a SqlMembershipProvider. For more details about how to configure
a SqlMembershipProvider, see “Using the SQLMemberShipProvider” in How To:
Use Membership in ASP.NET 2.0. After following these steps to configure the
SqlMembershipProvider for your service, the configuration for your membership
provider should look similar to the following service’s Web.config file.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp

 Chapter 3: Implementing Transport and Message Layer Security 115

...
<connectionStrings>
 <add name="MySqlConnection" connectionString="Data Source=MySqlServer;Initial
Catalog=aspnetdb;Integrated Security=SSPI;" />
</connectionStrings>
<system.web>
...
 <membership defaultProvider="SqlProvider" userIsOnlineTimeWindow="15">
 <providers>
 <clear />
 <add
 name="SqlProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="MySqlConnection"
 applicationName="MyApplication"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 requiresUniqueEmail="true"
 passwordFormat="Hashed" />
 </providers>
 </membership>
...

Variant 2 — Using an LDAP Directory Service as the Identity Store
Instead of validating credentials with an Active Directory domain controller as
described in the base pattern, this variant describes how to configure the
implementation to use a an LDAP-enabled directory service as an identity store.

As previously stated in this pattern, whenever you use something other than
Active Directory to manage user credentials, WSE 3.0 requires you to use a custom
UsernameTokenManager class and an ASP.NET 2.0 membership provider that is
configured for the service. For instructions and examples about how to create and
configure a custom UsernameTokenManager, see the end of this section.

To use Active Directory through LDAP or ADAM joined to an Active Directory
instance, you must configure the service to use an
ActiveDirectoryMembershipProvider. For more details about how to configure an
ASP.NET 2.0 membership provider, see How To: Use Membership in ASP.NET 2.0.

After following these steps to configure the ActiveDirectoryMembershipProvider
for your service, the configuration for your membership provider should look similar
to the following service’s Web.config file. The connection string in this code example
has been substituted for the one that is required to connect your directory service.
An ellipsis (...) represents sections of the configuration file that have been omitted
for brevity.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp

116 Web Service Security

<connectionStrings>
 <add name="ADConnectionString"
 connectionString=
 "LDAP://domain.testing.com/CN=Users,DC=domain,DC=testing,DC=com" />
</connectionStrings>
...
<system.web>
 ...
 <membership defaultProvider="MembershipADProvider">
 <providers>
 <add
 name="MembershipADProvider"
 type="System.Web.Security.ActiveDirectoryMembershipProvider, System.Web,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ADConnectionString"
 connectionUsername="<domainName>\directoryservice"
 connectionPassword="password"/>
 </providers>
 </membership>
 ...
</system.web>
...

Different directory services may require different formatting of a user name when
credentials are validated. For example, ADAM requires a format of username@domain.
The client can do this when it creates a UsernameToken instance. In which case, the
service should check the formatting in the CustomUsernameTokenManager before
the credentials are validated against the directory service. The formatting can also be
done directly in the CustomUsernameTokenManager before the credentials are
validated against the directory service, with the expectation that the client will
send the user name without a specified domain, and that the
CustomUsernameTokenManager will add the domain name with proper formatting.

If you use an LDAP-enabled directory service other than Active Directory or ADAM
to validate credentials, you may need to create a custom membership provider. For
more details on how to build custom ASP.NET 2.0 providers, see Building Custom
Providers for ASP.NET 2.0 Membership. Also, depending how you store and retrieve
account roles in your directory service, you may need to implement a custom
RoleProvider. For example, if you use an LDAP schema for user roles that is not
supported through ActiveDirectoryMembershipProvider, you will need to
implement a custom RoleProvider to retrieve roles for your users.

In a custom RoleProvider class, you need to retrieve the user roles from the directory
service by overriding the GetRolesForUser() method. The code to retrieve user roles
from the directory service would look like the following example.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/bucupro.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/bucupro.asp

 Chapter 3: Implementing Transport and Message Layer Security 117

public override string[] GetRolesForUser(string username)
 {
 using (DirectoryEntry rootEntry = new DirectoryEntry(this.connectionString))
 {
 rootEntry.Username = this.username;
 rootEntry.Password = this.password;

 rootEntry.AuthenticationType = AuthenticationTypes.None;
 rootEntry.RefreshCache();

 //Search the user in the directory service
 using (DirectorySearcher searcher = new DirectorySearcher(rootEntry))
 {
 searcher.PropertiesToLoad.Add("memberOf");
 searcher.PropertiesToLoad.Add(this.usernameAttribute);

 searcher.Filter = String.Format("(&(objectClass=user)({0}={1}))",
this.usernameAttribute, username);
 SearchResult result = searcher.FindOne();
 DirectoryEntry userEntry = result.GetDirectoryEntry();

 string[] roles = null;

 PropertyValueCollection property = userEntry.Properties["memberOf"];
 if (property.Value is Array)
 {
 Array values = (Array)property.Value;
 roles = new string[values.Length];
 values.CopyTo(roles, 0);
 }
 else if (property.Value is string)
 {
 roles = new string[1];
 roles[0] = (string)property.Value;
 }
 return roles;
 }
 }
 }

Create a Custom UsernameTokenManager
When validating credentials against a database or an LDAP-enabled directory
service, you need to create and implement a custom UsernameTokenManager class.
This is not necessary if you are validating credentials against an Active Directory
domain.

To implement a custom UsernameTokenManager for either a database or a directory
service, you must derive a custom class from the UsernameTokenManager and
configure the service to use the custom class in its Web.config file.

118 Web Service Security

The easiest way to add an entry for a custom UsernameTokenManager in
the service’s Web.config file is by using the WSE 3.0 Settings tool. To add a
custom UsernameTokenManager entry, right-click the service project, select
WSE Settings 3.0, and then on the Security tab, type the security token manager’s
information.

The following configuration example provides an example of what a custom
UsernameTokenManager in the service’s Web.config file might look like after
you have added it through the WSE 3.0 Settings tool. An ellipsis (...) indicates
configuration sections that have been omitted for brevity.

<configuration>
...
 <microsoft.web.services3>
 ...
 <securityTokenManager>
 <add localName="UsernameToken"
type="Microsoft.Practices.WSSP.WSE3.QuickStart.UsernameTokenWithDatabase.Service.C
ustomUsernameTokenManager" namespace="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"/> ...
 </securityTokenManager>
 <Microsoft.web.services3>
 ...
</configuration>

In the previous example, the type attribute represents the fully qualified name of
the custom UsernameTokenManager class. Set this attribute based on the namespace
and class name that you chose for your custom UsernameTokenManager class.

The following code example provides an example of a custom
UsernameTokenManager class.

using System;
using System.Xml;
using System.Security.Permissions;
using System.Web.Security;
using System.Security.Principal;

using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

(continued)

 Chapter 3: Implementing Transport and Message Layer Security 119

(continued)

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.UsernameTokenWithDatabase.Service
{
 /// <summary>
 /// By implementing UsernameTokenManager we can verify the signature
 /// on messages received.
 /// </summary>
 [SecurityPermissionAttribute(SecurityAction.Demand,
Flags=SecurityPermissionFlag.UnmanagedCode)]
 public class CustomUsernameTokenManager : UsernameTokenManager
 {
 /// <summary>
 /// Constructs an instance of this security token manager.
 /// </summary>
 public CustomUsernameTokenManager()
 {
 }

 /// <summary>
 /// Constructs an instance of this security token manager.
 /// </summary>
 /// <param name="nodes">An XmlNodeList containing XML elements from a
configuration file.</param>
 public CustomUsernameTokenManager(XmlNodeList nodes)
 : base(nodes)
 {
 }

 /// <summary>
 /// Returns the password or password equivalent for the username provided.
 /// Adds a principal to the token with user's roles.
 /// </summary>
 /// <param name="token">The username token</param>
 /// <returns>The password (or password equivalent) for the
username</returns>
 protected override string AuthenticateToken(UsernameToken token)
 {
 bool validCredentials = Membership.ValidateUser(token.Username,
token.Password);
 if (!validCredentials)
 {
 throw new ApplicationException(Resources.Messages.AuthenticationError);
 }

 GenericIdentity identity = new GenericIdentity(token.Username);
 GenericPrincipal principal = new GenericPrincipal(identity,
Roles.GetRolesForUser(token.Username));
 token.Principal = principal;

 return token.Password;
 }

 }

120 Web Service Security

Implementing Message Layer Security with Kerberos in
WSE 3.0

Context
You are implementing brokered authentication in an application deployed on
computers running Windows with security implemented at the message layer.
A Web service using Web Services Enhancements (WSE) 3.0 is processing messages
from clients. The clients and services must use a standards-based security token that
uses the organization’s existing Active Directory infrastructure. The solution must be
able to provide a complete set of security features, including data origin
authentication and data confidentiality.

Objectives
The objectives of this pattern are to:
● Use an existing infrastructure that employs the Kerberos version 5 protocol at the

message layer with a KerberosToken binary security token.
● Secure the communication channel to provide data confidentiality and data

integrity by encrypting and signing messages with the KerberosToken.
● Impersonate authenticated clients that the KerberosToken represents to access

resource on their behalf. A client can be a user, application, or server that needs to
be authenticated before it can access a service.

Content
This pattern consists of the following sections:
● Implementation strategy. This section provides a high-level description of

the strategy used to implement the solution that includes a description of the
participants and the process.

● Implementation approach. This section describes the steps necessary to
implement this pattern:
● General setup
● Client setup
● Service setup

● Resulting context. This section outlines the benefits, liabilities, and security
considerations related to this pattern.

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

http://go.microsoft.com/fwlink/?LinkId=57044

 Chapter 3: Implementing Transport and Message Layer Security 121

Implementation Strategy
Use an existing Kerberos infrastructure, such as the one in Active Directory to
provide authentication and access control on client workstations and servers that host
Web applications. Use the kerberosSecurity policy assertion in WSE 3.0 to provide
authentication, data confidentiality, and integrity at the message layer. For more
information about WSE 3.0 policy, see Securing a Web Service on MSDN. This
implementation also demonstrates how to use a KerberosToken to establish a
Windows security context. The service then calls a second service that is configured
for Windows Integrated Security.

Participants
Message layer security with the Kerberos protocol in WSE 3.0 involves the following
participants:
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to authorizing the client.
● Key Distribution Center (KDC). The KDC is the authentication broker that

authenticates clients and issues service tickets. On the Windows platform, the
KDC is implemented in Active Directory.

Process
The “Process” section of Brokered Authentication: Kerberos in Chapter 1,
“Authentication Patterns” describes how you can use a KerberosToken security
token for message layer authentication with a Web service. The session keys
created during Kerberos authentication also can sign and encrypt messages.
These capabilities allow you to implement data origin authentication and data
confidentiality as part of the authentication process. As a result, this pattern includes
additional steps to represent a complete message layer security solution that
implements authentication, data origin authentication, and data confidentiality.

Note: Windows 2000 does not support KerberosToken for signing and encryption. For more
information about this and other information related to the Kerberos protocol, see Kerberos
Technical Supplement for Windows in Chapter 7, “Technical Supplements.”

This pattern provides a more detailed description of the implementation process
that the design pattern describes. The steps are divided into the following two parts,
based on what happens on the client and then on the service:
● The client initializes a Kerberos security token and sends it in a message to a

service.
● The service authenticates the client using information found in the security token.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/7b8f29da-22d5-4e03-b645-15011a80e548.asp

122 Web Service Security

Client: Initialize the Security Token and Send the Message

The client performs the following five steps to complete this task:
1. Request a service ticket.
2. Retrieve the service ticket.
3. Sign the message.
4. Encrypt the message.
5. Send the message to the service.

The steps are summarized in Figure 3.6.

Figure 3.6
Initializing and sending a message using the Kerberos protocol

The following sections describe these steps.

 Chapter 3: Implementing Transport and Message Layer Security 123

Step One: Request a Service Ticket

The client interacts with the KDC to retrieve a service ticket, which it then uses to
access the Web service. This action is actually performed as a request to the Security
Support Provider Interface (SSPI) implementation in the Local Security Authority
(LSA) to initialize a security context. The LSA accesses the client’s ticket-granting
ticket (TGT) and uses that to request a service ticket from the KDC. For more
information about the Kerberos protocol implementation in Windows-based
software, see Kerberos Technical Supplement for Windows in Chapter 7,
“Technical Supplements.”

Step Two: Retrieve the Service Ticket

The ticket-granting service (TGS) creates a service ticket and returns it to the
Local Security Authority (LSA). The LSA uses the service ticket to complete the
initialization of a security context. WSE 3.0 uses the new security context to initialize
a KerberosToken that is used to access the service. When a KerberosToken is
initialized in WSE 3.0, two keys are derived from the session key in the service ticket
for both the client and the service to use. One key is used to sign messages, and the
other is used to encrypt them as described later in the process.

Step Three: Sign the Message

The message is signed using the security token retrieved in the previous step. You can
choose to sign one or more portions of the message, such as the address header or the
message body. An XML signature is created using a symmetric signature algorithm
that computes a hash from the data to be signed using a signing key derived from the
session key in the security token. When an XML signature is validated, the data used
to create the signature is also validated to provide data origin authentication. At a
minimum, you should include the addressing headers, timestamp, and message
body in the message signature.

Step Four: Encrypt the Message

You can encrypt the message body using a security token that is derived from the
session key in the security token. In addition, you should encrypt the message
signature to reduce the risk of an offline cryptographic attack on the signature.

Step Five: Send the Message to the Service

After the client computer signs and encrypts the message, it sends the message to the
service. When the message is sent, WSE 3.0 automatically adds the Kerberos security
token to the message as a BinarySecurityToken.

124 Web Service Security

Service: Authenticate the Client

There are five steps for the service to perform to complete this task:
1. Validate the token.
2. Decrypt the message.
3. Verify the XML signature.
4. Authorize and/or impersonate the client (optional).
5. Initialize and send a response to the client (optional).

The steps are summarized in Figure 3.7.

Send Response

Authorize
Subject

5

4

Client Service

1

2 Decrypt Message

3 Verify Signature

Validate Token

Figure 3.7
Authenticating a client using the Kerberos protocol

The following describes each of these steps in this section.

Step One: Validate the Token

When a service receives a message with a Kerberos security token, it needs to acquire
credentials for the service account from the service host. To access the credentials,
a service must be running under a process identity that has access to the service
credentials. For more information about configuring the service identity with
different operating systems, see Kerberos Technical Supplement for Windows
in Chapter 7, “Technical Supplements.”

The service credentials contain the service’s master key, which decrypts the service
ticket in the message that the client sent. The service ticket contains a session key,
which decrypts the authenticator and validates the message. For more information
about Kerberos authenticators, see Kerberos Technical Supplement for Windows in
Chapter 7, “Technical Supplements.”

After the service validates the message, it accepts the security token and uses the
client’s information in the service ticket to initialize a security context.

 Chapter 3: Implementing Transport and Message Layer Security 125

tep Two: Decrypt the Message

When WSE 3.0 receives a message that has been encrypted, WSE 3.0 policy does the
following to decrypt the message:
1. Retrieve the symmetric session key from the service ticket.
2. Generate the derived encryption key from the session key.
3. Use the derived key to decrypt the message data with a symmetric algorithm.

Note: The policy on the server does not stop someone from sending an unencrypted message.
However, it does reject a message at the server if it is not encrypted. The client can also implement
a policy assertion that requires outbound messages to be encrypted.

Step Three: Verify the XML Signature

After the service receives the message. WSE 3.0 policy validates the message
signature using the derived signing key that was sent with the message. This step
validates the origin of that data to provide data origin authentication. However,
note that XML signatures created using a symmetric algorithm do not support
nonrepudiation. For more information about data origin authentication, see Data
Origin Authentication in Chapter 2, “Message Protection Patterns.”

Step Four: Authorize and/or Impersonate the Client (Optional)

By default, when WSE 3.0 receives a message that contains a Kerberos security token,
it accesses the client’s authorization claims that are contained in the service ticket.
The Kerberos protocol allows these claims to perform authorization tasks, and the
service ticket also can impersonate the client.

Step Five: Initialize and Send a Response to the Client Computer (Optional)

If the service returns a secure response to the client, the response must use the same
security token that the request used. To accomplish this, the request message must be
signed and encrypted using keys derived from the same token that was received in
the request message from the client.

Implementation Approach
This section describes how to implement this pattern. The section is divided into
three major tasks:
● General setup
● Client setup
● Service setup

126 Web Service Security

Note: Applications using KerberosTokens will not function properly if they are hosted in Cassini.
You must use Internet Information Services (IIS) 6.0 to host them. Cassini is a local access only
Web server distributed with Visual Studio 2005 to allow Web development without IIS. One way to
tell if a Web application is hosted in Cassini or in IIS is to look at the project in the Visual Studio
2005 solution explorer. If the Web application project appears as a file path (for example,
C:\directory), Cassini is hosting the application. If the Web application project appears as an URL,
IIS is hosting it.

General Setup
You must install the WSE 3.0 SDK on the computers that you use to develop
WSE-enabled applications. After you have installed WSE 3.0, you must enable the
client and the service to support WSE 3.0. You can achieve this by performing the
following steps.

f To enable a Visual Studio 2005 project to support WSE 3.0

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the General tab, select the Enable this project for Web Service Enhancements
check box, and then click OK.

You may be required to perform additional configuration steps to allow the
ASP.NET process to access service credentials. You can use either of the following two
approaches for this purpose. The approach to use depends on the Windows operating
system that you used to install WSE 3.0:
● Use the existing ASP.NET worker process. This is the preferred option to use

on computers running Windows Server 2003. No configuration is required in this
case. The ASP.NET worker process uses a different account that has all of the
necessary rights required to access service credentials.

● Create a new domain account and map that account to the service host using
setspn.exe. This is the preferred option to use on computers running Windows XP
and Windows 2000. To use this option, modify the Machine.config file and set
the userName and password attributes to the new domain account in the
processModel element, and then reset IIS 6.0. For more information about this
option, see “Kerberos Operations for Web Services” in the Kerberos Technical
Supplement for Windows in Chapter 7, “Technical Supplements.”

Caution: It is theoretically possible to configure the processModel element to use the SYSTEM
account in a production environment. While this would give the ASP.NET process access to service
credentials, using this account represents a serious security risk that could be catastrophic to your
environment.

 Chapter 3: Implementing Transport and Message Layer Security 127

Note: WSE 3.0 offers four different protection levels that determine how messages are secured
using SOAP message security. Generally, you should use the Sign, Encrypt, and Encrypt Signature
setting for best message protection. This setting encrypts the message body and the XML signature,
which reduces the likelihood of a successful cryptographic guessing attack against the signature. For
this reason, all the composite implementation patterns use this value as default. If you want to use
this setting in new Web services you should change the messageProtectionOrder attribute to the
following value in your security policy:

messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"

Client Setup
This task requires the following steps to configure the client to implement this
pattern:
1. Configure the policy. Includes the WSE 3.0 policy configuration settings

necessary to implement this pattern on the client.
2. Add the client code. Includes the coding necessary to successfully implement this

pattern on the client.

Configure the Policy

After enabling the client application to support WSE 3.0, you must enable policy
support. If your application does not currently have a policy cache file, you can add
one, and then perform the following procedure to enable policy support.

f To add policy support to a WSE 3.0 enabled Visual Studio 2005 project

1. In Visual Studio, right-click the application project, and then click
WSE Settings 3.0.

2. On the Policy tab, select the Enable Policy checkbox. Selecting this checkbox adds
a policy cache file with the default name wse3policyCache.config.

3. Under Edit Application Policy, click Add, and then type a policy friendly name
for the new application policy, such as “KerberosClient.”

4. Click OK to start the WSE Security Settings Wizard, and then click Next.
5. On the Authentication Settings page, the wizard provides a choice to secure a

service or a client. Select the option for secure a client application to configure
the client.

6. The wizard also provides a choice of authentication methods in the same step.
Select Windows, and then click Next.

7. On the Kerberos Token page, the wizard provides you with the option to provide
a service principal name (SPN) and to specify the impersonation level for the
Kerberos Token. The example for this pattern specifies the SPN as “http/server1.”
Replace “server1” with the name of the target Web server for the service that you
will use. Then select Impersonation for the impersonation level and click Next.

128 Web Service Security

8. On the Message Protection page, the wizard provides you with configuration
options for message protection. You should select the option for Sign, Encrypt,
Encrypt Signature. By default, the Enable WS-Security 1.1 Extensions setting
is selected. Ensure that the extensions are enabled if you want WSE 3.0 to use
signature confirmation to correlate a response message from the service with
the request message that prompted it.

9. If your primary concern is interoperability, clear the Enable WS-Security 1.1
Extensions check box.
– or –
If you want to use signature confirmation, leave the Enable WS-Security 1.1
Extensions check box selected, click Advanced Settings, ensure the Enable
signature confirmation check box is selected, click OK, and then click Next.

10. On the Create Security Settings page, review your settings, and then click Finish.

After you complete the procedure, your client security policy cache should appear
similar to the following code example.

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code, have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <policy name="KerberosClient">
 <kerberosSecurity establishSecurityContext="true"
renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"
requireDerivedKeys="true" ttlInSeconds="300">
 <token>
 <!-- By default this sample does not work until you have changed the
TargetMachineName value -->
 <!-- Change the TargetMachineName value to the machine name with the Web
Service e.g. targetPrincipal="host/server1" -->
 <kerberos targetPrincipal="http/server1"
impersonationLevel="Impersonation" />
 </token>
 <protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="false" />
 </protection>
 </kerberosSecurity>
 <requireActionHeader />
 </policy>
</policies>

 Chapter 3: Implementing Transport and Message Layer Security 129

The kerberosSecurity policy assertion provides the ability to sign and encrypt
messages using policy with a KerberosToken binary security token in WSE 3.0.

In the previous example, the policy is declared as KerberosClient. It contains an
assertion called <kerberosSecurity>. The requireSignatureConfirmation attribute
controls whether the policy uses signature confirmation to provide a correlation
between a response and the request that prompted it.

The messageProtectionOrder attribute defines the order in which the policy signs
and encrypts the message. As recommended in the previous “Process” section for this
pattern, when the client computer signs a message, ensure that the message signature
also is encrypted. Setting the value of the messageProtectionOrder attribute to
SignBeforeEncryptAndEncryptSignature will provide the recommended behavior.
For more information about Kerberos assertion policy settings, see
<kerberosSecurity> Element on MSDN.

The <token> section of the assertion provides details about the Kerberos token. You
must set the targetPrincipal attribute to “http/,” and include the name of the server
where the Web service is hosted. If you have created a custom SPN, ensure that its
name appears here. The impersonationLevel attribute allows you to specify whether
you want the token to identify the client or impersonate the client. In this pattern this
attribute is set to Impersonation so that a resource can be accessed on the client’s
behalf.

Note: You can use the prefix “host/” instead of “http/” for the SPN. However, doing this eliminates
the option to use Windows Integrated Security on the target to access additional resources on behalf
of the client computer. For more information about SPNs, see Kerberos Technical Supplement for
Windows in Chapter 7, “Technical Supplements.”

The <protection> section of the assertion allows you to specify protection options on
the request, response, and fault messages using the <request>, <response>, and
<fault> elements, respectively. The options available for each of these elements are
the same. The signatureOptions attribute allows you to specify which parts of the
message are signed in a comma separated list. To achieve the behavior recommended
previously in the Process section for when the client signs the message, specify the
IncludeAddressing, IncludeTimestamp, and IncludeSoapBody attributes in the
value for the signatureOptions attribute. Setting the value of the encryptBody
attribute to true encrypts request messages and decrypts response messages.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp

130 Web Service Security

Add the Client Code

The following example code displays how to implement the client as a Web service
client. It provides an example of binding the previously defined policy to the proxy,
and then calling a Web service. You can copy the code to insert it into a new code
module.

...
Service.ServiceWse service = new Service.ServiceWse();
service.SetPolicy("KerberosClient");

Product[] products = service.GetProductInformation(txtProductName.Text);

txtResults.Text = string.Empty;
foreach (Product product in products)
{
 txtResults.Text += String.Format(CultureInfo.InvariantCulture,
"Product Name: {0}, Unit Prize: {1}, Quantity: {2}",
 product.Name, product.UnitPrice, product.Quantity);
}
...

If the client is an ASP.NET application, you must configure your client application
to use Windows authentication and set the impersonate attribute of the <identity>
attribute to true in the client’s Web.config file or programmatically impersonate the
user in code. The following code example provides an example of how to configure
security in the client’s Web.config file.

<configuration>
...
 <system.web>
 ...
 <authentication mode="Windows"/>
 <identity impersonate="true"/>
 ...
 </system.web>
...
</configuration>

Smart client applications automatically attach the Windows security context of the
user currently logged on to the workstation. For this reason, this configuration step
is not necessary if the client is a smart client application.

 Chapter 3: Implementing Transport and Message Layer Security 131

Service Setup
This task consists of the following three steps to configure the client computer to
implement this pattern:
● Enable SOAP extensions. Includes steps to enable the service application to

support the WSE 3.0 SOAP Protocol Factory.
● Configure the policy. Includes the WSE 3.0 policy configuration settings

necessary to implement this pattern on the service.
● Use the service code. Includes the coding necessary to successfully implement this

pattern on the service.

Enable SOAP Extensions

You must configure the service to enable SOAP extensions by performing the
following steps.

f To enable a Visual Studio 2005 project to support SOAP extensions

1. In Visual Studio 2005, right-click the application project and select
WSE Settings 3.0.

2. On the General tab, select the Enable Microsoft Web Services Enhancement
SOAP Protocol Factory checkbox, and then click OK.

Configure the Policy

After enabling the service application to support WSE 3.0, you must enable policy
support. If your application does not currently have a policy cache file, you can add
one, and then perform the following procedure to enable policy support.

f To add policy support to a WSE 3.0-enabled Visual Studio 2005 project

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the Policy tab, select the Enable Policy check box. Selecting this check box
adds wse3policyCache.config as the default name for the policy cache file.

3. Under Edit Application Policy, click Add.
4. Type a policy friendly name for the new application policy, such as

“KerberosService.”
Click OK to start the WSE Security Settings Wizard, and then click Next.

5. On the Authentication Settings page, the wizard provides you with the choice
to secure a service or a client computer. Select the option to secure a service
application to configure the client computer.

6. The wizard also provides you with a choice of authentication methods in the same
step. Select the authentication method for Windows, and then click Next.

132 Web Service Security

7. On the Kerberos Token Claims page, the wizard presents configuration
authorization based on the user name or roles contained in the KerberosToken.
By default, the perform authorization check box is cleared. If you want to perform
authorization through the policy assertion, select the perform authorization check
box, and then add users and roles as appropriate.

8. On the Message Protection page, the wizard presents configuration options for
message protection. Microsoft recommends selecting the option for Sign, Encrypt,
Encrypt Signature. By default, the Enable WS-Security 1.1 Extensions check box
is selected. You must enable the extensions if you want WSE 3.0 to use signature
confirmation to correlate a response message returned from the service with the
request message that prompted it.

9. If your primary concern is interoperability, clear the Enable WS-Security 1.1
Extensions check box.
– or –
If you do want to use signature confirmation, leave the Enable WS-Security 1.1
Extensions check box selected, click Advanced Settings, ensure that the Enable
signature confirmation check box also is selected, and then click OK. The message
protection settings must be the same for both the client computer and the service.

10. On the Create Security Settings page, click Next, review your settings, and then
click Finish.

After you complete the procedure, your service security policy should appear similar
to the following code example.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <policy name="KerberosService">
 <authorization>
 <allow role="Users" />
 <deny role="*" />
 </authorization>
 <kerberosSecurity establishSecurityContext="true"
renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"
requireDerivedKeys="true" ttlInSeconds="300">
 <protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="false" />
 </protection>
 </kerberosSecurity>
 <requireActionHeader />
 </policy>
</policies>

 Chapter 3: Implementing Transport and Message Layer Security 133

The service’s policy file is similar to the client’s policy file with the following
exceptions:
● An <authorization> assertion is included to limit which clients are allowed or

denied access to the service by specifying a comma-separated list of roles that
the user belongs to that are defined in the Active Directory domain. The <allow>
element should appear first, with a list of authorized roles. If only specific roles are
authorized to access the service, the <deny> element should always be specified
immediately following the <allow> element with an asterisk (*). In the previous
policy file, the <authorization> assertion is configured to allow only users who
belong to the “Users” role, and to deny all others.

● The <token> section is not included, as the service does not attach a
KerberosToken to the request message when calling another service.

The service also requires an additional configuration update to support secure
conversations. The service’s policy file contains two attributes in the
<kerberosSecurity> element named establishSecurityContext and
renewExpiredSecurityContext that are used to enable secure conversation.
By default, both of these attributes are set to true. However, to support secure
conversation, the service must disable stateful security context tokens (SCTs). This is
accomplished by adding the following configuration entry to the Web.config file of
the service host.

<microsoft.web.services3>
 <tokenIssuer>
 <statefulSecurityContextToken enabled="false" />
 </tokenIssuer>
</microsoft.web.services3>

134 Web Service Security

Use the Service Code

This step describes the code required to implement the service. The following code
example displays how the service is implemented. You can copy the code to insert it
into a new Web service class file.

using System;
using System.Web.Services;

using Microsoft.Web.Services3;

using Microsoft.Practices.WSSP.WSE3.QuickStart.Common;

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.MessageLayerKerberos.SecondService
{
 /// <summary>
 /// This class represents a web service used to query products catalog
 /// </summary>
 [WebService(Namespace =
"http://schemas.microsoft.com/WSSP/WSE3/QuickStart/BrokeredAuthentication/2005-
10/MessageLayerKerberos/SecondService.wsdl")]
 public class Service : System.Web.Services.WebService
 {
 /// <summary>
 /// Constructor
 /// </summary>
 public Service()
 {
 InitializeComponent();
 }

 #region Component Designer generated code

 //Required by the Web Services Designer
 private System.ComponentModel.Container components = null;

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }

(continued)

 Chapter 3: Implementing Transport and Message Layer Security 135

(continued)

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing && components != null)
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #endregion

 /// <summary>
 /// Returns some information about the specified product
 /// </summary>
 /// <param name="productName"></param>
 /// <returns></returns>
 [WebMethod]
 public Product GetProductInformation(string productName)
 {
 Product product = new Product();
 product = new Product();
 product.Name = productName;
 product.Quantity = 15;
 product.UnitPrice = 3.4M;
 return product;
 }
 }
}

In this code example, the service calls a second service that uses Windows Integrated
Security. The service impersonates the client based on the received Kerberos token,
delegated from the client to access the second Web service on behalf of the client.
For more information about delegation, see Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4, “Resource Access Patterns.”

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

136 Web Service Security

Benefits
The benefits of using the Implementing Message Layer Security with Kerberos in
WSE 3.0 pattern include the following:
● It provides single single-on capabilities that require a user to authenticate only

once per session.
● It has broad acceptance as a brokered authentication protocol and the majority

of large organizations that have centralized their authentication management
infrastructure use the protocol.

● It is closely integrated with Windows (Windows 2000 or later). This enables
the operating system to provide security capabilities such as impersonation,
delegation, authorization, and auditing of the client.

● The Kerberos authentication process is more efficient than challenge/response.
With the Kerberos protocol, authentication is performed by examining the security
token sent in a request message. Challenge/response requires direct access to the
authentication broker to authenticate a client.

● It supports mutual authentication when SPNs request a service ticket.
● It supports both signing and encryption of data in a Web service message.

Liabilities
The liabilities associated with the Implementing Message Layer Security with
Kerberos in WSE 3.0 pattern include the following:
● The centralized nature of the Kerberos protocol requires a KDC to act as an

authentication broker at all times. If the KDC fails, clients cannot establish new
trust relationships with a service. Consider using redundant KDCs or providing
an alternative mechanism, such as X.509 certificates for authentication. With
Active Directory, you can improve KDC availability by establishing secondary
domain controllers. This creates a redundant set of KDCs for the protocol to use.

● It is only useful for authentication and secure communication. In other words,
the Kerberos protocol is not useful for securely persisting messages on a long-term
basis because of the limited lifespan of tickets and session keys that it uses for
encryption and signing.

● Proof that a client has authenticated cannot be established outside of the security
domain where the client was authenticated, unless trust is explicitly established
with the other security domain attempting to verify the client’s security token.

● If you do not use signature confirmation, applications that use the
kerberosSecurity policy are interoperable with applications implemented with the
WS-Security 1.0 specification. If you do use signature confirmation, the application
must support WS-Security 1.1.

 Chapter 3: Implementing Transport and Message Layer Security 137

● Implementing message layer security is likely to reduce the throughput and
increase the latency of Web services, due to the overhead of the cryptographic
operations that support canonicalization, XML signatures, and encryption. As part
of your development process, you should identify performance objectives for your
application and test the application against those objectives. For more information
see, Improving .NET Performance and Scalability.

Security Considerations
Security considerations associated with the Implementing Message Layer Security
with Kerberos in WSE 3.0 pattern include the following:
● When using Kerberos tokens at the message layer with Web services hosted on

Windows 2000, the ASP.NET worker process requires higher privileges than it
would normally possess.

● “Password guessing” attacks can occur against messages encrypted with a
password equivalent (hash) that is derived from the user’s password. The
Kerberos protocol uses this derived key to encrypt data in the authentication
request. An attacker could mount an offline dictionary attack by repeatedly
attempting to decrypt the data in the authentication request sent to the KDC
to discover the client’s password.

● The Kerberos protocol does not implement authorization, although it is typically
coupled with an authentication service that may store authorization information
for a client. Resources can control access based on the client’s authorization
information, which is contained in the service ticket.

Note: Active Directory provides authorization services that complement its Kerberos
implementation.

● You cannot use the Kerberos protocol to facilitate nonrepudiation, because the
client’s identity secret is shared with the KDC.

http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp

138 Web Service Security

Implementing Message Layer Security with X.509 Certificates
in WSE 3.0

Context
You are implementing brokered authentication in an application deployed on a
Windows platform with security implemented at the message layer. A Web service
using Web Services Enhancements (WSE) 3.0 is processing requests from clients.
Clients and services use X.509 certificates with a standards-based security token that
is portable across organizations and security boundaries. The solution must be able to
provide a comprehensive set of security features that includes mutual authentication,
data origin authentication, and data confidentiality.

Objectives
The objectives of this pattern are to:
● Secure a message exchange between two parties using brokered authentication

with X.509 certificates.
● Combine an implementation of mutual authentication with the Data Origin

Authentication and Data Confidentiality design patterns to provide a baseline that
you can use to add more security requirements, such as replay protection and
message validation.

● Demonstrate the implementation of the WSE 3.0 mutualCertificate10Security
policy assertion and discuss when to use the mutualCertificate11Security policy
assertion.

● Demonstrate an implementation of a custom WSE 3.0
X509SecurityTokenManager that allows you to associate additional data, such as
roles with a client certificate.

Content
This pattern consists of the following sections:
● Implementation Strategy. This section provides a high-level description of the

strategy to implement brokered authentication using X.509 certificates.
● Implementation Approach. This section describes the steps required to

implement this pattern:
● General setup
● Configure the client
● Configure the service

 Chapter 3: Implementing Transport and Message Layer Security 139

● Resulting Context. This section outlines the benefits, liabilities, and security
considerations related to this pattern.

● Extensions. This section discusses how to extend the base pattern to implement
role-based authorization.

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

Implementation Strategy
Use the mutualCertificate10Security policy assertion in WSE 3.0 to enable message
signing and encryption using X.509 certificates. WSE 3.0 policy accesses the client’s
private key, which is used to sign the message. The service’s public key, which is in its
X.509 certificate, then encrypts the message. The service decrypts the message using
its private key and verifies the signature using the public key of the client. The public
key is in the client’s X.509 certificate, which is included with the message.

Unlike using Secure Sockets Layer (SSL) in which the client obtains the service’s
X.509 certificate at run time, message layer security using X.509 certificates in
WSE 3.0 requires that the service’s certificate is obtained out-of-band and installed
in the client’s local certificate store.

Note: This pattern uses the mutualCertificate10Security policy assertion, because it relies on
WS-Security 1.0. However, if your environment fully supports WS-Security 1.1 extensions, you can
use the mutualCertificate11Security policy assertion. The mutualCertificate11Security policy
assertion provides better performance, because it performs less asymmetric cryptography
operations, which are computationally intensive. It performs two asymmetric and two symmetric
operations compared with four asymmetric operations for the mutalCertificate10Security policy
assertion.

This pattern assumes that the client has already obtained the service’s certificate out-
of-band, so that it can access the service’s certificate from a local certificate store. For
more information about installing X.509 certificates in the local certificate store, see
How to: Use the X.509 Certificate Management Tools.

Participants
Using message layer security with X.509 certificates in WSE 3.0 involves the
following participants:
● Client. The client accesses the Web service, and provides credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of the client to

make access control decisions.

http://go.microsoft.com/fwlink/?LinkId=57044
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true

140 Web Service Security

Process
The “Process” section of Brokered Authentication: X.509 PKI in Chapter 1,
“Authentication Patterns,” describes how you can use a certificate for authentication.
This pattern provides a more detailed description of that process within the context
of the implementation. The steps provided are based on the behavior of the
mutualCertificate10Security assertion. The steps are divided into the following
two sections based on what happens on the client and then on the service:
● The client initializes and sends a message with X.509 certificate information.
● The service authenticates the client using the X.509 certificate and signature.

The Client Initializes and Sends a Message with X.509 Certificate Information

This part of the process has six steps:
1. The client retrieves the service’s X.509 certificate.
2. The client retrieves its own certificate and private key.
3. The client attaches its X.509 certificate to a message.
4. The client signs the message using its private key.
5. The client encrypts the message using the service’s public key.
6. The client sends the message to the service.

 Chapter 3: Implementing Transport and Message Layer Security 141

The steps are summarized in Figure 3.8.

ServiceClient

Certificate Store

Send Request Message6

Attach Client Certificate
to Message

3

4

5 Encrypt Message

Sign Message

1

2 Get Client Certificate

Get Service Certificate

Figure 3.8
Initializing and sending a message with X.509 certificate information

Step One: The Client Retrieves the Service’s Certificate

The client needs to access the X.509 certificate of the service to encrypt the request
message. The WSE 3.0 policy assertion on the client is configured to retrieve the
service’s certificate from the client’s local certificate store without the need for any
additional code.

Step Two: The Client Retrieves Its own X.509 certificate and Private Key

The client accesses its X.509 certificate and private key. It uses the private key to sign
the message and the X.509 certificate to provide the service with the public key and
other information about the client for verification with the service.

142 Web Service Security

Step Three: The Client Attaches Its X.509 Certificate to a Message

WSE 3.0 policy is configured to sign the message, and WSE 3.0 automatically attaches
the client’s certificate to the request message.

Step Four: The Client Signs the Message Using Its Private Key

The client uses its private key to sign the message. You can choose to sign one or
more portions of the message, such as the address header or the message body. At a
minimum, you should sign the message body, security, and addressing headers.
A signature is created using a signature algorithm that computes a checksum value
from the data to be signed and then encrypts the checksum value with the client’s
private key. When the signature is validated, the data used to create the signature
is also validated to provide data origin authentication.

Step Five: The Client Encrypts the Message Using the Service’s Public Key

You can encrypt message parts using a symmetric key that is encrypted with the
public key from the service’s X.509 certificate. At a minimum, ensure that the
signature used to sign the encrypted data is itself encrypted to help protect it
against offline attacks.

When you use WSE 3.0 policy to encrypt message data with X.509 certificates, the
policy uses asymmetric encryption to encrypt a one-time symmetric key, which in
turn encrypts the data. When message data is encrypted using the service’s certificate
information, WSE 3.0 also adds the certificate identifier to the message. If the
certificate contains a subject key identifier, this is included to identify the certificate in
the message. Otherwise, the policy uses the issuer name and certificate serial number
instead. The service owns the certificate, which contains all the necessary information
for it to access the appropriate private key and decrypt the symmetric key, which is
then in turn used to decrypt the message.

Encrypting the request in this way protects sensitive data if the client is deceived into
calling an illegitimate service. As the intended message recipient, only the correct
Web service can decrypt the message with its private key.

Step Six: The Client Sends the Message to the Service

After the message is signed and encrypted, the client sends it to the service.

The Service Authenticates a Client Using the X.509 Certificate and Signature

This part of the process has six steps:
1. The service validates the client’s certificate.
2. The service verifies the certificate trust chain.
3. The service checks the certificate revocation status.
4. The service decrypts the message.
5. The service verifies the signature.
6. The service initializes and sends a response to the client (optional).

 Chapter 3: Implementing Transport and Message Layer Security 143

The steps are summarized in the Figure 3.9.

Figure 3.9
Authenticating a client using an X.509 certificate and signature

Step One: The Service Validates the Client’s Certificate

WSE 3.0 validates the client’s certificate attached to the request message. The
certificate’s validity period is checked to ensure that the service does not process
a request that was secured with an expired X.509 certificate.

WSE 3.0 also verifies the integrity of the certificate’s contents to ensure that it has not
been tampered with after the certificate authority (CA) issued it. The integrity of the
certificate’s contents is verified using the signature of the issuing CA, which is also
included in the certificate. If the certificate’s contents cannot be validated against the
issuer’s signature, then the certificate has been tampered with and it is rejected as
invalid. For more information about the contents of an X.509 certificate, see the X.509
Technical Supplement in Chapter 7, “Technical Supplements.”

144 Web Service Security

Step Two: The Service Verifies the Certificate Trust Chain

By default, WSE 3.0 verifies the trust chain of certificates, or requires that the client’s
certificate is installed in the Trusted People folder in the service’s local certificate
store. WSE 3.0 must be able to recognize an issuing CA as trusted to verify the
certificate trust chain for the client’s X.509 certificate. WSE 3.0 recognizes an issuing
CA as trusted based on the X.509 certificate that endorses the client’s certificate.
WSE 3.0 recognizes the issuing CA’s certificate as a trusted root for a certificate
chain if the CA’s X.509 certificate is installed in the machine certificate store in
the Trusted Root Certification Authorities folder.

The high-level steps to install a certificate chain are as follows:
1. Export the certificate chain from the CA. This is dependant on the type of CA that

issued the certificate.
2. Import the certificate chain into a local certificate store.

Note: For more information about managing certificates and trust chains, see the X.509 Technical
Supplement in Chapter 7, “Technical Supplements.”

Step Three: The Service Checks the Certificate Revocation Status

WSE 3.0 policy checks the revocation status of the certificate by verifying whether
the certificate is on a certificate revocation list (CRL) that the CA publishes. You can
obtain the CRL out-of-band by downloading it from a CA, and then importing it into
a local certificate store where WSE 3.0 can access it. You can also check the revocation
status of the certificate online. However, this approach relies on an online revocation
service that the service must access to verify the certificate’s revocation status. There
is also a performance cost associated with checking the revocation status online.
For this reason, you may want to consider downloading the CRL instead, if you can
frequently update the cached CRL. By default, WSE 3.0 verifies the revocation status
of X.509 certificates online.

Note: For more information about CRLs, see the X.509 Technical Supplement in Chapter 7,
“Technical Supplements.”

 Chapter 3: Implementing Transport and Message Layer Security 145

Step Four: The Service Decrypts the Message

By default, the mutualCertificate10Security assertion protects the message body
by encrypting it. When WSE 3.0 receives an encrypted message, WSE 3.0 policy
automatically decrypts it using the following steps:
1. WSE determines the value to identify the service’s certificate — either the

RFC3280 Subject Key Identifier, or the issuer name and serial number — that
the client included in the message tells the service which certificate was used to
encrypt the message. WSE 3.0 policy uses this value to determine which private
key it must use to decrypt the message.

2. WSE decrypts the asymmetrically encrypted, one-time symmetric key that the
client sent with the message, using the service’s private key

3. WSE uses the symmetric key to decrypt the message data using a symmetric
algorithm. By default, WSE 3.0 uses AES 256 for symmetric encryption.

Note: Service side policy alone does not stop a client from sending an unencrypted message.
However, policy will reject a message at the server if it is not encrypted.

Step Five: The Service Verifies the Signature

WSE 3.0 verifies the client’s signature on the incoming request message using
the public key sent with the message. If the message data is signed, this step also
validates the client as the message originator to provide data origin authentication.

Step Six: The Service Initializes and Sends a Response to the Client (Optional)

If the service returns a secure response to the client, the same process described
in these steps is used for the response message between the service and the client,
except that the roles of the client and the service reverse. However, unlike the request
message, the service does not attach its X.509 certificate to the response message,
because the client already has a copy of it.

Instead, WSE 3.0 policy adds a reference to the service’s certificate in the response
message. The service initiates and sends the response, signs it with the service’s
private key and encrypts it with a symmetric key that is encrypted with the client’s
X.509 certificate public key. The client processes the response in the same manner as
the service processed the request: decrypt the symmetric key with the client’s private
key, and then decrypt the encrypted message parts with the symmetric key. Finally,
the client verifies the service’s signature with the service’s X.509 certificate.

146 Web Service Security

Implementation Approach
This section describes how to implement this pattern. The section is divided into
three major tasks:
1. General setup. This task provides the required steps for both the client and the

service.
2. Configure the client. This task provides the required steps to configure WSE 3.0

policy and the code on the client.
3. Configure the service. This task provides the required steps to configure WSE 3.0

policy and the code on the service.

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code, have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

General Setup
You must install WSE 3.0 on the computers that you use to develop WSE-enabled
applications. After WSE 3.0 is installed, you must enable the client and the service
to support WSE 3.0. You can achieve this by performing the following steps:

f To enable a Visual Studio 2005 project to support WSE 3.0

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the General tab, select the Enable this project for Web Services
Enhancements check box, and then click OK.

Both the client and service require access to their respective X.509 certificates from
the local certificate stores on the host computers. The client also requires access to its
private key, and the service requires access to its private key. Also, the client must be
able to access the service’s X.509 certificate from its local certificate store. Typically,
the certificate for a trusted service is installed in the Trusted People folder in the local
certificate store. For more information about how to install X.509 certificates in the
local machine certificate store, see the Certificates How To.

Note: You can use the WSE Certificates tool to view private key file properties and set access
permissions for the account under which the client and service run.

For applications that use X.509 certificates, X.509 security must be configured
for WSE 3.0.

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx

 Chapter 3: Implementing Transport and Message Layer Security 147

f To configure WSE 3.0 X.509 security settings

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. Click the Security tab, and then select the allow test roots check box if you are
using a self-signed test certificate in a development or test environment. If you are
configuring the application to run in a production environment, leave this check
box cleared.

3. For Revocation mode, select the Offline option if you do not want to depend
on accessing the certificate’s revocation status online. If you select this option,
you must be confident that you can update a local copy of the CRL in the local
certificate store frequently enough to meet your requirements for certificate
verification. If you want to allow the application to access the revocation status
online, leave this option set at the default value Online, and then click OK.

After configuring the settings for X.509 certificate security with the WSE 3.0 Settings
tool, they should appear in the application configuration file, as shown in the
following XML example.

<configuration>
...
 <microsoft.web.services3>
 <security>
 <x509 verifyTrust="true" allowTestRoot="true" revocationMode="Offline"
verificationMode="TrustedPeopleOrChain"/>
 </security>
...
 </microsoft.web.services3>
...
</configuration>

Note: Usually, it is not necessary to modify this information directly because you can control these
settings through the WSE 3.0 Settings tool.

The allowTestRoot attribute shown in the previous example determines whether the
application allows test certificates. Test certificates are acceptable for development
and test environments. However, for production environments you should only use
certificates issued by a CA. This attribute is optional, and its value is false by default.

If you set the verificationMode attribute to TrustedPeopleOrChain to verify the
signature on an incoming message, this setting requires that the message sender’s
X.509 certificate is located in the Trusted People folder of the verifying party’s
certificate store or that the certificate can be verified to a trusted CA through a
certificate trust chain. For more information about configuring the behavior of
X.509 security in WSE 3.0, see <x509> Element on MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp

148 Web Service Security

Note: WSE 3.0 offers four different protection levels that determine how messages are secured
using SOAP message security. Generally, you should use the Sign, Encrypt, and Encrypt Signature
setting for best message protection. This setting encrypts the message body and the XML signature,
which reduces the likelihood of a successful cryptographic guessing attack against the signature.
For this reason, all the composite implementation patterns use this value as default. If you want to
use this setting in new Web services you should change the messageProtectionOrder attribute to
the following value in your security policy:

messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"

Configure the Client
After enabling the client application to support WSE 3.0 during General Setup,
you must enable policy support. If your application does not currently have a policy
cache file, you can add one for this purpose, and enable policy support by
performing the following steps.

f To add policy support to a WSE 3.0-enabled Visual Studio 2005 project

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the Policy tab, select the Enable Policy check box. Selecting this setting adds a
policy cache file with the default name wse3policyCache.config.

3. Under Edit Application Policy, click Add, and then type a policy friendly name
for the new application policy, such as “x509.”

4. Click OK to start the WSE Security Settings Wizard, and then click Next.
5. On the Authentication Settings page, the wizard provides a choice to secure a

service or a client. Select secure a client application to configure the client. The
wizard also provides a choice of authentication methods in the same step. Select
Certificate, and then click Next.

6. On the Client Certificate page, select the client certificate for the client. Unless
your client application is impersonating a Windows user, select LocalMachine for
the Store Location.

7. Click Select Certificate to select the appropriate X.509 certificate for the client
application, click OK, and then click Next.

8. On the Message Protection page, the wizard displays configuration options for
message protection. By default, the Enable WS-Security 1.1 Extensions check box
is selected. Clear this check box to use the mutualCertificate10Security assertion.
Leave it selected if you want to use the mutualCertificate11Security assertion. For
Protection Order, select Sign, Encrypt, Encrypt Signature, and then click Next.

9. On the Server Certificate page, select LocalMachine for the Store Location, click
Select Certificate, select the appropriate X.509 certificate for the service, click OK,
and then click Next.

10. On the Create Security Settings page, review your settings, and then click Finish.

 Chapter 3: Implementing Transport and Message Layer Security 149

After you complete these tasks, your client security policy should look similar to the
following code example.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <policy name="x509">
 <mutualCertificate10Security establishSecurityContext="true"
renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"
requireDerivedKeys="false" ttlInSeconds="300">
 <clientToken>
 <!-- WSE2 QuickStart Client Certificate -->
 <x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartClient" findType=" FindBySubjectDistinguishedName"/>
 </clientToken>
 <serviceToken>
 <!-- WSE2 QuickStart Server Certificate -->
 <x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartServer" findType="FindBySubjectDistinguishedName" />
 </serviceToken>
 <protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="false" />
 </protection>
 </mutualCertificate10Security>
 <requireActionHeader/>
 </policy>
</policies>

In the previous policy example, the signatureConfirmation attribute is set to false.
If this value is set to true, compatibility with WS-Security 1.0 is lost.

The <clientToken> element contains values that specify the client’s X.509 certificate
for signing outbound request messages and decrypting inbound response messages
from the service. The information specific to the X.509 certificate is contained in the
<x509> element. Set the findValue attribute to the value used to locate the certificate
within the local certificate store. This will be the subject distinguished name for
certificates retrieved from the certificate store using the client name or the text
encoded binary value for a certificate identifier, such as the certificate’s SHA1
thumbprint.

If you use the WSE 3.0 default configuration that retrieves certificates from the
certificate store according to the subject distinguished name, you may risk confusing
the identity of the client if different CAs issue different certificates with the same
subject distinguished name. To avoid this, consider using a certificate identifier to
retrieve certificates from the certificate store. For more information about how to set
the findType and findValue attributes for the <x509> element, see <x509> Element
(Policy) in the WSE 3.0 documentation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/4caad727-778e-4c57-90f8-0edca69eed1f.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/4caad727-778e-4c57-90f8-0edca69eed1f.asp

150 Web Service Security

Note: The value that WSE 3.0 is configured to use to find the certificate in the certificate store
is not directly connected to the identifier that WSE 3.0 uses to identify certificates in transit when
messages are sent. For example, by default, WSE 3.0 retrieves certificates from the certificate store
by subject distinguished name, but the mutualCertificate10Security assertion uses either the
RFC3280 subject key identifier or the issuer name and serial to identify the certificate in the
request message.

In this example, the certificate and corresponding private key that the client uses
belong to an application, not a user. If you want to authenticate a user instead of a
client application, use a smart client application and ensure that the user’s certificate
and private key are accessible from the local certificate store on the workstation
where the smart client application is installed. To ensure that the private key and
corresponding certificate are only accessible to the user of the smart client
application, set the Store Location to CurrentUser in step 6 of the previous procedure
when configuring security policy on the client. Also, set the access control list (ACL)
on the private key file so that only the user that owns the certificate can access it.

You can use the WSE 3.0 Certificates tool to obtain certificate information, such as the
subject distinguished name or subject key identifier. The WSE 3.0 Certificates tool
displays the subject distinguished name in reverse order, but this is actually the
correct order for the client name in a WSE 3.0 policy assertion. You can also use the
Microsoft Management Console (MMC) snap-in to obtain the subject distinguished
name or certificate thumbprint, but as the subject distinguished name is not reversed,
you must reverse it yourself to use it in a WSE 3.0 policy assertion. For example, you
must reverse a subject distinguished name obtained from the MMC snap-in such as
“CN=bob, DC=Microsoft, DC=com” when you specify it in policy to read as
“DC=com, DC=Microsoft, CN=bob.”

If you configure your application to retrieve certificates from the certificate store
using the certificate’s SHA1 thumbprint by setting the findType value of the <x509>
attribute to FindByThumbprint, WSE 3.0 requires you to set the findValue attribute
to the hexadecimal encoded value for the certificate thumbprint, not the Base64
encoded value. You must use the Certificates MMC snap-in to obtain this value,
and remove the spaces between each byte value. For example, the first few bytes of a
certificate thumbprint copied from the Certificates MMC snap-in would be formatted
as: “c6 74 47 da...” Remove the spaces when pasting this information into the
findValue attribute so that it displays as: “c67447da...” You cannot obtain this
value using the WSE 3.0 Certificates tool.

The <serviceToken> element contains information about the service’s certificate,
which encrypts request messages and verifies the signature on response messages.
The <serviceToken> settings can be configured similarly to those of the
<clientToken> described previously in this section.

For more information about configuring other settings for this policy assertion,
see <mutualCertificate10> Element in the WSE 3.0 documentation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/973d38d8-6347-4617-983f-089e64a2b02c.asp

 Chapter 3: Implementing Transport and Message Layer Security 151

When you add a Web reference to the service from the client application to create
a Web service proxy, two proxies are generated for the Web service: one is a
nonWSE 3.0 proxy and the other is WSE 3.0–enabled. This pattern uses the
WSE 3.0-enabled proxy class, which is name + “Wse.” For example, if your
Web service is named “MyService,” your WSE 3.0–enabled Web service proxy
class name would be “MyServiceWse.”

The following code example demonstrates how to bind the policy assertion described
previously for calling the Web service proxy. This example uses a WSE 3.0–enabled
Web service proxy.

...
using System.Globalization;
...
try
{
 Service.ServiceWse service = new Service.ServiceWse();

 service.SetPolicy("x509");

 Service.Product product = service.GetProductInformation(txtProductName.Text);

 txtResults.Text = String.Format(CultureInfo.InvariantCulture,
 "Product Name: {0}, Unit Prize: {1}, Quantity: {2}",
 product.Name, product.UnitPrice, product.Quantity);

}
catch (Exception ex)
{
 txtResults.Text = ex.ToString();
}
...

Configure the Service
You must configure the service to enable SOAP extensions by performing the
following steps.

f To enable a Visual Studio 2005 project to support SOAP extensions

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the General tab, select the Enable Microsoft Web Services Enhancement
SOAP Protocol Factory check box, and then click OK.

After you enable the service to support WSE 3.0, you also must enable policy
support. If your application does not currently have a policy cache file, you can
add one, and enable policy support by performing the following steps.

152 Web Service Security

f To add policy support to a WSE 3.0-enabled Visual Studio 2005 project

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the Policy tab, select the Enable Policy check box. Selecting this setting adds
a policy cache file with the default name wse3policyCache.config.

3. Under Edit Application Policy, click Add, and then type a policy friendly name
for the new application policy, such as “x509.”

4. Click OK to start the WSE 3.0 Security Settings Wizard, and then click Next.
5. On the Authentication Settings page, the wizard provides a choice to secure a

service or a client. Select secure a service application to configure the service.
The wizard also provides a choice of authentication methods. Select Certificate,
and then click Next.

6. On the Authorized Clients page, the wizard presents the option to perform
authorization. If you want to add authorization to your service policy, select the
Perform Authorization checkbox, click Add to add the X.509 certificates for the
clients that you want to authorize to call the service, and then click Next.

7. On the Message Protection page, the wizard displays configuration options for
message protection. By default, the Enable WS-Security 1.1 Extensions check box
is selected. Clear this check box to use the mutualCertificate10Security assertion.
Leave it selected if you want to use the mutualCertificate11Security assertion. For
Protection Order, select the option for Sign, Encrypt, Encrypt Signature, and then
click Next.

Note: These settings must be the same on the client and the service.

8. On the Server Certificate page, click Select Certificate to select the appropriate
X.509 certificate to use for the service, click OK, and then click Next.

9. On the Create Security Settings page, review your settings, and then click Finish.

After you complete these tasks, your service security policy should look similar to the
following code example.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <policy name="x509">
 <authorization>
 <allow user="CN=WSE2QuickStartClient" />
 <deny user="*" />
 </authorization>
 <mutualCertificate10Security establishSecurityContext="true"
renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncryptAndEncryptSignature"
requireDerivedKeys="false" ttlInSeconds="300">

(continued)

 Chapter 3: Implementing Transport and Message Layer Security 153

(continued)

 <serviceToken>
 <!-- WSE2 QuickStart Server Certificate -->
 <x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartServer" findType="FindBySubjectDistinguishedName" />
 </serviceToken>
 <protection>
 <request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />
 <fault signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="false" />
 </protection>
 </mutualCertificate10Security>
 <requireActionHeader />
 </policy>
</policies>

The service’s policy file is similar to the client’s policy file with the following
exceptions:
● An <authorization> assertion limits which clients are allowed to access the service

by specifying a comma-separated list of client names as they appear in the X.509
certificate’s subject name attribute. The <allow> element should appear first with
a list of authorized clients. If only specific clients are authorized to access the
service, the <deny> element should always be specified immediately after the
<allow> element with an asterisk (*) in its user attribute. This prevents access by
all clients except those using X.509 certificates that are explicitly authorized in the
<allow> element.

● The <clientToken> element is not specified because the service uses the X.509
security token attached to the request message to verify the signature on the
request message, and to encrypt the response for transmission to the client.

The following code example demonstrates how to apply the policy provided
previously when the service processes a request.

using System;
using System.Web.Services;

using Microsoft.Web.Services3;

using Microsoft.Practices.WSSP.WSE3.QuickStart.Common;

namespace Microsoft.Practices.WSSP.WSE3.QuickStart.MessageLayerX509.Service
{
 ///<summary>
 ///This class represents a Web service used to query products catalog.
 ///</summary>

(continued)

154 Web Service Security

(continued)

 [WebService(Namespace =
"http://schemas.microsoft.com/WSSP/WSE3/QuickStart/BrokeredAuthentication/2005-
10/MessageLayerX509.wsdl")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [Policy("x509")]
 public class Service : System.Web.Services.WebService
 {
 ///<summary>
 ///Constructor
 ///</summary>
 public Service()
 {
 }

 ///<summary>
 ///Returns some information about the specified product.
 ///</summary>
 ///<param name="productName"></param>
 ///<returns></returns>
 [WebMethod]
 public Product GetProductInformation(string productName)
 {
 Product product = new Product();
 product.Name = productName;
 product.Quantity = 10;
 product.UnitPrice = 2.5M;
 return product;
 }
 }
}

In the previous code example, a reference to
Microsoft.Practices.WSSP.WSE3.QuickStart.Common found in the WSSP
QuickStarts code provides a reference to the Product class. Replace these as
necessary for your application.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

 Chapter 3: Implementing Transport and Message Layer Security 155

Benefits
The benefits of using the Implementing Message Layer Security with X.509
Certificates in WSE 3.0 pattern include the following:
● Authentication, data confidentiality, and data origin authentication using a single

security mechanism.
● Authentication can occur over well-known Internet firewall friendly ports using

well-known protocols (for example, HTTP/HTTPS over port 80/443).
● Authentication and message protection can occur across organizational

boundaries and security domains, because you do not need to propagate
the private key.

Liabilities
The liabilities associated with using the Implementing Message Layer Security with
X.509 Certificates in WSE 3.0 pattern include the following:
● You need to store the private keys somewhere securely, such as on a smart card or

a computer, which makes them less portable than passwords.
● The use of asymmetric cryptography is computationally intensive and may cause

performance issues, even though WSE 3.0 optimizes asymmetric cryptography for
performance. Most of the time, you can mitigate this issue by deploying servers
with more processors or by adding more servers to a load balancing cluster.

● Signature verification using test certificates generated using the MakeCert utility
can cause serious performance issues. You can use certificates issued by a CA
to mitigate this issue. For more information about obtaining certificates, see the
X.509 Technical Supplement in Chapter 7, “Technical Supplements.”

● Implementing message layer security is likely to reduce the throughput and
increase the latency of Web services, due to the overhead of the cryptographic
operations that support canonicalization, XML signatures, and encryption. As part
of your development process, you should identify performance objectives for your
application and test the application against those objectives. For more information,
see Improving .NET Performance and Scalability.

Security Considerations
Security considerations associated with using the Implementing Message Layer
Security with X.509 Certificates in WSE 3.0 pattern include the following:
● Web services are susceptible to man-in-the-middle attacks, where an attacker

could replace the signature and certificate information. To mitigate such an attack,
the service must be able to limit the population of potential clients to a trusted
group, either individually based on the client’s X.509 certificate or as a group
through a limited population of clients that are defined by a certificate trust chain.
You can specify an <authorization> assertion in the service policy to restrict the
clients that are allowed to access the service based on their subject distinguished
name.

http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp

156 Web Service Security

● When using X.509 certificates for authorization, WSE 3.0 only allows authorization
to occur based on a certificate’s subject distinguished name, not by certificate
identifier. This creates the potential for confusion if there are different certificates
issued by different CAs with the same subject distinguished name. If both CAs
are trusted by the service, WSE 3.0 cannot distinguish between the certificates
for authorization purposes. For this reason, it is especially important to verify
certificate trust chains. A service that does not require trust chain verification
could be exploited by an attacker creating a bogus certificate with the same
subject distinguished name as an authorized certificate, and then using it to
access the service. A potential solution to this problem is to extend the
X509SecurityTokenManger released with WSE 3.0 to return a certificate identifier,
such as the certificate’s SHA1 thumbprint, instead of the subject distinguished
name for authorization checks. A certificate identifier provides a more distinct way
to identify the certificate than a subject distinguished name. For more information
about this subject, see the next section.

● WSE 3.0 does not encrypt the client certificate that is attached to a request
message. If you need to protect the identity of clients from disclosure to
eavesdroppers, this introduces a potential information disclosure vulnerability.
This is because certificates often contain information that eavesdroppers can use
to identify the client.

Extensions
This section provides examples of how to extend the base pattern to provide
additional security features.

Role-based Authorization
The lifetime of an X.509 certificate is typically greater than that of other security
token types. As a result, it is difficult to provide security roles directly in an X.509
certificate. This would require you to use extensibility mechanisms to provide custom
role information in the certificate. Because the role memberships of the certificate
owner are likely to change before the certificate expires, the CA would need to issue
a new certificate every time the certificate owner’s roles change.

It is possible to establish a security context for a client that has successfully
authenticated using a X.509 certificate by associating roles with its X.509 certificate.
You can accomplish this by implementing a custom X509SecurityTokenManager on
the service to construct a security principal, and then attach it to the security token.
You can retrieve the roles for the security principal from a database, Active Directory,
or another service that can provide roles for an identity to eliminate the need to
provide them directly within the certificate.

 Chapter 3: Implementing Transport and Message Layer Security 157

The following code example provides an example of a custom
X509SecurityTokenManager. After the CustomX509SecurityTokenManager
authenticates the client, it constructs a GenericPrincipal with security roles and
attaches it to the security token. You can copy this code and paste it into a new class
file. However, you must provide code where indicated by comments to retrieve user
roles from a database or other service provider, and change the namespace to suit
your project.

using System;
using System.Xml;
using System.Security.Cryptography.Xml;
using System.Security.Principal;

using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

namespace Microsoft.Practices.WSSP.WSE3.QuickStart.MessageLayerX509.Service
{
 /// <summary>
 /// By implementing X509SecurityTokenManager we can manipulate the token
 /// on messages received.
 /// </summary>
 public class CustomX509SecurityTokenManager : X509SecurityTokenManager
 {
 /// <summary>
 /// Constructs an instance of this security token manager.
 /// </summary>
 public CustomX509SecurityTokenManager()
 {
 }

 /// <summary>
 /// Constructs an instance of this security token manager.
 /// </summary>
 /// <param name="nodes">An XmlNodeList containing XML elements from a
configuration file.</param>
 public CustomX509SecurityTokenManager(XmlNodeList nodes)
 : base(nodes)
 {
 }

 /// <summary>
 /// Adds a generic principal to the token
 /// </summary>
 /// <param name="token">The X509SecurityToken token</param>
 protected override void
AuthenticateToken(Microsoft.Web.Services3.Security.Tokens.X509SecurityToken token)
 {
 base.AuthenticateToken(token);

 // Assigns certificate's hexadecimally encoded SHA1 thumbprint to
GenericIdentity
 // Certificate's hexadecimally encoded SHA1 Thumbprint value can be
obtained using the Certificates MMC Snap-In

(continued)

158 Web Service Security

(continued)

 string subjectKeyIdentifier = token.Certificate.Thumbprint;

 GenericIdentity identity = new GenericIdentity(subjectKeyIdentifier);
 //Replace the next line with your own code to retrieve roles from a role
store and populate the GenericPrincpal
 GenericPrincipal principal = new GenericPrincipal(identity, new
string[] {"role1, role2, role3"});

 token.Principal = principal;
 }
 }
}

To use the previous example CustomX509SecurityTokenManager, you must create a
security token manager entry in the service’s Web.config file.

...
<microsoft.web.services3>
 ...
 <security>
 ...
 <binarySecurityTokenManager>
 <add type="
Microsoft.Practices.WSSP.WSE3.QuickStart.MessageLayerX509.Service.CustomX509Securi
tyTokenManager"
 valueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3"/>
 </binarySecurityTokenManager>
 </security
 ...
</microsoft.web.services3>

In the previous configuration example, you must modify the fully qualified
class name for the custom security token manager to match the code for your
CustomX509SecurityTokenManager.

With this extension to the base implementation, you can perform role-based
authorization on the principal attached to the X509SecurityToken and avoid the
limitation of authorization checks based solely on the identity represented in the
certificate. You can perform authorization using policy or code. For an authorization
example, see the service policy example under Configure the Service.

This extension also addresses the issue in the Security Considerations section of the
base pattern about the ability to only perform identity-based authorization on the
certificate’s subject distinguished name, not based on a certificate identifier. While the
default X509SecurityTokenManager adds the certificate’s subject distinguished name
to the GenericIdentity, the CustomX509SecurityTokenManager defined in this
extension assigns the client certificate’s hexadecimally encoded value of the SHA1
thumbprint to the security token identity instead of the certificate’s subject
distinguished name.

 Chapter 3: Implementing Transport and Message Layer Security 159

By assigning the client certificate’s SHA1 thumbprint to the security token identity,
you can use the hexadecimally encoded value of the client certificate’s SHA1
thumbprint in the service’s <authorization> assertion instead of the subject
distinguished name. You can use the Certificates MMC Snap-In tool to obtain the
hexadecimally encoded SHA1 thumbprint for a certificate. The following XML
example provides an example of how to use the client certificate’s SHA1
thumbprint in an <authorization> assertion in the service’s policy cache.

...
<authorization>
 <allow user="ca7601381b4578502b62b8809825664f1e78dfa2" />
 <deny user="*" />
</authorization>
...

This code example mitigates the risk of confusing client identities by providing a
way to identify client certificates that is more likely to be unique, as it performs
authorization on the service when CAs issue different certificates with the same
subject distinguished name.

Implementing Message Layer Security with a Security Token
Service (STS) in WSE 3.0

Note: This pattern is currently under development. It is due for release in early 2006.

Context
You are implementing brokered authentication in an application deployed on
computers running Windows operating system software with security implemented
at the message layer. Web services need to authenticate clients in a heterogeneous
environment so that you can implement additional controls, such as authorization
and auditing. The authentication broker negotiates trust between client applications
and Web services, which removes the need for a direct relationship. The
authentication broker should issue signed security tokens for authentication.

Implementation Strategy
A QuickStart that demonstrates how to develop a Web Service Enhancements
(WSE) 3.0 Security Token Service (STS) that issues XML tokens is currently under
development. This pattern will be updated when the QuickStart is released.

If you are interested in obtaining a Community Technical Preview (CTP) release or
would like to contribute requirements, join the Security Token Service Quickstart
community workspace.

http://go.microsoft.com/fwlink/?LinkId=57069
http://go.microsoft.com/fwlink/?LinkId=57069

160 Web Service Security

References for Transport Layer Security
There is a lot of good information available on using transport layer security to secure
Web services, so this information is provided in the form of the following references,
which point you to appropriate guidance for implementing transport layer security.
It contains the following sections:
● Implementing Brokered Authentication Using Windows Integrated Security on IIS
● Implementing Transport Layer Data Confidentiality Using HTTPS
● Implementing Transport Layer Security Using HTTP Basic over HTTPS
● Implementing Transport Layer Security Using X.509 Certificates and HTTPS
● Implementing Transport Layer Security with Kerberos and IPSec on Windows

Server 2003

Implementing Brokered Authentication Using Windows Integrated
Security on IIS
This implementation reference provides guidance for implementing brokered
authentication on an existing Kerberos version 5 protocol infrastructure at the
transport layer. Brokered authentication using Windows Integrated Security on
Internet Information Services (IIS) 6.0 allows you to call applications and Web
services to validate credentials against an Active Directory domain controller, as an
implementation of the Kerberos protocol. The calling applications and Web services
can validate credentials against the same Active Directory domain or multiple Active
Directory domains joined by a cross-domain trust relationship. The Web services also
can impersonate the caller to access resources controlled under a trusted Active
Directory domain.

To implement brokered authentication using Windows Integrated Security on IIS 6.0,
you must perform the following tasks:
1. Implement transport-layer brokered authentication using Windows Integrated

Security.
2. Configure IIS 6.0 to require Windows Integrated Security.
3. Add the credentials for the client that the Web service will authenticate to the

credential cache of the Web service proxy that communicates with the Web service.

The benefits to this approach include:
● A minimal amount of code and configuration work for the implementation.
● When you implement this approach using Kerberos authentication instead of

NTLM authentication, you can use it to flow the caller’s identity across multiple
system hops.

 Chapter 3: Implementing Transport and Message Layer Security 161

One liability to this approach is that firewall boundaries may not allow Kerberos
authentication traffic between the calling application and the Kerberos Key
Distribution Center (KDC) or between the Web service and the Kerberos KDC.

It is also important to take into account that this approach does not provide data
confidentiality or data origin authentication for messages sent between the calling
application and the Web service. Use HHTPS or IPSec to secure messages between
the calling application and Web service. For more information about these limitations,
see, “Implementing Transport Layer Security Using HTTP Basic over HTTPS” and
“Implementing Transport Layer Security Using Kerberos and IPSec on Windows
Server 2003.”

For more information about implementing this approach, see the following resources:
● To learn more about Windows Integrated Security, see the “Authentication

and Authorization Strategies” section in “Web Services Security” on MSDN.
● To call a Web service configured to use Windows Integrated Authentication,

see the “Passing Credentials for Authentication to Web Services” section in
“Web Services Security” on MSDN.

Implementing Transport Layer Data Confidentiality Using HTTPS
This implementation reference provides guidance on implementing data
confidentiality using X.509 certificates at the transport layer. To implement data
confidentiality using X.509 certificates at the transport layer, you must perform
the following tasks:
1. Implement transport layer security using Secure Sockets Layer (SSL).
2. Configure the Web service virtual directory in IIS 6.0 to require SSL.

One benefit to this approach is that SSL is a well-established protocol that is easy
to configure and implement on the Windows platform. However, there are several
liabilities and security considerations to take into account with this approach. You can
only establish SSL point-to-point as opposed to end-to-end, as message layer security
is capable of doing. Additional liabilities of this approach include:
● Communication between several points configured for SSL rather than end-to-end

at the message layer may cause unacceptable application response times.
● All points in the communication must be sufficiently trusted to establish SSL.

In some cases, these liabilities may warrant using a different approach, such as
implementing message layer X.509 security using X509Security Tokens in WSE 3.0.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod10.asp

162 Web Service Security

This approach has the following security considerations:
● Vulnerabilities exist in previous versions of SSL. The server and client need to

have security patches installed on them to mitigate known vulnerabilities.
● Microsoft strongly recommends configuring IIS 6.0 to require strong (128-bit) SSL

encryption for increased protection of data confidentiality.

For more information about implementing this approach, see the following resources:
● To learn how an SSL session is established between two parties, see “Description

of the Secure Sockets Layer (SSL) Handshake” on Microsoft Help and Support:
http://support.microsoft.com/default.aspx?scid=kb;%5bLN%5d;Q257591.

● To learn how to implement SSL, see:
● “How To Set Up SSL on a Web Server” on MSDN: http://msdn.microsoft.com

/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp.
● “How To Call a Web Service Using SSL” on MSDN: http://msdn.microsoft.com

/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp.
● “How To Call a Web Service Using Client Certificates from ASP.NET” on

MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod
/html/secmod27.asp.

Implementing Transport Layer Security Using HTTP Basic over HTTPS
This implementation reference provides guidance on implementing direct
authentication using HTTP Basic over HTTPS on the transport layer. An advantage of
this implementation is that it can make use of an existing infrastructure.

To implement transport layer security using HTTP Basic over HTTPS, you must
perform the following tasks:
1. Implement transport layer direct authentication using HTTP basic authentication.
2. Configure IIS 6.0 to require HTTP basic authentication for the virtual directory

hosting the service.
3. On the client, add the client’s credentials to the credential cache of the proxy that

communicates with the service.

This approach is generally considered easy to configure and simple to use. It uses a
well established and widely supported type of direct authentication in a Web
environment. However, one liability to this approach is that it provides no message
protection capabilities. Using HTTP basic authentication, the client’s credentials are
passed in plaintext in transit, which makes them easily susceptible to eavesdropping
by an attacker. Therefore, Microsoft strongly recommends using SSL to provide data
confidentiality to prevent eavesdropping attacks against the credentials.

http://support.microsoft.com/default.aspx?scid=kb;%5bLN%5d;Q257591
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod27.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod27.asp

 Chapter 3: Implementing Transport and Message Layer Security 163

For more information about implementing this approach, see the following resources:
● To learn how to configure IIS for HTTP basic authentication, see “Basic

Authentication in IIS 6.0” on Microsoft TechNet: http://www.microsoft.com
/technet/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1
-1ea89d861eb4.mspx.

● To learn how to call a Web service that requires credentials, see the “Passing
Credentials for Authentication to Web Services” section in “Web Services Security”
on MSDN: http://msdn.microsoft.com/library/en-us/secmod/html/secmod10.asp.

Implementing Transport Layer Security Using X.509 Certificates and
HTTPS
This implementation reference provides guidance for implementing brokered
authentication using X.509 certificates on the transport layer. Transport layer security
using X.509 certificates and HTTPS secures point-to-point communication. Messages
do not require intermediaries to process them and they are not securely persisted for
any period of time.

To implement transport layer security using X.509 certificates and HTTPS, you must
perform the following tasks:
1. Implement transport layer security using SSL.
2. Configure the Web service virtual directory to use SSL and require client

certificates.

This approach has the following benefits:
● It provides brokered authentication, data confidentiality, and data origin

authentication capabilities in one solution.
● It uses SSL, which is a well established protocol that is easy to configure and

implement on the Windows platform.

The disadvantage of this approach is that you can only establish point-to-point SSL,
not end-to-end as message layer security is capable of doing. There are certain
liabilities as a result of using SSL that may warrant you to use a different approach,
such as implementing message layer X.509 security using X509Security Tokens with
WSE 3.0. These liabilities include:
● Communication between several points configured for SSL rather than end-to-end

at the message layer may cause unacceptable application response times.
● All points in the communication must be sufficiently trusted to establish SSL.

This approach has the following security considerations:
● Vulnerabilities exist in previous versions of SSL. The server and client need to

have security patches installed to mitigate known vulnerabilities.
● Microsoft strongly recommends configuring IIS 6.0 to require strong (128-bit)

SSL encryption for increased protection of data confidentiality.

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1-1ea89d861eb4.mspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1-1ea89d861eb4.mspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1-1ea89d861eb4.mspx
http://msdn.microsoft.com/library/en-us/secmod/html/secmod10.asp

164 Web Service Security

For more information about implementing this strategy, see the following resources:
● To learn about how an SSL session is established between two parties, see

“Description of the Secure Sockets Layer (SSL)” on Microsoft Help and Support:
http://support.microsoft.com/default.aspx?scid=kb;%5bLN%5d;Q257591.

● To learn about how a client authenticating to a service using SSL operates, see
“Description of the Client Authentication Process During the SSL Handshake” on
Microsoft Help and Support: http://support.microsoft.com/kb/257586/EN-US/.

● To learn about how to implement SSL, see the following documentation:
● “How To Set Up SSL on a Web Server” on MSDN: http://msdn.microsoft.com

/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp.
● “How To Call a Web Service Using SSL” on MSDN: http://msdn.microsoft.com

/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp.
● “How To Call a Web Service Using Client Certificates from ASP.NET” on

MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod
/html/secmod27.asp.

Implementing Transport Layer Security with Kerberos and IPSec on
Windows Server 2003
This implementation reference provides guidance on how to implement data
confidentiality and data origin authentication using the Kerberos protocol and
IPSec on Windows Server 2003 at the transport layer. The solution provides data
confidentiality and data origin authentication between two servers hosting Web
services, and another resource, such as an application server or a database.

This approach secures point-to-point communication. Messages do not require
intermediaries to process them and they are not securely persisted for any period of
time. Data origin authentication is done at the host layer instead of at the application
or user layer. The two hosts that require data confidentiality and data origin
authentication are joined to the same Kerberos realm or to different Kerberos
realms that have established a cross-trust relationship.

To implement transport layer security with the Kerberos protocol and IPSec on
Window Server 2003, you must perform the following tasks:
1. Implement network layer security using IPSec.
2. Configure IPSec send-and-receive policies to send and receive messages on each

host to communicate with the other host that requires data confidentiality and
data origin authentication.

3. Configure IPSec to use Kerberos mode authentication.

http://support.microsoft.com/default.aspx?scid=kb;%5bLN%5d;Q257591
http://support.microsoft.com/kb/257586/EN-US/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod27.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod27.asp

 Chapter 3: Implementing Transport and Message Layer Security 165

The benefits to this approach include the following:
● It provides data confidentiality and data origin authentication capabilities in one

solution.
● IPSec is a well established protocol that is easy to configure and implement on the

Windows Server 2003 platform.
● IPSec has very good performance compared to other solutions for data

confidentiality and data origin authentication because it is below the protocol
layer in the network stack.

One liability of this approach is that IPSec does not exercise very fine control over
how it uses the Kerberos protocol to authenticate with another host. If business
requirements exist for auditing or data origin authentication at the user or application
layer, another mechanism other than IPSec must provide it.

For more information about IPSec and how to deploy it on Windows Server 2003,
see “IPSec” on Microsoft.com: http://www.microsoft.com/windowsserver2003/technologies
/networking/ipsec/default.mspx.

More Information
For information about Web Services Security, see “Web Services Security: SOAP
Message Security 1.0 (WS-Security 2004)”: http://docs.oasis-open.org/wss/2004/01
/oasis-200401-wss-soap-message-security-1.0.pdf.

For information about derived key tokens, see “Web Services Secure Conversation
Language (WS-SecureConversation)”: http://specs.xmlsoap.org/ws/2005/02/sc
/WS-SecureConversation.pdf.

For information about how to configure a SqlMembershipProvider, see “How To:
Use Membership in ASP.NET 2.0” on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp.

For information about creating a custom ASP.NET 2.0 membership provider,
see “Building Custom Providers for ASP.NET 2.0 Membership” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/bucupro.asp.

For information about configuring WSE 3.0 to prevent replay attacks, see
“Web Services Enhancements 3.0 <replayDetection> Element” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/b4fa188d-4804-40bd-877b-c01058555013.asp.

For more information about performance objectives, see “Improving .NET
Performance and Scalability” on MSDN: http://msdn.microsoft.com/practices
/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp.

For information about WSE 3.0 policy, see “Securing a Web Service” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/7b8f29da-22d5-4e03-b645-15011a80e548.asp.

http://www.microsoft.com/windowsserver2003/technologies/networking/ipsec/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/networking/ipsec/default.mspx
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/bucupro.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b4fa188d-4804-40bd-877b-c01058555013.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b4fa188d-4804-40bd-877b-c01058555013.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/7b8f29da-22d5-4e03-b645-15011a80e548.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/7b8f29da-22d5-4e03-b645-15011a80e548.asp

166 Web Service Security

For information about Kerberos assertion policy settings, see “<kerberosSecurity>
Element” on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp.

For more information about performance objectives see, “Improving .NET
Performance and Scalability” on MSDN: http://msdn.microsoft.com/practices
/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp.

For information about installing X.509 certificates in the local certificate
store, see “How to: Use the X.509 Certificate Management Tools” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html
/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true.

For information about how to install X.509 certificates in the local machine certificate
store, see “Certificates How To” on Microsoft TechNet: http://www.microsoft.com
/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8
-ce1dfe37da11.mspx.

For more information about configuring the behavior of X.509 security in WSE 3.0,
see “<x509> Element” on MSDN: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp in the WSE
documentation.

For information about how to set the findType and findValue attributes for the
<x509> element, see “<x509> Element (Policy)” in the WSE 3.0 documentation on
MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/4caad727-778e-4c57-90f8-0edca69eed1f.asp.

For information about configuring other settings for this policy assertion, see
“<mutualCertificate10> Element” in the WSE 3.0 documentation on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/973d38d8-6347-4617-983f-089e64a2b02c.asp.

For more information about performance objectives, see “Improving .NET
Performance and Scalability” on MSDN: http://msdn.microsoft.com/practices
/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/4caad727-778e-4c57-90f8-0edca69eed1f.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/4caad727-778e-4c57-90f8-0edca69eed1f.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/973d38d8-6347-4617-983f-089e64a2b02c.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/973d38d8-6347-4617-983f-089e64a2b02c.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp

Part II
Additional Web Service Security
Patterns and Guidance

In This Part:
● Resource Access Patterns
● Service Boundary Protection Patterns
● Service Deployment Patterns
● Technical Supplements

4
Resource Access Patterns

Introduction
Web services represent a programmable interface that applications often use to access
resources, such as the local file system, databases, or other Web services. Distributed
applications can consist of multiple interacting Web services, so you have to consider
the needs and constraints of the entire application instead of focusing on a single
point of interaction. Authentication, authorization, and auditing, along with other
environmental and operational requirements (such as scalability requirements at each
resource access interface), should combine to influence the security solution that you
use to help secure access to resources.

Each of the following resource access issues involves questions you should consider:
● Authentication credentials:

● Is the client authenticated and what protocol was used?
● Does access to the resource need to be protected from direct access by

authenticated clients?
● Auditing requirements for resources:

● Is it sufficient to just pass the client’s identity to a resource or should the client’s
credentials be used to access the resource?

● Location of the resource:
● Is the resource located on the same computer, another computer in the same

security domain, or a computer located in a different security domain?
● Are there multiple hops involved that require the client’s credentials at each

interface?
● Scalability requirements for the Web service:

● Does the Web service need to take advantage of resource sharing techniques
such as connection pooling?

 Chapter 4: Resource Access Patterns 169

Sorting through these factors to make a decision can sometimes be a difficult task,
particularly because many of them have dependencies on each other.

This chapter includes a design pattern that discusses trusted subsystem, where a
trusted identity is used to access resources on behalf of a client. It also includes a
technical supplement that discusses protocol transition and constrained delegation.

Important Concepts
There are some important concepts you should understand before looking at the
different resource access methods. These include:
● Credentials. These are a set of claims used to prove the identity of a client. They

contain an identifier for the client and a proof of the client’s identity, such as a
password. They may also include information, such as a signature, to indicate
that the issuer certifies the claims in the credential.

● Identity. This term is used throughout the discussion of resource access to
represent an account associated with Active Directory.

● Service account. This is the Windows account that the operating system process
uses when it hosts a service. Web services are usually hosted in a process managed
by an application server, such as Internet Information Services (IIS) that performs
operations using the identity of a service account.

● Security context. This is the information about an identity that allows the
application of policy and rights assignment. In Windows, this translates into
security roles and identifiers used for authorization.

● Security tokens. These are sets of claims used to prove the identity of a client.
They contain an identifier for the client and a proof of the client’s identity, such as
a password. They may also include information, such as a signature, to indicate
that the issuer certifies the claims in the credential. Most security tokens also
contain additional information that is specific to the broker that issued the token.

Resource Access Methods
The following methods can be used to access resources:
● Impersonation. Impersonation is the act of assuming a different identity on a

temporary basis so that a different security context or set of credentials can be
used to access a resource. When accessing local resources, such as a file in the
local file system, you need only the security context. However, when accessing
resources that require authentication, such as a Web service or database,
credentials are required.

170 Web Service Security

● Delegation. Delegation is not the same as impersonation; however, it requires
impersonation to work. This is a process where the service account is allowed to
access a remote resource on behalf of another Windows account, which is typically
the client accessing a service. Impersonation is required so that the service account
can access the credentials of the account being delegated and send those
credentials to the remote resource. For delegation to work, the account being
delegated must also be configured to allow delegation, which is the default
setting in Active Directory.
Windows supports two types of delegation:
● Constrained. This type of delegation is supported only on Windows Server

2003. This is an implementation where a service account can access only remote
resources that it has been configured to access.

● Unconstrained. This type of delegation is supported on Windows 2000 and
Windows Server 2003. This is an implementation where a service account can
use delegation to access any remote resource.

Note: The use of unconstrained delegation is not recommended.

● Protocol transition. Protocol transition is a process where the service account
transitions an identity that was authenticated using a non-Windows protocol into
a Windows security context. This works only on Windows Server 2003 and the
transitioned identity must have a valid Active Directory account. This can also be
used to implement a trusted subsystem by using the service account’s identity
instead of the client’s identity to access resources.

● Trusted subsystem. This is a process where a trusted business identity is used to
access a resource on behalf of the client. The identity could belong to the service
account or it could be the identity of an application account created specifically for
access to remote resources. There are many different reasons for using a trusted
subsystem, but the most common reason is to take advantage of resource sharing
techniques, such as connection pooling associated with database connections.

For a detailed explanation of these resource access methods, see the “Trusted
Subsystem“ pattern and the “Protocol Transition and Constrained Delegation
Technical Supplement” in this chapter.

There are many different protocols and techniques that can be used to authenticate
with a Web service. However, from the client’s standpoint, there are two distinct
methods. These two methods are presenting credentials, such as the user name and
password, or presenting a security token issued from a trusted source. Each of these
methods has an impact on the ability to use impersonation, constrained delegation,
or trusted subsystem.

There are also other security considerations that influence a decision to use
impersonation, constrained delegation, or trusted subsystem, such as auditing,
resource location, and scalability requirements. Impersonation is commonly used by
itself; however, constrained delegation requires the use of impersonation. Typically,
trusted subsystem is not used with impersonation or constrained delegation.

 Chapter 4: Resource Access Patterns 171

Table 4.1 shows how impersonation, constrained delegation, and trusted subsystem
can be used based on different security considerations.

Table 4.1: Resource Access Decision Matrix

Security Consideration

Impersonation and
Constrained Delegation

Trusted Subsystem

Client is authenticated using
Windows authentication with
Kerberos.

Both impersonation and
constrained delegation can be
used with a Windows account;
this allows resources to be
accessed using the client’s
identity.

Can be implemented using a
trusted business identity or the
service account to authenticate
with the resource.

Client is authenticated using a
non-Windows authentication
protocol.

Impersonation and constrained
delegation can be implemented
using protocol transition;
however, the service account
must have trusted computing
base (TCB) privileges.

Can be implemented using a
trusted business identity or the
service account to authenticate
with the resource.

A service is accessing local
resources and the resources
are secured using ACLs based
on the identity of individual
clients.

Impersonation is required to
access local resources using
the client’s identity.

Not applicable.

A service is accessing remote
resources and security policy
prohibits clients from directly
accessing the resources.

Not applicable. Can be implemented using a
trusted business identity or the
service account to authenticate
with the resource.

The client’s identity must be
passed to resources so they
can perform auditing or data
entitlement.

When using impersonation or
constrained delegation, the
client’s identity is passed using
operating system capabilities
to downstream resources.

The client’s identity would need
to be passed as part of the
message header or body.

Remote resources cannot
validate client credentials
because the originating client
does have an account in Active
Directory.

Not applicable. Can be implemented using a
trusted business identity or the
service account to authenticate
with the resource.

The application or Web service
must use resource sharing
optimization techniques.

Not applicable. Most resource
sharing techniques require the
use of a common identity.

Using a common identity with
trusted subsystem supports
optimization techniques.

(continued)

172 Web Service Security

Table 4.1: Resource Access Decision Matrix (continued)

Security Consideration

Impersonation and
Constrained Delegation

Trusted Subsystem

A client is authenticated by
sending the user name and
password of the client in the
Web service message.

The user name and password
can be used to authenticate
the client with Windows
authentication to support both
impersonation and constrained
delegation.

Can be implemented using a
trusted business identity or the
service account to authenticate
with the resource.

The client’s identity must be
passed to resources.

When using impersonation or
constrained delegation, the
client’s identity is passed using
operating system capabilities
to downstream resources.

The client’s identity would need
to be passed as part of the
message header or body.

Remote resources need to
access another resource using
the original client’s credentials.

Constrained delegation must
be used to flow the client’s
credentials to a remote
resource.

Not applicable.

Resources need to perform
actions based on the identity of
the client.

If only the identity is required,
impersonation can be used;
otherwise, constrained
delegation must be used.

If only the identity is required,
it can be passed as part of the
message header or body;
otherwise, this is not an option.

The remainder of this chapter focuses on the following design pattern and technical
supplement:
● Trusted Subsystem
● Protocol Transition with Constrained Delegation Technical Supplement

Trusted Subsystem

Context
A client needs to access one or more Web services that are distributed across a
network. The Web services are designed so that access to additional resources
(such as databases or other Web services) is encapsulated in the business logic of
the Web service. These resources must be protected against unauthorized access.

Problem
How do you ensure that the client that is used to access the Web service cannot access
the additional resources directly?

 Chapter 4: Resource Access Patterns 173

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Security policy prohibits users from accessing downstream resources directly.

Direct access to remote resources such as a database or Web services may result in
business logic being circumvented and cause data inconsistencies in underlying
data stores.

● Remote resources cannot validate user credentials. The downstream resources
may exist in a security domain that is different from the one where the client was
authenticated, or the authentication protocol that was used to authenticate the
client may not support delegation to the remote resource.

● There is a risk that resources can be exploited if the Web service is
compromised by an attacker. The surface area for attackers can be reduced by
restricting access to a small group of accounts. This can also simplify management
of access rights for the resource.

The following condition is an additional reason to use the solution:
● The application or Web service can take advantage of resource sharing

optimization techniques. Resource sharing optimization techniques may
include connection pooling and caching.

The following condition is not resolved by the base pattern, but is resolved by
Extension 1 — Flowing the Identity of the Client:
● Resources need to perform actions based on the identity of the client.

For example, actions performed in a database may require a client identity
to support data entitlement logic or to create an audit trail.

For more information, see the “Extensions” section at the end of this pattern.

Solution
The Web service acts as a trusted subsystem to access additional resources. It uses
its own credentials instead of the user’s credentials to access the resource. The Web
service must perform appropriate authentication and authorization of all requests
that enter the subsystem. Remote resources should also be able to verify that the
midstream caller is a trusted subsystem and not an upstream user of the application
that is trying to bypass access to the trusted subsystem.

Participants
The Trusted Subsystem pattern involves the following participants:
● Client. The client accesses the trusted subsystem and provides the credentials for

authentication during the request to the trusted subsystem.
● Trusted Subsystem. A Web service that accesses the downstream resource and

replaces the client’s security context with its own.
● Remote Resource. A Web service, database or other major component of a system.

Access to the remote resource is controlled to prevent unauthorized use.

174 Web Service Security

Process
Figure 4.1 depicts the interactions performed when a downstream resource is
accessed through a trusted subsystem.

Figure 4.1
Trusted subsystem

As illustrated in Figure 4.1, the trusted subsystem process is described in the
following steps:
1. The client submits a request to the trusted subsystem. The client provides

credentials to the trusted subsystem.
2. The trusted subsystem authenticates and authorizes the user. Authentication can

be direct or brokered. For more information, see the Direct Authentication pattern
and the Brokered Authentication pattern in Chapter 1, “Authentication Patterns.”

3. The trusted subsystem sends a request message to the remote resource. This
request is accompanied by the credentials for the trusted subsystem (or the
service account under which the trusted subsystem process is being executed).

4. The downstream resource authenticates and authorizes the trusted subsystem.
It then processes the request and issues a response to the trusted subsystem.

5. The trusted subsystem processes the response and issues its own response to the
client.

 Chapter 4: Resource Access Patterns 175

When multiple Web services collaborate to solve more complex problems, a Web
service can simultaneously be a trusted subsystem and a resource that is accessed by
a trusted subsystem. Figure 4.2 shows two overlapping trusted boundaries, with the
trusted subsystem 1 taking responsibility for authenticating the client and the trusted
subsystem 2 taking responsibility for authenticating trusted subsystem 1. Trusted
subsystem 2’s credentials are then used to access the remote resource.

Figure 4.2
A Web service acting as a trusted subsystem and also as the resources of a trusted subsystem

Enforcing the Trust Relationship
Downstream resources must be able to verify that the midstream caller is a trusted
subsystem and not just any system process. Requiring this type of verification
enhances security by making it more difficult for attackers to simulate a trusted
subsystem and perform man-in-the-middle attacks. Several approaches can be
used to implement trusted subsystem verification:
● Authenticate the trusted subsystem with a Kerberos protocol service account.
● Use local accounts on each host.
● Use an X.509 PKI for authentication within the trusted subsystem.
● Secure communications by using IPSec between the computers in the trusted

subsystem.

176 Web Service Security

Kerberos Protocol Service Accounts

A common approach to implement verification with the Kerberos protocol is to
use a service account that is used only within a particular trusted subsystem. This
approach requires the service to be authorized so that only the trusted subsystem
account can access it.

Local Accounts

When it is not possible to authenticate with a Kerberos protocol Key Distribution
Center (KDC) you can create a local account on each host within the trusted
subsystem. Each account has the same login and password. Accounts that are created
to function this way are often referred to as mirrored accounts. While this approach
provides a simple solution, it should not be your first choice. If you chose to use
mirrored accounts, you should ensure that you use complex passwords and
change them frequently.

X.509 PKI

An X.509 PKI can issue a certificate for each application within the trusted subsystem.
The control of access to resources within the trusted subsystem is based on the ability
of an application to prove possession of the certificate private key. It does this in
conjunction with validating the certificate against a list of certificates that are
authorized to access the resource.

IPSec

IPSec secures messages between two hosts at the network layer to provide data
confidentiality, data integrity and replay detection. It can be configured to initiate
secure communications with the Kerberos protocol, X.509 certificates, or a pre-shared
key. IPSec performs considerably better than message layer security, but it does not
allow for granular control of resources. This is because a trusted subsystem, which
is established with IPSec, can only be established between the computers that
participate in the trusted subsystem, and not based on a specific application
accessing a specific resource.

Example
Global Bank provides a customer account client application that accesses a
centralized account management database through a Web service. The client
application must authenticate with the Web service to use the account management
database.

In this scenario, the Web service acts as a trusted subsystem by using its own
credentials to access the account management database. The client application cannot
directly log in to the account management database because this violates the security
policy and bypasses the business logic.

 Chapter 4: Resource Access Patterns 177

Note: This example usually requires data entitlement logic to ensure that after a customer has
authenticated, he or she cannot access account details for another account. For more information,
see “Extension 1 — Flowing the Identity of the Client” at the end of this pattern.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of the Trusted Subsystem pattern include the following:
● Access to the downstream resource is simplified, which allows you to take

advantage of optimizations such as connection pooling to improve performance.
● Administration of access control lists on downstream resources can be simplified

because only the trusted subsystem is allowed access to the resources.
● The attack surface of the Web service is reduced by limiting the resources that are

authorized to access it directly.

Liabilities
If a trusted subsystem is compromised, the trusted subsystem can be used to exploit
the downstream resource, potentially on behalf of a legitimate user. For this reason,
trusted subsystems are often a choice target for attackers to probe for vulnerabilities.
Care must be taken to ensure that a trusted subsystem is very secure.

Security Considerations
A downstream system should be able to verify that the caller is a trusted subsystem
and is not an authenticated system process. This can be accomplished by establishing
security claims that are issued by a trusted third party and that are verified by the
downstream resource.

Extensions
The extension described here builds on the base pattern to provide additional
capabilities. In addition to resolving the forces stated for the base pattern, this
extension also resolves the following condition:
● Resources need to perform actions that are based on the identity of the client.

For example, actions performed in a database may require a client identity to
support data entitlement logic or to create an audit trail.

178 Web Service Security

Extension 1 — Flowing the Identity of the Client
In a trusted subsystem model, the credentials of the originating client are not used for
authentication purposes against downstream resources. However, in many cases, the
resource must perform authorization or data entitlement checks that are based on the
identity of the originating client — and not on the identity of the trusted subsystem.

You can use the following two main approaches for flowing an identity:
● The trusted subsystem provides a self-signed token.
● The trusted subsystem forwards a signed token that is provided by an

authentication broker.

Note: As with any data that is passed from a trusted subsystem to a downstream resource, the
downstream resource relies on the integrity of the trusted subsystem. In each approach described
here, the client’s identity is simply flowed as part of the message from the trusted subsystem. It is
not possible to detect if the trusted subsystem substituted one user’s signed or unsigned
credentials in place of alternative (perhaps cached) credentials for malicious reasons.

Approach 1 — The Trusted Subsystem Provides a Self-Signed Token

With this approach, the identity that the trusted subsystem sends to the resource is
included in the message. You can include the identity in the message the following
two ways:
● Include the client’s identity as metadata in the SOAP message header. This can

be performed by using a custom SOAP header or by using a WS-Security
UsernameToken without a password.

● Include the client’s identity in the body of the message.

In both cases, the message (including the client’s identity) must be signed by the
trusted subsystem, so that the downstream resource can authenticate the trusted
subsystem and perform data origin authentication. The resource must assume that
the trusted subsystem has authenticated the client whose identity is contained in the
message. Otherwise, it has no way to know directly that the client has been
authenticated.

Approach 2 — The Trusted Subsystem Forwards a Signed Token That Is Provided by a Trusted
Third Party

With this approach, the trusted subsystem is responsible for forwarding a token to
the downstream resource that is signed by a trusted third party, such as a Security
Token Service (STS). The downstream resource can then validate the client’s claims
within the token, based on the trust relationship with the STS. It also allows the
resource to verify that the client was authenticated recently. For this reason, the
tokens issued by the STS should have a short lifetime.

 Chapter 4: Resource Access Patterns 179

When the client authenticates with the STS, the STS issues a signed security token
that contains claims, such as the client’s identity and roles. The token is used by
the client to authenticate with the trusted subsystem. After the trusted subsystem
receives the security token and authenticates the client, it signs the token and
forwards it in a signed message to the downstream resource. The downstream
resource authenticates the trusted subsystem and it is also able to verify the
clients token using the signature of the STS within the forwarded token.

Protocol Transition with Constrained Delegation
Technical Supplement

Consider the following scenario:
You are deploying a Web service that does not use Windows integrated authentication.
After a client is authenticated; the client needs to be transitioned to a Windows account so
that role-based authorization can be performed. The Web service also needs to interact with
Web services or other downstream resources that can only be accessed with valid Windows
credentials.

The common approach to this problem is to have the client application send a
user ID and password that can be used for authentication within the Web service.
However, this requires the client application to store a password for use when it
accesses the Web service. In addition, the password needs to be protected while it is
in transit between the application and the Web service. Both of these requirements
represent a security risk that should be avoided.

The solution to this problem is to use the new Kerberos protocol extensions in
Windows Server 2003. The new extensions require the user ID but not the password.
You still need to establish trust between the client application and the Web service;
however, the application is not required to store or send passwords. One of these
extensions, referred to as Protocol Transition, can initialize a valid WindowsIdentity
object with only the user ID. The other extension uses the new WindowsIdentity
object with constrained delegation to access remote resources.

The new extensions are:
● The Kerberos protocol transition extension, S4U2Self.
● The Kerberos constrained delegation extension, S4U2Proxy.

The following list identifies three distinct operations that you can implement with the
new extensions:
● Use protocol transition to initialize a WindowsIdentity object for authorization

checks.
● Use protocol transition to initialize a WindowsIdentity object for impersonation.
● Use constrained delegation to access remote resources.

180 Web Service Security

The first two operations can be implemented independently of each other, but the
third operation requires that you use protocol transition when you are not using
Kerberos authentication. In other words, constrained delegation has two
configurations; one that requires Kerberos authentication and another that works
with any authentication protocol. When you use the configuration that supports
any authentication protocol, you must first implement protocol transition with
impersonation before you implement constrained delegation.

The next section provides details on the extensions themselves. After you have an
understanding of these extensions, see the “Implementation” section to learn how
to implement the operations described earlier.

New Kerberos Extensions
As previously mentioned, Windows Server 2003 provides two new Service-for-User
(S4U) Kerberos extensions that support protocol transition and constrained
delegation. Protocol transition and constrained delegation can be used independently
of each other, but they are often used together to implement the scenario described in
the introduction.

Protocol Transition
The S4U2Self Kerberos extension can be used to initialize a WindowsIdentity object
with the user ID with a valid Windows account in Active Directory. The password
associated with the user ID is not required. This feature allows you to transition from
any authentication protocol into the Kerberos authentication protocol.

This operation is accomplished by using the ticket-granting ticket (TGT) of a service
account to request a service ticket for itself. The service account in this case is the one
associated with the Web service that performs the protocol transition. The service
ticket that is returned from the ticket-granting service (TGS) contains identity and
principal information for the user whose ID was sent with the request.

The new WindowsIdentity that is initialized with this service ticket can then be used
to perform role-based authorization checks. In addition, when used with constrained
delegation, this new identity can be used to access downstream resources. There are
limitations to what this new identity is allowed to do that are based on the privileges
of the service account. These limitations are discussed in the “Implementation”
section later in this technical supplement.

Constrained Delegation
The S4U2Proxy Kerberos extension provides an implementation of constrained
delegation that allows you to use a Kerberos service ticket — instead of a TGT — to
request another service ticket. Delegation is considered to be constrained because the
identity (service account) that is used to request the service ticket must be configured
to access a specific service.

 Chapter 4: Resource Access Patterns 181

Note: For more information about the use of TGTs, see Kerberos Technical Supplement for Windows
in Chapter 7, “Technical Supplements.”

Constrained delegation works with or without protocol transition. The primary
restriction is that the service account used to request a Kerberos service ticket must
be configured to access the requested service. In addition, the service account must be
able to impersonate the client prior to calling the service. For example, when you use
Windows integrated authentication with impersonation, the default Web server’s
computer account can be configured for constrained delegation without making
any changes to the Internet Information Services (IIS) process account.

A restriction of protocol transition is that the Web server’s computer account cannot
be used for constrained delegation without modifying the IIS process account.
The reason for this is that the default IIS process account (which is the NT
AUTHORITY\NETWORK SERVICE account on Windows 2003 Server) does not
have necessary privileges to implement impersonation using the WindowsIdentity
object that was created during protocol transition. Instead of modifying the default
IIS process account, you can also use a different service account for the IIS process.

Note: The S4U2Self and S4U2Proxy extensions are only supported on Windows Server 2003. As a
result, protocol transition with constrained delegation does not work on Windows Server 2000 or on
Windows XP. It is possible, however, to call services on these platforms by using the service ticket
that is retrieved from the delegated request.

For more information about the Kerberos protocol and related patterns, see the
following:
● Brokered Authentication: Kerberos in Chapter 1, “Authentication Patterns”
● Implementing Message Layer Security with Kerberos in WSE 3.0 in Chapter 3,

“Implementing Transport and Message Layer Security”
● Kerberos Technical Supplement for Windows in Chapter 7, “Technical

Supplements”

Scenarios
.NET Framework applications can implement protocol transition by creating
an instance of the WindowsIdentity object with a User Principal Name (UPN),
which is similar to an e-mail address. For example, if the user ID is steve and
the corresponding Active Directory domain is globalbank.net, the UPN is
steve@globalbank.net.

It is also possible to use protocol transition to initialize a WindowsIdentity object
using a common Active Directory account for trusted subsystem implementations.
This type of approach is normally used when you want to improve scalability with
resources that use object or connection pooling based on the credentials that were
used to access them. For example, connection pooling with SQL Server will work
only if a common identity is used.

182 Web Service Security

As a result, the following two primary scenarios are associated with protocol
transition in Windows:
● Transitioning from a different authentication protocol, such as X.509 client

certificates, into the Kerberos protocol.
● Transitioning from custom authentication by using a common identity for trusted

subsystem implementations.

Implementation
This section describes how to implement each of the following three distinct
operations that you were introduced to earlier in this technical supplement:
● Use protocol transition to initialize a WindowsIdentity object for authorization

checks.
● Use protocol transition to initialize a WindowsIdentity object for impersonation.
● Use constrained delegation to access remote resources.

These operations are performed with a sample application that starts with
authorization and finishes with the use of impersonation and constrained delegation
to access a remote resource.

Instead of focusing on client authentication, the discussion focuses on protocol
transition with constrained delegation by using an identity that is retrieved from
an X.509 client certificate. For more information about using client certificates for
authentication with Web services, see How to Call a Web Service Using Client
Certificates from ASP.NET.

Note: This guidance assumes that the reader is familiar with Active Directory, Internet Information
Services (IIS), and the .NET Framework.

Use Protocol Transition to Initialize a WindowsIdentity Object for Authorization Checks

Starting with the .NET Framework 1.1, a new constructor was added to
WindowsIdentity that uses the S4U2Self Kerberos extension to request a service
ticket. The ticket-granting ticket (TGT) of the service account is used to request a
service ticket for itself by using identity information from the client who is accessing
the service. As a result, the privileges of the service account also affect the type of
WindowsIdentity object that is created. For example, if the service account has
Trusted Computing Base (TCB) privileges, the WindowsIdentity object can be
used for impersonation, which is required to implement constrained delegation.

Even if the service account does not have TCB privileges (which is often the case),
you can use the new WindowsIdentity constructor to initialize an identity object
and then use that to initialize a WindowsPrincipal object for role-based authorization
checks, using the client’s security roles. A service account without TCB privileges can
also be used to access resources directly. However, that account’s identity is used to
access the resource instead of the client’s identity.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT13.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT13.asp

 Chapter 4: Resource Access Patterns 183

The following code example shows how to initialize a WindowsIdentity object with
the user ID and domain information that is associated with the client. It then uses that
information to perform role-based authorization checks.

WindowsIdentity identity = new WindowsIdentity(<logon name>@<domain>);
if(identity != null)
{
 WindowsPrincipal userPrincipal = new WindowsPrincipal(identity);
 if(userPrincipal.IsInRole(@"GLOBALBANK\ServiceUsers"))
 {
 ...
 }
 else
 {
 lblMessage.Text = "Not In Role: Service access denied";
 }
}

Example: Using protocol transition to initialize a WindowsIdentity object for role-based authorization
checks

It is useful to have access to a client’s identity and roles, but the default IIS service
account does not have the necessary permissions to impersonate the client when it
accesses a resource. To provide this functionality, the next section describes how to
configure a new service account that will be used as the identity of an application
pool in IIS 6.0.

Note: The previous code example from a Web application shows what was used to implement
protocol transition with constrained delegation. GLOBALBANK\ServiceUsers represents an Active
Directory group that is used to provide role-based authorization checks. The field named lblMessage
is a Web application Label control that is used to display messages. This example is extended
throughout the remainder of this technical supplement.

Use Protocol Transition to Initialize a WindowsIdentity Object for Impersonation

If you want to use the client’s security context to access resources, impersonation
must be implemented prior to accessing the resource. To implement this with
protocol transition, you should create a new service account and configure that
account to perform the protocol transition.

By default, IIS applications and services run under the NETWORK SERVICE account
on Windows Server 2003. The easiest way to support protocol transition is to give this
account Trusted Computing Base (TCB) privileges on the service host. An account
with TCB privileges can act as part of the operating system when it performs
operations. However, the problem with this approach is that the NETWORK
SERVICE account is used by many Web applications and services. Giving this
account operating system privileges represents a significant security risk.

184 Web Service Security

With the use of application pools in IIS 6.0, you can mitigate this risk by creating a
new pool that uses an identity with TCB privileges. To accomplish this task, you must
first create a domain user account and configure it to have proper privileges on the
Web server. After the account is configured, it can be used as the identity of a new
application pool. Any Web applications or services that need to implement protocol
transition with impersonation can then use this new application pool.

Note: The following steps require that you have administrative privileges on appropriate servers to
perform the operations.

Step One: Create a Domain Account

On the domain controller, use the following steps to create a new user account.

f To create a domain user account

1. On the Administrators menu, click Active Directory Users and Computers.
2. Create a new user and configure it with the following settings:

First Name: Domain
Last Name: Pool
User Name: DPool
Clear: User must change password at next login
Select: User cannot change password
Select: Password never expires

The new account is automatically added to the Users group on the domain. You do
not need to add it to any other groups. At this point, there is nothing else you need
to configure for the account on the domain, but this account does need additional
privileges on the host Web server.

Step Two: Configure the Domain Account on the Web Server

Several permissions are required on the Web server to use the new domain account
for protocol transition with IIS 6.0. You must configure the account for TCB privileges
and add it to a group that has permissions for application pools. To work correctly,
the account also needs special permissions on a temporary folder for protocol
transition.

f Assign TCB privileges

1. On the Administrators menu, click Local Security Policy.
2. Expand Local Policies, and then click User Rights Assignments.
3. Open the Act as part of the operating system policy, and add the DPool account

that you created in the previous step.

 Chapter 4: Resource Access Patterns 185

f Add account to IIS_WPG

1. On the Administrators menu, click Computer Management.
2. Expand Local Users and Groups, and then click Groups.
3. Open the IIS_WPG group, and then add the DPool account.

f Give IIS_WPG special folder permissions

1. Open Windows Explorer, and then click the %SYSTEM%\Temp folder.
2. Right-click the Temp folder, and then click Sharing and Security.
3. On the Security tab, click the Advanced button.
4. In the Advanced Security Settings for Temp dialog box, click the Add button and

add the IIS_WPG group. This opens the Permission Entry for Temp dialog box.
5. In the Permission Entry for Temp dialog box, select the following check boxes:

List Folder / Read Data
Delete

This last configuration is required to support protocol transition, but it makes
sense to assign these rights to the IIS_WPG group instead of the individual domain
accounts. In addition, because the NETWORK SERVICE account already has this
privilege, you are not assigning any privileges to IIS_WPG that a typical Web
application does not have.

Step Three: Create a New Application Pool

This step uses the Internet Information Services (IIS) Manager, which is located on the
Administrative Tools menu.

f To add a new application pool

1. Expand the server (local computer), and then click Application Pools.
2. Right-click Application Pools, point to New, and then click Application Pool.
3. Name the pool DomainPool. Make sure the Use default settings for new

application pool option is selected, and then click OK to create the new pool.
4. In IIS Manager, expand Application Pools, and then click the new pool that you

created.
5. Right-click DomainPool, and then click Properties.
6. On the Identity tab, click Configurable, and then type the new DPool domain

account you created in Step One: Create a Domain Account.
7. Click OK to close the dialog box.

186 Web Service Security

Step Four: Configure the Web Application to Use the New Application Pool

This step assumes that you have an ASP.NET Web application or service that uses
protocol transition to access a Web service that requires message-based Kerberos
authentication. The creation of the Web applications and implementation of message-
based security with the Kerberos protocol are beyond the scope of this chapter.
Instead, the focus is on tasks that are required to implement protocol transition.

f To configure the Web application to use the new application pool

1. In the Internet Information Services (IIS) Manager dialog box, expand the server
(local computer), expand Web Applications, expand the Web site folder, and then
click your Web application.

2. Right-click the Web application, and then click Properties.
3. On the Virtual Directory tab, click the application pool (DomainPool) that was

created in the previous step.
4. Click OK to close the dialog box.

With the Web application configured to use the new application pool, you can use the
following code example to test the configuration and make sure that impersonation is
supported by the WindowsIdentity object created using protocol transition.

...
 WindowsIdentity identity = new WindowsIdentity(<logon name>@<domain>);
 if(identity != null)
 {
 WindowsImpersonationContext context = null;
 try
 {
 context = identity.Impersonate();
 // Perform operations that require impersonation...
 }
 catch(Exception ex)
 {
 lblMessage.Text = "Impersonation Failed: " + ex.Message;
 }
 finally
 {
 context.Undo();
 }
 }
...

Example: Using protocol transition to initialize a WindowsIdentity object for impersonation

Notice that the Impersonate operation is performed within a try/catch block. This is
because the WindowsIdentity object does not provide information about the service
ticket that is associated with the service account. In other words, the identity cannot
be checked to determine whether it supports impersonation before attempting the
Impersonate operation. This means that if the service account does not have TCB
privileges, this operation will throw an exception.

 Chapter 4: Resource Access Patterns 187

Note: The code sample performs a context.Undo() statement in the finally block to revert the
security context back to the original identity. If this operation fails, which is rare, the recommendation
is to exit the application with a system error and shut down the process. In other words, the
application process should be stopped immediately.

Even though you now have IIS configured for protocol transition with
impersonation, you still cannot access downstream resources with the transitioned
identity. Your final task is to configure Active Directory to support constrained
delegation.

Use Constrained Delegation to Access Remote Resources

Two types of constrained delegation are available: one that requires the Kerberos
protocol and another that supports any protocol. To support protocol transition,
you must use the configuration that supports any authentication protocol. However,
before configuring delegation, you need to create a Service Principal Name (SPN) for
the DPool domain account, which is the account you created in the previous task.

Step One: Create SPN for Domain Account

A Service Principal Name (SPN) represents a unique name that is used by the
Kerberos protocol to access a service’s long term key when it creates a service ticket.
To request a service ticket, the service must have an associated SPN registered in
Active Directory. By default, all of the standard services use a HOST-based SPN,
which is configured when the operating system is installed. By using a different
account as the identity for the application pool, this host SPN can not be used.
Instead you need to create a new host-based SPN for the domain account.

The tool you use to create a new SPN is named setspn.exe, which is found in
Windows Support Tools for Windows Server 2003. To create a new SPN, open the
command prompt in the Support Tools menu and type the following command.

setspn -a http/<host>.<domain> DPool

The following list explains the command elements:
● -a tells SetSPN to create and then add a new SPN.
● http is the built-in service class used by IIS and Internet Explorer when Windows

integrated security is used.
● <host> is the name of the host computer; you need to change this to match the

Web server you are configuring.
● <domain> is the domain; you need to change this to match your domain.
● DPool is the host user account configured for protocol transition.

For more information about SPNs, setspn.exe, and the Kerberos security protocol, see
Kerberos Technical Supplement for Windows in Chapter 7, “Technical Supplements.”

188 Web Service Security

After the SPN is created, it is possible to configure constrained delegation so that the
Web application or service can use a transitioned identity to access downstream
resources.

Note: The example in this chapter uses the built-in HTTP service class as the SPN that maps to a
domain account. This is not necessary in message layer security where you can specify the SPN.
However, when you use Windows Integrated Security, you must map the service account to the HTTP
SPN because both Internet Explorer and IIS use the HTTP SPN when they interact with a Web-based
service.

Step Two: Configure Delegation

When the SPN is created, a new Delegation tab is added to the associated domain
account, which provides the ability to configure constrained delegation. Figure 4.3
shows the new Delegation tab for the DPool account.

Figure 4.3
The Domain Pool Properties dialog box

 Chapter 4: Resource Access Patterns 189

As you can see in Figure 4.3, the Domain Pool (DPool) properties are configured
to Trust this user for delegation to specified services only and for Use with any
authentication protocol. In the Services to which this account can present delegated
credentials list, there is a single entry with a service type of HTTP, which means that
DPool can only access the HTTP service class that is associated with the user or
computer shown in the next column.

Remember that DPool is configured as the identity of an application pool in IIS. This
application pool is used to host Web applications that implement protocol transition.
In other words, this is the identity that is used to request a Kerberos service ticket on
behalf of a user that was transitioned into the Kerberos protocol. To request a ticket
on behalf of the transitioned user, you must configure DPool to support constrained
delegation with any authentication protocol as shown in Figure 4.3.

Note: You can use constrained delegation to access any service that supports the Kerberos
protocol. This means that a Web application that is running on Windows Server 2003 can access a
Web service that is running on Windows XP by using protocol transition with constrained delegation.

Sample Code
After you complete all of the tasks, you can implement protocol transition from
any Web application or service that is hosted in the new application pool. However,
the main restriction is that you can only access services that are configured in the
Delegation tab of the host identity that is associated with the application pool. This
identity is a domain account that has been configured to support protocol transition
and constrained delegation on the Web server.

The following code sample demonstrates how to implement protocol transition with
constrained delegation using a client’s logon name.

WindowsIdentity identity = new WindowsIdentity(<logon name>@<domain>);
if(identity != null)
{
 WindowsPrincipal userPrincipal = new WindowsPrincipal(identity);
 if(userPrincipal.IsInRole(@"GLOBALBANK\ServiceUsers"))
 {
 WindowsImpersonationContext context = null;
 try
 {
 context = identity.Impersonate();
 try
 {
 Service.KerberosService service =
 new Service.KerberosService();
 service.PreAuthenticate = true;
 service.Credentials = CredentialCache.DefaultCredentials;
 lblMessage.Text = service.HelloWorld();
 }

(continued)

190 Web Service Security

(continued)

 catch(Exception ex)
 {
 lblMessage.Text = "Service Call Failed: " + ex.Message;
 }
 }
 catch(Exception ex)
 {
 lblMessage.Text = "Impersonation Failed: " + ex.Message;
 }
 finally
 {
 context.Undo();
 }
 }
 else
 {
 lblMessage.Text = "Invalid Role: Service access denied";
 }
}

Example: Using protocol transition with constrained delegation to access a service with the client’s
logon name.

The Web service in this example was deployed on Windows XP and has been
configured to support Windows integrated authentication with impersonation
enabled. When a Web service request is sent with Windows integrated authentication,
the two bold lines in the previous code example must be used to attach the
credentials to the message. Setting PreAuthenticate to true adds the credentials
to the initial request, which prevents a round trip. The CredentialCache holds the
credentials of the identity that was impersonated.

When you use message layer security, the lines in bold are not required. For an
example of message layer security using the Kerberos protocol, see Implementing
Message Layer Security with Kerberos in WSE 3.0 in Chapter 3, “Implementing
Transport and Message Layer Security.”

Implementation Context
This section describes some of the more significant benefits, liabilities, and security
considerations of implementing protocol transition with constrained delegation.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered.

 Chapter 4: Resource Access Patterns 191

Benefits
The benefits of protocol transition with constrained delegation include the following:
● Access to the downstream resource is based on the identity of the client, and can

therefore be traced back to the original client of the online application. This allows
granular auditing and authorization that are based on the originating client’s
identity instead of the identity of the online application or service.

● An online application that does not support protocols that are normally used on
the internal network can transition clients into a protocol that is supported.

● With protocol transition, it is possible to implement delegation and impersonation
without storing a client’s password on the Web server.

Liabilities
The liabilities of protocol transition with constrained delegation include the
following:
● When impersonation or constrained delegation is used, it may not be possible

to take advantage of optimizations, such as connection pooling. Most resource-
sharing optimizations require the use of a common identity when they
authenticate with the resource. For example, a separate connection exists for each
client when you use impersonation or constrained delegation to access a database.
This prevents the ability to share connections with multiple clients (connection
pooling).

● Configuring a domain account to use the host-based HTTP SPN means that
other Web applications and services on that Web server must also use the same
application pool to support any authentication request that uses the HTTP SPN,
which is the default behavior with Windows integrated authentication.

● If the account that is used to implement protocol transition is compromised,
it is possible for an attacker to use any Active Directory account when he or she
accesses resources. However, the number of resources is restricted because an
identity that is created with protocol transition must use constrained delegation
to access a resource.

Security Considerations
Security considerations associated with protocol transition with constrained
delegation include the following:
● Establishing a security context for a client without proving its identity requires a

high degree of trust in the system that performs the protocol transition. Because of
its trusted responsibilities, the system that performs protocol transition is likely to
be a high-interest target for attackers. You should mitigate this threat by limiting
access to private networks and using a separate application pool with an identity
that is configured for protocol transition.

192 Web Service Security

● You cannot use constrained delegation across a domain boundary. Constrained
delegation is restricted to services in a single domain. All domain controllers in
the domain must run Windows Server 2003, and the domain must operate at the
Windows Server 2003 functional level.

More Information
For more information about Web services security, see “Web Services Security”
in Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/SecNetch10.asp.

For more information about using impersonation and delegation in ASP.NET 2.0,
see “How To: Use Impersonation and Delegation in ASP.NET 2.0” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/PAGHT000023.asp.

For more information about designing the authentication and authorization
mechanisms for a distributed ASP.NET Web application, see “Authentication
and Authorization” on MSDN: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/secmod/html/secmod03.asp.

For more information about developing identity-aware applications, see “Developing
Identity-Aware ASP.NET Applications, Identity and Access Management Services” on
MSDN: http://www.microsoft.com/technet/security/topics/identitymanagement/idmanage
/P3ASPD_1.mspx.

For more information about the Kerberos protocol extensions, see “Exploring S4U
Kerberos Extensions in Windows Server 2003” on MSDN: http://msdn.microsoft.com
/msdnmag/issues/03/04/SecurityBriefs/default.aspx.

For more information about implementing protocol transition and constrained
delegation, see “Kerberos Protocol Transition and Constrained Delegation” on
Microsoft TechNet: http://www.microsoft.com/technet/prodtechnol/windowsserver2003
/technologies/security/constdel.mspx.

For more information about using the Kerberos protocol extensions, see “How To:
Use Protocol Transition and Constrained Delegation in ASP.NET 2.0” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/paght000024.asp.

For more information about using client certificates for authentication with Web
services, see “How to Call a Web Service Using Client Certificates from ASP.NET”
on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec
/html/SecNetHT13.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000023.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000023.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod03.asp
http://www.microsoft.com/technet/security/topics/identitymanagement/idmanage/P3ASPD_1.mspx
http://www.microsoft.com/technet/security/topics/identitymanagement/idmanage/P3ASPD_1.mspx
http://msdn.microsoft.com/msdnmag/issues/03/04/SecurityBriefs/default.aspx
http://msdn.microsoft.com/msdnmag/issues/03/04/SecurityBriefs/default.aspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/constdel.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/constdel.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000024.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000024.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT13.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT13.asp

5
Service Boundary Protection
Patterns

Introduction
Chapter 2, “Message Protection Patterns,” described how to provide protection
against data tampering and unauthorized access to message content. However, in
many cases you will need to provide additional protection at the service’s boundary
to:
● Protect Web services against malformed or malicious content.
● Ensure that when a Web service operation fails you do not accidentally reveal

confidential information in the SOAP Fault that is returned.
● Prevent an attacker from intercepting a message and replaying it to force a

Web service operation to execute multiple times.

This chapter describes how to provide service boundary protection. It includes the
following design and implementation patterns:
● Message Replay Detection
● Implementing Message Replay Detection in WSE 3.0
● Message Validator
● Implementing Message Validation in WSE 3.0
● Exception Shielding
● Implementing Exception Shielding

194 Web Service Security

Message Replay Detection

Context
A client calls a Web service by sending messages across a public network. When
the Web service processes the messages, data is updated or business processes are
initiated. If a message that is intended for one of these Web services is intercepted
and replayed, there is a risk that the same operation might be performed multiple
times.

Problem
How do you protect a service from an attacker who replays an intercepted message?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● A replayed message will cause data inconsistency. This can have a negative

impact on business operations and cause financial damage or legal liability.
For example, if funds are transferred between bank accounts multiple times,
the balance of each party’s account will be altered.

● Messages traverse intermediaries on the network, where the intermediaries
are not trusted. When messages traverse untrusted intermediaries, they can
be intercepted and replayed after the initial relay of the message. This form of
attack is possible even if message protection techniques, such as data origin
authentication and data encryption, are used to protect against tampering of
data and unauthorized access to data.

The following condition is an additional reason to use the solution:
● The Web service is susceptible to message flooding denial of service attacks

from message replay. If the normal functions of a Web service are system-
intensive or network-intensive, an attacker can cause a bottleneck in the service
by launching an automated attack that rapidly replays intercepted messages in
large quantities. This reduces the availability of the service.

Solution
Cache an identifier for incoming messages, and use message replay detection to
identify and reject messages that match an entry in the replay detection cache.

Message replay detection requires that individual messages can be uniquely
identified. This ensures that a legitimate message is not rejected because of a match in
the replay detection cache. Message replay detection also requires that messages have
not been tampered with in transit. This ensures that the replay detection cache does
not accept messages that have been captured and modified by an attacker.

 Chapter 5: Service Boundary Protection Patterns 195

Messages signed using a WS-Security XML signature must include a SignatureValue
element, which can be cached as an identifier for the message. The SignatureValue is
computed from hash values of the message parts that are being signed, including the
message body and the timestamp.

Note: A SignatureValue is not truly unique because it runs the theoretical risk of collision (where the
same value can be unintentionally reproduced). In most cases, the risk is very low, so
SignatureValue is an appropriate choice for a message identifier.

The SignatureValue element is added to the cache, along with a timestamp from the
server, indicating the time it processed the message. This allows entries to be cleared
from the cache at regular intervals and to not accumulate indefinitely. The service can
be designed to automatically reject incoming messages that arrive on or after a
defined acceptable time delay.

Participants
The Message Replay Detection pattern involves the following participants:
● Client. The client accesses the Web service.
● Service. The service is the Web service processes requests received from clients.

The service implements the replay detection logic.
● Replay cache. The replay cache is the entity that caches the incoming messages

with a unique identifier to detect the replay messages.

Process
Figure 5.1 illustrates the process of sending a message to a Web service that
implements replay detection.

Send Message2
Check Replay Cache4

Sign Message1
Verify Timestamp
and Signature

3

Replay
Cache

ServiceClient

Figure 5.1
A Web service implementing message replay detection

196 Web Service Security

As illustrated in Figure 5.1, the process of a Web service implementing message
replay detection is described in the following steps:
1. The client signs the message. This signature provides assurance that the message

has not been altered in transit. For more information about data integrity, see Data
Origin Authentication in Chapter 2, “Message Protection Patterns.”

2. The client sends the signed message to the recipient.
3. The service verifies the client’s signature and the message timestamp. The Web

service verifies the message signature to ensure that the message contents have
not been altered in transit. If the message signature is valid, the Web service
compares the message timestamp to its own current clock value. If either the
signature is invalid or the message was received beyond the acceptable time span,
the message is rejected.

4. The service checks the replay cache for the SignatureValue field. The Web
service checks the replay cache for the SignatureValue that is used to uniquely
identify the incoming message. If the SignatureValue is already in the cache, the
message is rejected as a duplicate. If the message signature is not in the cache,
the message signature and timestamp are added to the cache.

Note: The Web service must be designed to accept messages that are no older than the messages
that have already been removed from the cache. Otherwise, an attacker will be able to replay a
message that was previously cleared from the replay cache.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
Messages cannot be replayed, either accidentally or for malicious intent. Any attempt
to replay an intercepted message will result in the message being rejected by the
service. Any attempt by the attacker to tamper with the message to spoof the replay
mechanism will invalidate the message signature, which causes the service to reject it.

 Chapter 5: Service Boundary Protection Patterns 197

Liabilities
The liabilities associated with the Message Replay Detection pattern include the
following:
● The Web service must carefully manage its replay cache to balance scalability and

security by clearing the cache at regular intervals.
● If the service is deployed to more than one server in a Web farm, a common replay

cache must be used for the cache to be effective. A database is often used for this
purpose, but using a database can increase latency of processing messages. The
database itself might also be susceptible to denial of service attacks, if an attacker
floods connections to the database that is maintained in the Web farm. To help
mitigate this issue, you should consider deploying the database server with
failover support and ensure that connections to the database server are carefully
managed within the Web farm.

Security Considerations
Security considerations associated with the Message Replay Detection pattern
include the following:
● The unique identifier for the message must be saved in the replay cache prior

to processing the request. This prevents concurrency issues if a second message
arrives before the first message has finished executing.

● Some of the steps performed while attempting to detect replayed messages can
adversely affect system response time. For example, verifying the signature on the
identifier and timestamp is computationally intensive. Reading or updating the
replay cache can also impact response time if the cache is on a different computer
than the recipient.

● Preventing message replay can help stop a denial of service attack from accessing
resources, but it is also possible for an attacker to launch a denial of service attack
on the computer that is using message replay detection. The attacker does this by
replaying a large number of messages to exploit high resource consumption. To
minimize the impact of the attack on system availability and response time, it is
important to ensure that the service implements replay detection as efficiently
as possible.

● A clock skew value (TTL in seconds) is set on the server to determine the
acceptable clock skew between the client and the service. If a message is received
outside the acceptable time range, the message will be rejected, even if it is not
already present in the cache. Therefore, it is important to ensure that clocks are
closely synchronized between the sender and the recipient. This is best achieved
by using time synchronization services, with the sender and recipient
synchronizing their local clocks to a centralized source. The clock skew must
always be less than the time that the messages are held in the cache; if it is not,
a replayed message may be accepted because it will already have been deleted
from the cache.

198 Web Service Security

● In some cases, a client may not receive a response from a service. As a result,
the client will not know whether the request succeeded. A common example that
afflicts e-commerce transactions is where a user clicks the Submit button twice on
a Web form. This scenario requires a different approach, such as the one described
in the Idempotent Receiver design pattern. For more information about
idempotent Web services, see Idempotent Receiver on the Enterprise
Integration Patterns Web site.

● The length of time that messages should be held in the cache varies, depending
on the specifics of the recipient. If an application receives a very large number of
messages per second, the cache lifetime may be very small, perhaps only a few
minutes. In other cases, the cache lifetime may be significantly longer, perhaps
hours or days.

Variants
XML signatures provide a basis for effective message identifiers that support message
replay detection. They are particularly useful where end-to-end security is required.
However, there are alternative ways to implement message replay detection. You can
use the following alternatives to XML signatures:
● Use the full message. The message itself is unique because the message header

contains a timestamp and an XML signature. However, caching the full message
can be inefficient because the cache might need to be very large.

● Use an identifier that is unique to a session, such as a sequence ID. In this case,
each message is assigned a sequence number that is unique within the scope of the
active session. This approach requires the client and the server to be synchronized
and requires the server to maintain some form of session state to communicate
with the client. The session scope may be defined by a span of time that is agreed
on by both parties, after which the session must be renewed or renegotiated.
Session scope can also be defined by the validity period of a security token used
to establish secure communications between the two parties. Both Kerberos and
SSL use session-based sequence numbers in their respective replay detection
mechanisms.

Related Patterns
Two types of patterns are related to this pattern: a child pattern and a pattern that the
Message Replay Detection pattern uses.

The following child pattern is related to the Message Replay Detection pattern:
● Implementing Message Replay Detection in WSE 3.0. It provides steps and

recommendations to implement message replay detection at the message layer
by using WSE 3.0.

http://www.eaipatterns.com/IdempotentReceiver.html

 Chapter 5: Service Boundary Protection Patterns 199

The Message Replay Detection pattern uses the following pattern:
● Data Origin Authentication. The Data Origin Authentication pattern

demonstrates how messages are signed to verify that they are from the intended
recipient and have not been altered in transit.

Implementing Message Replay Detection in WSE 3.0

Context
You are implementing a Web service that uses Web Service Enhancements (WSE) 3.0.
The Web service accepts messages sent across a public network from clients that
manipulate sensitive data or initiate business processes. You need to ensure that the
Web service does not process a message that has been intercepted and replayed by
an attacker in an attempt to access or manipulate the sensitive data.

Objectives
The objectives of this pattern are to:
● Prevent the service from accepting and processing messages that have expired,

while allowing for clock skew.
● Prevent the service from accepting and processing messages that attackers have

replayed.
● Support replay attack detection for Web services deployed in a Web farm through

a database-supported replay cache.
● Demonstrate an implementation of message replay detection using a WSE 3.0

custom assertion.

Content
This pattern consists of the following sections:
● Implementation Strategy. This section provides a high-level description of the

strategy used to implement the Message Replay Detection pattern.
● Implementation Approach. This section describes the steps required to

implement this pattern:
● Configure the client
● Configure the service

● Resulting Context. This section outlines the benefits, liabilities, and security
considerations related to the pattern.

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

http://go.microsoft.com/fwlink/?LinkId=57044

200 Web Service Security

Implementation Strategy
This document provides steps and recommendations to implement message replay
detection at the message layer using WSE 3.0.

Use a custom policy assertion to verify that the service has not previously accepted
and processed an incoming message by maintaining a message replay cache. The
custom policy assertion implements the following logic:
● Incoming messages are recognized by a message identifier that the policy

assertion implements. The message identifier is contained in the
<SignatureValue> element of the message signature.

● If the message identifier for an incoming message is not in the cache, the service
has not processed the message within the lifetime of the cache, and the identifier
is added to the cache.

● If the message identifier is in the cache, the message is rejected as a replayed
message.

Note: To fully understand this pattern, you must have some familiarity and experience with the
.NET Framework, WSE 3.0 policy assertions, and Web service development.

Participants
The Message Replay Detection pattern involves the following participants:
● Client. The client accesses the Web service.
● Service. The service is the Web service processes requests received from clients.

The service implements the replay detection logic.
● Replay cache. The replay cache is the entity that caches the incoming messages

with a unique identifier to detect the replay messages.

Process
The Message Replay Detection pattern describes the process of preventing replay
attacks at a high level. This implementation pattern provides a more detailed
description of that process that is specific to this implementation.

Figure 5.2 illustrates the process to validate messages against a replay cache.

Send Message2
Check Replay Cache4

Sign Message1
Verify Timestamp
and Signature

3

Replay
Cache

ServiceClient

Figure 5.2
The message replay detection process

 Chapter 5: Service Boundary Protection Patterns 201

The process uses the following steps:
1. The client signs the message. The client includes a timestamp in the message

header and signs the message using a WSE 3.0 policy assertion to provide data
origin authentication.

2. The client sends the message to the service.
3. The service verifies the client’s signature and the message timestamp.

The service verifies the freshness of the message by checking the message
timestamp. If, after accounting for an acceptable clock skew between the client
and service, the message timestamp is older than the server will accept, or the
timestamp indicates a future time, the message is rejected. If the message
timestamp is valid, the message signature is validated. The service then validates
the signature on the message to ensure that it came from an expected client, and
its content has not been tampered with while in transit.

4. The service checks the replay cache for the message identifier. The service
checks the replay cache for the message identifier; the message identifier is
the contents of the <SignatureValue> element in the message signature. If the
message identifier is already in the cache, the message is rejected as a duplicate.
If the message identifier is not in the cache, the message identifier and cache
expiration time for the message are added to the cache.

Implementation Approach
This section provides you with procedures to implement this pattern. The section is
divided into the following thee major tasks:
1. General setup. This includes a list of steps that apply to all applications for this

pattern.
2. Configure the client. This includes a list of steps required to configure policy and

code on the client.
3. Configure the service. This includes a list of steps required to configure policy

and code on the service.

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code, have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

202 Web Service Security

General Setup
You must install WSE 3.0 on the computers that you use to develop WSE-enabled
applications. After you install WSE 3.0, you must enable the client and the service
to support WSE 3.0.

f To enable a Visual Studio project to support WSE 3.0

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the General tab, select the Enable this project for Web Services
Enhancements check box, and then click OK.

Configure the Client
The client requires no special configuration for message replay detection, but it must
meet the following requirements:
● You must enable it to use WSE 3.0 and communicate with a WSE 3.0–enabled

service as described in the section, “General Setup.”
● It must sign the message, and include the message body, addressing headers, and

timestamp in the signature.

You also should consider other security requirements for authentication and securing
the communication channel. For more information about authentication and securing
the communication channel, see the following patterns:
● Direct Authentication in Chapter 1, “Authentication Patterns”
● Brokered Authentication in Chapter 1, “Authentication Patterns”
● Data Confidentiality in Chapter 2, “Message Protection Patterns”
● Data Origin Authentication in Chapter 2, “Message Protection Patterns”

Configure the Service
This section describes the steps required to configure the service and provides
example code that you can use to implement message replay detection.

The custom policy assertion for message replay detection requires that an XML
signature is present in request messages. When policy is also used on the service
to require and verify XML signatures on incoming request messages, that policy
should be configured before the message replay detection custom policy assertion is
configured. For more information about configuring policy to verify XML signatures
on the service, see one of the following implementation patterns in Chapter 3,
“Implementing Transport and Message Layer Security”:
● Implementing Direct Authentication with UsernameToken in WSE 3.0
● Implementing Message Layer Security with Kerberos in WSE 3.0
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0

 Chapter 5: Service Boundary Protection Patterns 203

If you are not using policy to implement authentication or other forms of message
protection for your service, you must first add a text file for the policy cache to your
service project in Visual Studio 2005.

f To add a policy cache file to the service project in Visual Studio

1. In Visual Studio 2005, right-click the application project, and then click
Add New Item.

2. Click Text File.
3. In the Name field, type a name for the file, such as wse3policyCache.config.
4. Click Add.

Service Policy

The following code example is an example of the configuration for the custom replay
detection policy assertion on the service.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <extensions>
 ...
 <extension name="replayDetection"
type="Microsoft.Practices.WSSP.WSE3.QuickStart.ReplayDetection.CustomAssertions.Re
playDetectionAssertion,
Microsoft.Practices.WSSP.WSE3.QuickStart.ReplayDetection.CustomAssertions"/>
 </extensions>
 <policy name="ReplayDetectionService">
<replayDetection cacheLifetimeInSeconds="1200" maxMessageAgeInSeconds="600" />
...
 </policy>
</policies>

The replayDetection assertion has the following two configurable parameters:
● cacheLifetimeInSeconds. This parameter specifies how long in seconds identifiers

will remain in the replay cache. In the preceding example, this parameter is
configured for 1,200 seconds or 20 minutes.

● maxMessageAgeInSeconds. This parameter specifies the maximum message age in
seconds that is tolerated by the assertion without accounting for clock skew. In the
preceding example, this parameter is configured for 600 seconds or 10 minutes.

Paste the <extension> and ReplayDetectionService policy elements from the
example into your policy configuration file.

Note: If you are pasting into a pre-existing policy file, you may also have to add the opening and
closing <extensions> elements around the <extension> element.

204 Web Service Security

The order that you use to place the replay detection assertion within your policy only
matters relative to the other policy assertions that you may use. For example, if you
are doing message validation in a custom policy, place this assertion after the
message replay detection assertion. If you have multiple security assertions defined
in policy, you should place this assertion before each security assertion. Security
assertions are those assertions that are used to sign and encrypt messages; they
include all the WSE 3.0 turnkey policy assertions, with the exception of the
usernameOverTransportSecurity turnkey assertion. For more information about
the message validation custom assertion, see Implementing Message Validation in
WSE 3.0 in Chapter 5, “Service Boundary Protection Patterns.”

If you are not using policy to implement authentication or message protection for
your service as described earlier in this section, you will need to enable policy
support by directly modifying the service’s Web.config file because WSE does not
recognize custom policy assertions when it parses the policy cache file; it disables
policy support if you attempt to configure it using the WSE Settings tool. If you have
to enable policy support after a custom policy assertion has been added to your
policy cache, you have to add a <policy> element to the service’s Web.config file
to enable policy support, as shown here.

<microsoft.web.services3>
...
 <policy fileName="wse3policyCache.config" />
...
</microsoft.web.services3>

Replace the value specified for the fileName attribute with the file path and name of
your policy cache file.

WSE 3.0 also has an important setting in this context, <timeToleranceInSeconds>.
This setting corresponds to the acceptable time difference (clock skew) between the
sender and the recipient of a message. The <timeToleranceInSeconds> setting is
configured to 300 seconds or 5 minutes by default. However, you can change this
value in the service’s Web.config file if you require a different value.

Note: The <timeToleranceInSeconds> setting is shared, so changing it may also affect security
token managers and other policy assertions operating in the same virtual directory as the service.

The following example code configuration snippet provides an example of this
setting in the service’s Web.config file. Note that in the example, the value is set to
the default value 300 seconds.

<microsoft.web.services3>
...
<security>
<timeToleranceInSeconds value="300" />
...
</security>
</microsoft.web.services3>

 Chapter 5: Service Boundary Protection Patterns 205

A message is accepted or rejected according to logic that takes into consideration the
potential time difference between the sender and receiver and an acceptable age for
the message to account for longer delays in message transport (for example, in store
and forward scenarios). The following logic is applied when determining whether to
accept an incoming message:
1. The server calculates the message age by subtracting the created value on the

message from the current server time. Because of clock skew between the sender
and recipient computers, this value can be positive or negative. If the result of this
calculation is greater than zero, the message appears to have been created in the
past; if the value is less than zero, it appears to have been created in the future.

2. For a message that appears to have been created in the past or if the server and
message creation times are identical, the message will be accepted only when its
message age is less than or equal to the values for the maxMessageAgeInSeconds
parameter plus the <timeToleranceInSeconds> setting,

3. For a message that appears to have been created in the future (where the message
age is a negative value), the Maximum Message Age setting is not considered,
because any delay in message transmission would already have made the message
age closer to zero. Instead, the mathematical absolute value of the message age is
used. If this value is less than or equal to the Time Tolerance setting, the message
is accepted.

Messages are held in the cache for at least as long as the value that is defined in the
CacheLifetimeInSeconds setting. To ensure that the server cannot accept a message
after a duplicate message has been removed from the cache, the
CacheLifetimeInSeconds setting must be set to at least the Maximum Message Age
+ Time Tolerance*2.

206 Web Service Security

Figure 5.3 illustrates the relationship between the previously described configuration
settings.

Server
Current

Time

Time
Tolerance

(past)

Max Message
Age

Time
Tolerance

(future)

Valid Message Creation Timestamp

Minimum cache lifetime

Figure 5.3
The relationship between the configuration settings

In the example code, the following setting values are configured:
● <timeToleranceInSeconds>. This value is set to the default of 300 seconds or

5 minutes.
● maxMessageAgeInSeconds. This value is set to 600 seconds or 10 minutes.
● cacheLifetimeInSeconds. This value is set to 1,200 seconds or 20 minutes.

These configuration settings are valid because message age plus twice the time
tolerance or (600 + (300 x2)) does not exceed the configured cache lifetime of
1,200 seconds.

To bind the policy assertion to your Web service, add the following attribute before
the class declaration in your Web service code.

[Policy("ReplayDetectionService")]

 Chapter 5: Service Boundary Protection Patterns 207

Replay Detection Custom Policy Assertion Code

The following code example displays the message replay detection custom policy
assertion.

using System;
using System.Xml;
using System.Collections.Generic;

using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;
using Microsoft.Web.Services3.Design;
using Microsoft.Web.Services3.Configuration;

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.ReplayDetection.CustomAssertions
{
 public class ReplayDetectionAssertion : PolicyAssertion
 {
 #region Custom Fields
 private int cacheLifetime;
 private int maxMessageAge;
 #endregion

 #region PolicyAssertion Methods
 public override SoapFilter CreateClientInputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateClientOutputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateServiceInputFilter(FilterCreationContext
context)
 {
 return new ReplayDetectionAssertion.ServiceInputFilter(this);
 }

(continued)

208 Web Service Security

(continued)

 public override SoapFilter CreateServiceOutputFilter(FilterCreationContext
context)
 {
 return null;
 }
 public override void ReadXml(System.Xml.XmlReader reader,
IDictionary<string, Type> extensions)
 {
 if (reader == null)
 throw new ArgumentNullException("reader");
 if (extensions == null)
 throw new ArgumentNullException("extensions");

 bool isEmpty = reader.IsEmptyElement;

 string cacheLifetime = reader.GetAttribute("cacheLifetimeInSeconds");
 if (!string.IsNullOrEmpty(cacheLifetime))
 {
 try
 {
 this.cacheLifetime = Math.Abs(int.Parse(cacheLifetime));
 }
 catch
 {
 throw new FormatException(Messages.CacheLifetimeFormat);
 }
 }
 else
 {
 this.cacheLifetime = -1;
 }

 string maxMessageAge = reader.GetAttribute("maxMessageAgeInSeconds");
 if (!string.IsNullOrEmpty(maxMessageAge))
 {
 try
 {
 this.maxMessageAge = Math.Abs(int.Parse(maxMessageAge));
 }
 catch
 {
 throw new FormatException(Messages.MaxMessageAgeFormat);
 }
 }
 else
 {
 this.maxMessageAge = -1;
 }

(continued)

 Chapter 5: Service Boundary Protection Patterns 209

(continued)

 reader.ReadStartElement("replayDetection");
 if (!isEmpty)
 {
 reader.ReadEndElement();
 }
 }
 public override void WriteXml(System.Xml.XmlWriter writer)
 {
 writer.WriteStartElement("replayDetection");

 if (this.cacheLifetime != -1)
 writer.WriteAttributeString("cacheLifetimeInSeconds",
this.cacheLifetime.ToString(System.Globalization.CultureInfo.InvariantCulture));

 if (this.maxMessageAge != -1)
 writer.WriteAttributeString("maxMessageAgeInSeconds",
this.maxMessageAge.ToString(System.Globalization.CultureInfo.InvariantCulture));

 writer.WriteEndElement();
 }
 #endregion

 #region Custom SoapFilters
 protected class ServiceInputFilter : SoapFilter
 {
 #region Custom Fields

 private int cacheLifetime;
 private int maxMessageAge;
 #endregion

 #region Constructors
 public ServiceInputFilter(ReplayDetectionAssertion assertion)
 : base()
 {
 this.cacheLifetime = assertion.cacheLifetime;
 this.maxMessageAge = assertion.maxMessageAge;
 }
 #endregion

 #region ReceiveSecurityFilter Methods
 public override SoapFilterResult ProcessMessage(SoapEnvelope envelope)
 {
 DetectReplayedMessage(envelope);
 return SoapFilterResult.Continue;
 }

 private void DetectReplayedMessage(SoapEnvelope envelope)
 {
 CheckMessageAge(envelope);

(continued)

210 Web Service Security

(continued)

 // Calculate the message expiration time based on the cache
lifetime configured in the policy assertion.
 //Gets the current time in UTC.
 // UTC is used for two reasons:
 // 1) Daylight savings is not applied to UTC. If the local server
clock accounts for daylight savings,
 // the server hosting the cache would prematurely delete data from
the cache when the clock is rolled forward in the spring;
 // this allows a window for replay detection of approx 40 minutes
based on our default replay settings.
 // 2) UTC provides a common time reference if the Web service and
database server are in different time zones.
 DateTime messageExpirationDate =
DateTime.Now.AddSeconds(this.cacheLifetime).ToUniversalTime();

 foreach (ISecurityElement element in
envelope.Context.Security.Elements)
 {
 if (element is MessageSignature)
 {
 MessageSignature signature = (MessageSignature)element;

 string messageKey =
Convert.ToBase64String(signature.Signature.SignatureValue);

 // Add the message to the cache.
 CacheHelper.Cache(messageKey, messageExpirationDate);
 }

 }
 }
 #endregion

 #region Custom Methods

 /// <summary>
 /// Validates the message timestamp to avoid replay attacks.
 /// </summary>
 private void CheckMessageAge(SoapEnvelope envelope)
 {
 // Gets the message timestamp.
 DateTime timestamp = envelope.Context.Security.Timestamp.Created;

 DateTime currentDate = DateTime.Now;

(continued)

 Chapter 5: Service Boundary Protection Patterns 211

(continued)

 // Computes the time difference between the message timestamp and
the current time.
 TimeSpan timeDifference = currentDate.Subtract(timestamp);

 double messageAgeInSeconds = timeDifference.TotalSeconds;

 // The first condition checks for messages where sender's clock +
network lag is slower than
 // the server's clock because we do not want to consider message
age if the sender's clock
 // is faster.
 // The second condition accounts for messages where the sender's
clock is faster than the server's clock.
 if ((messageAgeInSeconds > this.maxMessageAge +
WebServicesConfiguration.SecurityConfiguration.TimeToleranceInSeconds.TotalSeconds
)
 || (messageAgeInSeconds < 0 && Math.Abs(messageAgeInSeconds) >
WebServicesConfiguration.SecurityConfiguration.TimeToleranceInSeconds.TotalSeconds
))
 {
 throw new SecurityFault(Messages.AgeRequirementsNotSatisfied);
 }
 }

 #endregion
 }
 #endregion
 }
}

The preceding code example uses a class named CacheHelper to abstract the
interaction with the message replay cache. As an example, this implementation
uses a database for the message replay cache. Based on the requirements for your
application and your environment, you may want to implement a different kind
of cache. The source code for the CacheHelper class is provided in the section,
“Replay Cache.”

All times are converted to the Universal Time Convention (UTC) in the previous
example for two reasons:
● To compensate for when the Web service host and replay cache host are in

different time zones.
● To compensate for daylight savings time because it is not applied to the UTC.

When the Web service host adjusts its clock an hour forward for daylight savings
time, messages are not unintentionally deleted from the cache; if they were
unintentionally deleted, there would be an opportunity for message replay.

212 Web Service Security

Replay Cache

The following code example provides an example of a CacheHelper class that the
policy assertion uses to interact with a database replay cache.

Cache expiration is calculated on the Web service in this pattern to centralize all
policy logic on the Web service that is implementing replay detection instead of
spreading configuration settings across the Web server and the database server
that is hosting the replay cache. This example assumes that there is close clock
synchronization between the server hosting the service and the database server.
If this assumption is invalid for your environment, make adjustments to this
implementation to compensate for a lack of clock synchronization between the
server that is hosting the Web service and the database server.

Note: Instead of calculating cache lifetime for the message in the policy assertion, you can set the
default value on the message expiration column in the replay cache database table to the current
time on the database server, and the cache lifetime when record is inserted. The tradeoff of this
approach is that instead of configuring all of your settings on the Web service implementing
message replay detection, you must configure and calculate the cache lifetime on the database
server.

using System;
using System.Configuration;
using System.Data.SqlClient;

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.ReplayDetection.CustomAssertions
{
 /// <summary>
 /// Provides static methods to manage cache.
 /// </summary>
 class CacheHelper
 {
 private const string ConnectionStringName = "CacheHelper";

 private CacheHelper() { }

 /// <summary>
 /// Adds to cache the provided object indexed by the provided key until
the provided expiration date.
 /// </summary>
 /// <param name="value">Object to be cached</param>
 /// <param name="expirationDate">Object cache's expiration date</param>
 public static void Cache(object value, DateTime expirationDate)
 {
 string connectionString = GetConnectionString();

(continued)

 Chapter 5: Service Boundary Protection Patterns 213

(continued)

 using (SqlConnection connection = new SqlConnection(connectionString))
 {
 connection.Open();
 using (SqlCommand command = new
SqlCommand("usp_AddMessageToCache", connection))
 {
 command.CommandType = System.Data.CommandType.StoredProcedure;
 command.Parameters.Add("@messageIdentifier",
System.Data.SqlDbType.VarChar, 200);
 command.Parameters.Add("@expirationTime",
System.Data.SqlDbType.DateTime);

 command.Parameters["@messageIdentifier"].Value = value;
 command.Parameters["@expirationTime"].Value = expirationDate;

 try
 {
 int rowsUpdated = command.ExecuteNonQuery();

 // No row was updated because a duplicate key was
detected.
 if (rowsUpdated == -1)
 {
 throw new
InvalidOperationException(Messages.ExistentItem);
 }
 }
 catch (SqlException sqlException)
 {
 // Check for the SQL error 2601 because this error means
"Duplicate key" and a friendly error
 // message is returned in that case.
 if (sqlException.Number == 2601)
 {
 throw new
InvalidOperationException(Messages.ExistentItem);
 }
 else
 {
 throw;
 }
 }

 connection.Close();
 }
 }

 }

(continued)

214 Web Service Security

(continued)

 /// <summary>
 /// Gets the configured connection string from the configuration system.
 /// </summary>
 /// <returns></returns>
 private static string GetConnectionString()
 {
 ConnectionStringSettings settings =
ConfigurationManager.ConnectionStrings[ConnectionStringName];

 if(settings == null)
 throw new
ConfigurationErrorsException(String.Format(Messages.ConnectionStringNotConfigured,
ConnectionStringName));

 if (String.IsNullOrEmpty(settings.ConnectionString))
 throw new
ConfigurationErrorsException(String.Format(Messages.ConnectionStringNotConfigured,
ConnectionStringName));

 return settings.ConnectionString;
 }
 }
}

In the preceding code example, thrown exceptions accept a defined value in their
constructors for the exception message parameter as defined by a Messages object,
such as the Messages.ConnectionStringNotConfigured value. These values refer to
resource strings that provide a message for the exceptions that are thrown. Substitute
these as appropriate with a simple exception message to provide information about
why the exception is being thrown.

In the previous example, the CacheHelper class requires a connection string named
“CacheHelper” in the application’s configuration file. This connection string provides
connection information for the database where the replay cache is hosted.

...
<connectionStrings>
<add name="CacheHelper" connectionString="Data Source=localhost;Integrated
Security=SSPI;Initial Catalog=ReplayDetection;"/>
</connectionStrings>
...

 Chapter 5: Service Boundary Protection Patterns 215

In this implementation, the database cache resides on a computer running
SQL Server. Using SQL Server provides the following benefits:
● It supports a Web farm scenario. You can easily share the database cache between

servers in a Web farm and the software supports concurrent access to the cache.
● It provides cache stability. In-memory caches are cleared after a certain period

of inactivity on the server, after periodic recycling of application process threads,
or after you restart the server. A SQL database provides data consistency for the
cache, regardless of the state of the Web service application process or its threads.

Using a database as a replay cache also has disadvantages:
● Performance. Because databases store data on disks, data retrieval and updates

are slow in comparison to in-memory caching.
● Connectivity. If a database cache is hosted on a remote server, the cache

mechanism will not function if the policy assertion cannot connect to the
database server.

You can take several steps to optimize the performance of the database cache,
including:
● In-memory tables. The database server can be configured to keep the replay cache

table resident in memory instead of reading and writing from the physical storage
media.

● Index tuning and optimization. Operations on the database table can be
optimized by tuning the indexes on the table.

For more information about SQL Server performance optimization, see Optimizing
Database Performance Overview.

The SQL Server replay cache in this example consists of a table, two stored
procedures, and a SQL Server Agent job. The replay cache database table is named
ReplayCache. The structure for the replay cache database table is summarized in
Table 5.1.

Table 5.1: Replay Cache Database Structure Summary

Name Type Description Notes and constraints

MessageID Integer Identity column. Primary key.

MessageIdentifier varchar(200) Message identifier. Unique, required. You may
have to increase the column
width to account for longer
message signature values.

ExpirationTime Datetime Time when the message
expires in the cache.

Required.

http://msdn.microsoft.com/library/?url=/library/en-us/optimsql/odp_tunovw_9mxz.asp?frame=true
http://msdn.microsoft.com/library/?url=/library/en-us/optimsql/odp_tunovw_9mxz.asp?frame=true

216 Web Service Security

The following code example displays a SQL script that you can use to create the table
and indexes.

CREATE TABLE [dbo].[ReplayCache] (
 [ReplayCacheID] [int] IDENTITY (1, 1) NOT NULL ,
 [MessageIdentifier] [varchar] (200) ,
 [ExpirationTime] [datetime] NOT NULL
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[ReplayCache] WITH NOCHECK ADD
 CONSTRAINT [PK_ReplayCache] PRIMARY KEY CLUSTERED
 (
 [ReplayCacheID]
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[ReplayCache] ADD
 CONSTRAINT [DF_ReplayCache_ExpirationTime] DEFAULT (getdate()) FOR
[ExpirationTime]
GO
 CREATE UNIQUE INDEX [IX_MessageIdentifier] ON
[dbo].[ReplayCache]([MessageIdentifier]) WITH PAD_INDEX ON [PRIMARY]
GO
 CREATE INDEX [IX_ExpirationTime] ON [dbo].[ReplayCache]([ExpirationTime]) WITH
PAD_INDEX ON [PRIMARY]
GO

You will probably have to modify the preceding script and optimize the indexes to
suit your needs or run the script and tune the indexes using the tools available with
SQL Server.

The two stored procedures for the replay cache are:
● usp_AddMessageToCache. This stored procedure inserts the message identifier

and expiration time calculated in the policy assertion into the replay cache
database table. Because the cache will experience a lot of concurrent activity, check
for a SQL error code of 2601 after this stored procedure executes. If a SQL error
does occur with a return code of 2601, the unique constraint on the message
identifier column has been violated. This means that between the time the policy
assertion checked to determine if the message identifier was already in the cache
and the time it attempted to insert it, another process already inserted the message
identifier into the cache. This situation is treated as a replay attempt.

● usp_ClearExpiredMessages. This stored procedure is executed by the SQL Server
Agent job, which is described in the next section, to remove expired messages
from the cache.

 Chapter 5: Service Boundary Protection Patterns 217

The following script creates the two stored procedures for the replay cache.

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO
CREATE PROCEDURE [dbo].[usp_AddMessageToCache] (@messageIdentifier varchar(200),
@expirationTime datetime) AS
INSERT INTO ReplayCache (MessageIdentifier, ExpirationTime)
VALUES (@messageIdentifier, @expirationTime);
GO
CREATE PROCEDURE [dbo].[usp_ClearExpiredMessages] AS
DELETE FROM ReplayCache
WHERE ExpirationTime <= GETUTCDATE();
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

After you run the preceding script, make sure to grant execute permissions on
usp_AddMessageToCache to the service account that the service runs under. It is
important to exercise the best practice of minimum privilege on the database table.
Grant permissions only to execute the stored procedures to the service account under
which the Web service implementing replay detection runs. Do not allow the
Web service to directly modify data in the database table. Also, make sure that the
communication between the service implementing replay detection and the database
cache is secure.

For more information about security best practices for SQL Server 2000, see SQL
Server 2000 SP3 Security Features and Best Practices.

Cache Cleanup

You must clear the cache at regular intervals to regulate its size. A SQL Server
Agent job clears the database cache. The job is scheduled to execute the
usp_ClearExpiredMessages stored procedure at approximately the same interval
as the cache lifetime value configured in the replay detection policy assertion. For
example, in this pattern, the cache lifetime is configured at 20 minutes in the policy
assertion. The SQL Server Agent job executes every 22 minutes to keep the cache
reasonably clear.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx

218 Web Service Security

Benefits
The implementation provides a solution to prevent the service from processing
replayed messages. It does this by rejecting messages that the service has previously
received within the valid processing time for them.

Liabilities
The liabilities associated with the Implementing Message Replay Detection in
WSE 3.0 pattern include the following:
● There is a small probability that the SignatureValue of two different messages

could be the same. This would result in one of the messages getting falsely
rejected as a replay attempt. The probability for this to occur is very small based
on the number of value combinations that could make a SignatureValue, but it
remains possible.

● This pattern describes how to perform replay detection using WS-Security.
When you use it in conjunction with other protocols, such as reliable messaging,
there is a possibility that resent messages could be falsely rejected as replay
attempts. You may have to modify the approach to message replay detection
described in this pattern to use values in the message that distinguish a resent
message from the original message. For more information about reliable
messaging, see Reliable Message Delivery in a Web Services World: A
Proposed Architecture and Roadmap on MSDN.

● It may be difficult to find an effective replay cache mechanism that meets all of the
requirements for the implementation. Consider the following requirements before
choosing the replay cache mechanism to implement:
● To operate on a Web farm, you must share it across multiple servers.
● It must support frequent and concurrent updates in real time.
● Cache performance is very important. If you are using a database, it is

likely that you will have to optimize the database to function as a replay
cache. In-memory caches perform best, but they depend on the life cycle of
the application processes and they do not provide cache data consistency.

Note: An alternative approach to implementing a message replay detection assertion is to extend
an existing WSE 3.0 turnkey assertion to provide message replay detection capability. For example,
the MutualCertificate11Assertion turnkey assertion class and its security filters can be extended
to provide message replay detection capabilities immediately after the signature is verified by the
receive security filter in the assertion.

http://msdn.microsoft.com/webservices/webservices/understanding/advancedwebservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-rm-exec-summary.asp
http://msdn.microsoft.com/webservices/webservices/understanding/advancedwebservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-rm-exec-summary.asp

 Chapter 5: Service Boundary Protection Patterns 219

Security Considerations
Security considerations associated with the Implementing Message Replay Detection
in WSE 3.0 pattern include the following:
● You must set the cache lifetime for the custom policy assertion for a longer time

than the maximum message age configured in the policy assertion added to twice
the WSE 3.0 configuration value for time tolerance in seconds. This should not
depend on the expiration of the message specified by the sender.

● Replay caches do not inherently provide a means for a service to detect cache
tampering. If replay cache tampering is an identified threat that you choose to
mitigate, as revealed by a proper threat analysis of your application, consider
requiring the service (or services on a Web farm) to create a Hashed Message
Authentication Code (HMAC) or digital signature on the cache contents to verify
the cache’s integrity. This approach is effective to mitigate cache tampering, but it
also degrades the performance of the replay detection mechanism.

● For simplicity, the examples in this pattern do not apply mitigation techniques
against all possible threats. For example, all input should be validated. For more
information, see Message Validator in Chapter 5, “Service Boundary Protection
Patterns.”

● If you are using a perimeter service router to route the same types of messages to
several different service endpoints, you have to make sure that a service will not
process a replayed message that was already processed by one of the other service
endpoints that receives messages from the router. To mitigate a message replay
across multiple services, you must either make sure that the replay cache is shared
by all the services or implement message replay detection on the perimeter service
router.

Message Validator

Context
A Web service interacts with other applications over a network. Incoming data may
be malformed and may have been transmitted for malicious purposes. There is also
a risk of injection attacks, where data from incoming messages is tampered with to
include additional syntax.

Problem
How do you protect Web services from malformed or malicious content?

220 Web Service Security

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Malicious content poses a risk to the Web service. An attacker can insert syntax

in a request message to cause the Web service or other downstream systems that
process the received data to behave in an undesirable manner. The attacker can
do this through injection attacks, such as XML injection, SQL injection, or
HTML/client script injection. Web services that do not require access control
are especially susceptible because they have no means to limit to a smaller,
more trusted group, the number of clients that can access them.

● There is a risk of attackers bypassing client validation techniques by using
alternative clients or by modifying data after it has left the client. Web services
must be designed to be autonomous and perform their own input validation
instead of trusting the validation that is performed in the client application.

The following condition is an additional reason to use the solution:
● An attacker can use malformed or oversized messages to launch a denial-of-

service attack. Denial of service attacks can take advantage of the multiplier effect,
where a malformed or oversized message causes a disproportionate increase in
the use of resources, such as a server’s CPU time, memory usage, or database
connections.

Solution
Assume that all input data is malicious until proven otherwise, and use message
validation to protect against input attacks, such as SQL injection, buffer overflows,
and other types of attacks. The message validation logic enforces a well-defined
policy that specifies which parts of a request message are required for the Web service
to successfully process it. It validates the XML message payloads against an XML
schema (XSD) to ensure that they are well-formed and consistent with what the Web
service expects to process. The validation logic also measures the messages against
certain criteria by examining the message size, the message content, and the character
sets that are used. Any message that does not meet the criteria is rejected.

Participants
Message validation involves the following participants:
● Client. The client accesses the Web service.
● Service. The service is the Web service that processes requests received from

clients. The service implements the message validation logic.

 Chapter 5: Service Boundary Protection Patterns 221

Process
Figure 5.4 illustrates the process that is used by message validation logic to intercept
request messages and verify that they are acceptable for processing by the service.

Send Response

Send Request1

2

3

Validate Message

Client Service

Figure 5.4
Message validation occurring at a Web service

As illustrated in Figure 5.4, the process for message validation is described in the
following steps:
1. The client sends a request message to the service. The validation process itself is

hidden from the client.
2. The service validates the message. The message validation logic makes a number

of checks to validate the message. Checks can include:
● Comparing the size of the request against the maximum allowable size that is

specified for request messages.
● If the message is signed, verifying the signature to ensure that the message has

not been tampered with in transit.
● Verifying that the message payload is well-formed and conforms to a

predefined schema, with acceptable data types and ranges of values.
● Parsing the entire request message for malicious content. Potentially, malicious

content can be placed in either the SOAP message elements or in the message
payload, so both are checked.

3. The service processes the request and responds to the client. If the request passes
all the validation checks that are performed by the message validator, the service
processes the message and may issue a response to the client.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

222 Web Service Security

Benefits
The benefits of the Message Validator pattern include the following:
● The Web service is protected from malformed and malicious content. This helps

protect against injection attacks, even for Web services that do not implement
access control.

● The Web service performs validation independently of the client — it does not
accept messages simply because they have already been validated by the client.

Liabilities
The liabilities associated with the Message Validator pattern include the following:
● Message validation logic does not process binary message content, such as

attachments. For message validation logic to process binary attachments, it needs
to be capable of recognizing each type of binary attachment that it encounters to
ensure that they are free of malicious content. Specifying a maximum message
size helps to protect against injection attacks in binary attachments. However,
validation of binary data should be handled by antivirus filters.

● If a message is encrypted with message layer security, it may not be possible to
inspect data for malicious content unless the message is decrypted beforehand
or the validation logic has access to the decryption key.

● If data is protected by transport layer security, the entire channel is encrypted and
decrypted at end points. As a result, message validation cannot occur at any
intermediaries between those points.

Security Considerations
Security considerations associated with the Message Validator pattern include the
following:
● Message validation can help protect against denial of service attacks, but the

message validation logic must be very efficient when it conducts its validation
checks. Otherwise, the message validation logic may be a system bottleneck and
may itself become the target of a denial of service attack. Malformed content can
include very large messages, in some cases for the purposes of launching a denial
of service attack. You should make the maximum message size large enough to
allow legitimate messages to be accepted but small enough to prevent attacks.

● Using a validating parser and verifying the input message against its XML Schema
(XSD) result in a significant increase in CPU processing. And, even though XML
Schema (XSD) has the capability to specify data range validations and it supports
the use of regular expressions, many schemas use data types, such as string, which
do not prevent many forms of injection attacks.

 Chapter 5: Service Boundary Protection Patterns 223

● Instead of building the message validation logic into the Web service itself, you
can place it in an intermediary. This allows several Web services to use the same
intermediary, and it enables each Web service to dedicate its resources to
processing legitimate messages. It also ensures that invalid messages never reach
the Web service. However, using an intermediary in this way can create a single
point of failure, which may become a target of attack.

● XML message payloads that contain a CDATA field can be used to inject illegal
characters that are ignored by the XML parser. If CDATA fields are necessary,
you must inspect them for malicious content.

● The Web service may obtain data for response messages from external sources.
There is no guarantee that external data sources properly validate data. Passing
responses without message validation makes the Web service a potential “carrier”
of malicious input from external data sources. You should consider filtering Web
service response messages that are returned to the client.

Related Patterns
The following child pattern is related to the Message Validation pattern:
● Implementing Message Validation in WSE 3.0. This pattern provides steps and

recommendations to implement message validation at the message layer with
WSE 3.0.

Implementing Message Validation in WSE 3.0

Context
You are implementing a Web service that uses Web Service Enhancements (WSE) 3.0.
The Web service must validate request messages received from clients to make sure
that they are not malformed and do not contain malicious content.

Objectives
This implementation of the Message Validator pattern has the following objectives:
● Prevent the service from processing request messages that are larger than a

specified size.
● Prevent the service from processing messages that are not well-formed or that do

not conform to an expected XML schema.
● Validate input messages before deserializing them into .NET data types so that

they can be interpreted as regular expressions.
● Demonstrate how to use WSE 3.0 custom assertion to implement message

validation.
● Use ASP.NET and WSE 3.0 configuration settings to limit usage of system

resources such as CPU.

224 Web Service Security

Content
This implementation pattern includes the following sections:
● Implementation Strategy. This section provides a high-level description of the

strategy used to implement the Message Validation pattern.
● Implementation Approach. This section describes the steps required to

implement this pattern:
● Configure the client
● Configure the service

● Resulting Context. This section outlines the benefits, liabilities, and other
considerations related to the pattern,

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

Implementation Strategy
To implement message validation on a Web service, you use a combination of
application configuration, code implementation, and filtering in WSE 3.0. Use one
or more of the following methods to perform message validation:
● Set the maximum request size in the service’s configuration file to limit the size of

messages that the service will process.
● Validate each incoming request message to ensure that it is well-formed XML,

that it contains all of the parts required by the service, and that the contents of the
message conforms to an expected structure as defined by an XML Schema (XSD).

● Use regular expression checking to ensure that input contains only valid data and
does not contain malicious SQL, HTML, or JavaScript code that could lead to code
injection attacks.

● Use regular expressions to ensure that complex data types (such as social security
numbers and telephone numbers) are received in a format that the service can
process.

Note: You should conduct a thorough threat analysis of your service application to determine where
in the code you should perform message validation and to determine which methods of message
validation you should use.

To fully understand this pattern, you must have some experience with the
.NET Framework, WSE 3.0, and Web service development.

http://go.microsoft.com/fwlink/?LinkId=57044

 Chapter 5: Service Boundary Protection Patterns 225

Participants
This implementation pattern requires the following participants:
● Client. The client accesses the Web service.
● Service. The service is the Web service that processes requests received from

clients. The service implements the message validation logic.

Process
The Message Validator pattern describes the message validation process at a high
level. This implementation pattern provides a refined description of that process
specific to the WSE 3.0 implementation.

Figure 5.5 illustrates the process by which message validation logic intercepts request
messages and verifies that they are acceptable for processing by the service.

Send Response

Send Request1

2

3

Validate Message

Client Service

Figure 5.5
Validating a request message

The process uses the following steps:
1. The client sends a request message to the service.
2. The service validates the message. The service uses a number of different

validation checks to prevent malicious input. These include:
● Comparing the size of the request to the value established for the

maxRequestLength attribute of the <httpRuntime> element in the
application’s configuration file, which is specified in kilobytes.
maxRequestLength specifies the maximum allowable size for request
messages. If the message exceeds this value, the service does not process
the message, and it returns an error.

Note: You can set other values in the <httpRuntime> element to control response, resource
usage for handling requests, and timeouts. For more information about <httpRuntime>, see
<httpRuntime> Element in the .NET Framework General Reference on MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp

226 Web Service Security

● Checking the format of the request message to ensure that the message is
formed correctly and that all of the required message parts are present. The
service uses WSE policy assertions to make sure that all required message parts
are present. The service can use the requireActionHeader policy assertion to
verify that the message contains a WS-Addressing action header. The service
can use the requireSoapHeader policy assertion to verify that the message
contains other SOAP header elements, such as an addressing header and a
message ID. For more information about WSE 3.0 policy assertions, see Policy
Assertions in the WSE 3.0 product documentation on MSDN.

● Verifying that the XML in the message payload is well-formed and that it
conforms to a predefined schema with acceptable data types and ranges of
values. The service uses an XML Schema (XSD) to validate the contents of the
message body. If a specific schema is not required for validation, it can use an
XML parser to validate the request body. The service can use an XML Schema
(XSD) to perform structural validation, data type validation, cardinality of child
elements to parent elements, numeric value ranges, and regular expression
validation for character patterns and ranges.

● Parsing the request message for malicious content. The service can use regular
expressions to ensure that the messages contain only valid data. Regular
expression validation can be implemented either in the XML Schema (XSD)
or in code. Also, the service can use parameterized SQL queries to access and
modify data in databases to mitigate the risk of SQL injection.

3. The service processes the request and responds to the client. If the request passes
all validation checks performed by the message validator, the service processes the
message.

Implementation Approach
This section describes how to implement the pattern. The section is broken into two
major tasks:
● Configure the client. This section describes the steps required to configure policy

and code for the client.
● Configure the service. This section describes the steps required to configure

policy and code for the service.

This pattern does not specifically address other security requirements for
authentication and securing the communication channel. For more information about
authentication and securing the communication channel, see the following patterns:
● Direct Authentication in Chapter 1, “Authentication Patterns.”
● Brokered Authentication in Chapter 1, “Authentication Patterns.”
● Data Confidentiality in Chapter 2, “Message Protection Patterns.”
● Data Origin Authentication in Chapter 2, “Message Protection Patterns.”

http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp

 Chapter 5: Service Boundary Protection Patterns 227

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code, have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

Configure the Client
The client requires no special configuration for message validation. The client should
be able to recognize and properly handle validation exceptions thrown by the service.

Configure the Service
If you use policy to implement authentication and message protection for your
service, you should configure it before you attempt to use the custom policy assertion
provided in this implementation. For policy-based authentication and message
protection examples, see one of the following implementation patterns in Chapter 3,
“Implementing Transport and Message Layer Security”:
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0
● Implementing Message Layer Security with Kerberos in WSE 3.0
● Implementing Direct Authentication with UsernameToken in WSE 3.0

If you do not use policy to implement authentication and/or message protection for
your service, you must enable support for WSE 3.0 and add a text file for the policy
cache to your service project in Visual Studio 2005 before using the custom policy
assertion provided in this pattern.

f To enable the service project to support WSE 3.0

1. In Visual Studio 2005, right-click the application project, and then click
WSE Settings 3.0.

2. On the General tab, select the Enable this project for Web Services
Enhancements check box, select the Enable Microsoft Web Services
Enhancement SOAP Protocol Factory check box, and then click OK.

f To add a policy cache file to the service project in Visual Studio

1. In Visual Studio, right-click the application project, and then click Add New Item.
2. Click Text File.
3. In the Name field, type a name for the file, such as wse3policyCache.config.
4. Click Add.

This section is divided into subsections; each subsection describes a message
validation technique. You do not always have to implement all the message
validation techniques. You should complete a thorough threat analysis of the service
to determine which techniques to use.

228 Web Service Security

Whether you implement some or all of the message validation techniques, you
should implement them in the order that they are described. The order in which the
message validation techniques occur depends on where they are implemented in the
platform. In this pattern, the request size must be checked before any other step.
The custom policy assertion must be applied in the pipeline after the message is
decrypted but before the request is processed by the service. Regular expression
checking, if implemented in the XML Schema (XSD), occurs when the request is
validated against the message schema in the policy assertion. Otherwise, regular
expression checking occurs where the code is implemented, most likely in the service
code. Parameterization of SQL queries occurs when the query is created, prior to
execution on the database server.

The point at which the body validator assertion is specified does not matter relative
to other assertions defined to protect the message, because decryption and signature
verification is applied further up the communication pipeline from assertions applied
for message validation.

Configure Maximum Request Length

To limit the size (in kilobytes) of messages that the service will process, you should
specify a value for the maxRequestLength attribute of the <httpRuntime> element in
the service’s Web.config file. This value should be set according to the largest request
message that you can reasonably expect the service to process. If you do not specify a
value for this setting, the default value is 4096 KB. The following XML example
shows a maximum request length set to 300 KB.

<configuration>
 ...
 <system.web>
 <httpRuntime maxRequestLength="300"/>
 ...
 </system.web>
 ...
</configuration>

If your service uses a protocol other than HTTP (such as TCP), the WSE
<maxMessageLength> setting can be used to limit the size (in kilobytes) of incoming
requests, assuming that you are using the SoapClient/SoapService model for your
service. The default value for the length attribute of the <maxMessageLength>
element is 4096 KB. The following configuration example shows the
<MaxMessageLength> set to 1024 KB for a service that uses the
SoapClient/SoapService model.

 Chapter 5: Service Boundary Protection Patterns 229

<configuration>
...
 <microsoft.web.services3>
 ...
 <messaging>
 <maxMessageLength value="1024" />
 </messaging>
 ...
 </microsoft.web.services3>
 ...
</configuration>

For more information about using the SoapClient/SoapService classes for messaging,
see How To: Send and Receive a SOAP Message by Using the SoapClient and
SoapService Classes in the WSE 3.0 product documentation on MSDN.

Required Message Part/Schema Validation

This implementation pattern uses policy assertions to check for required message
parts and to validate the message schema. The following example policy file provides
an example of policy assertions for the service. Other polices that would be present to
sign, encrypt, and provide authentication capabilities have been omitted for brevity.

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
 <extensions>
 ...

 <extension name="bodyValidator"
type="Microsoft.Practices.WSSP.WSE3.QuickStart.MessageValidation.CustomAssertions.
BodyValidatorAssertion,
Microsoft.Practices.WSSP.WSE3.QuickStart.MessageValidation.CustomAssertions"/>
 </extensions>
 <policy name="MessageValidationService">
 <bodyValidator xsdPath="Configuration\GetCustomers.xsd" />
 ...
 <requireSoapHeader name="MessageID"
namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
 <requireSoapHeader name="To"
namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
 <requireActionHeader />
 </policy>
...
</policies>

In this policy file example, the <Action>, <MessageID>, and <To> elements
are required on all incoming request messages. A custom policy assertion,
bodyValidator, is specified in the <extensions> section (see the section, “Custom
Policy Assertion — Message Body Validation,” for sample code). You should indicate
the namespace as appropriate for your project.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522-0672-4c17-b68e-0d3e65067271.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522-0672-4c17-b68e-0d3e65067271.asp

230 Web Service Security

The type attribute for the bodyValidator extension declared in the preceding policy
code example is formatted as the fully qualified class name (namespace + class name)
followed by a comma and then the name of the assembly that contains the assertion
class.

If you are not using policy to implement authentication and/or message protection
for your service as previously described in this section, you must now enable the
service to support WSE and enable policy support. WSE does not recognize custom
policy assertions when it parses the policy cache file, and it will disable policy
support if you attempt to configure it using the WSE Settings tool. If you have to
enable policy support after you have added a custom policy assertion to your policy
cache, you must add a <policy> element to the service’s Web.config file to enable
policy support.

<microsoft.web.services3>
...
 <policy fileName="wse3policyCache.config" />
...
</microsoft.web.services3>

Replace the value specified for the fileName attribute with the file path and name of
your policy cache file.

Custom Policy Assertion — Message Body Validation
The following code example shows the custom policy assertion used to check the
message body against an XML Schema (XSD).

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.IO;
using System.Xml.Schema;
using System.Web;
using System.Configuration;

using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Design;

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.MessageValidation.CustomAssertions
{
 /// <summary>
 /// This Custom PolicyAssertion class validates the received SOAP body
 /// against an XML Schema (XSD) document whose path is configured in the
policy document.
 /// </summary>
 public class BodyValidatorAssertion : PolicyAssertion
 {
 private string xsdPath;

(continued)

 Chapter 5: Service Boundary Protection Patterns 231

(continued)

 public override SoapFilter CreateClientInputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateClientOutputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateServiceInputFilter(FilterCreationContext
context)
 {
 return new BodyValidatorAssertion.ServiceInputFilter(this);
 }

 public override SoapFilter CreateServiceOutputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override void ReadXml(System.Xml.XmlReader reader,
IDictionary<string, Type> extensions)
 {
 if (reader == null)
 throw new ArgumentNullException("reader");
 if (extensions == null)
 throw new ArgumentNullException("extensions");

 bool isEmpty = reader.IsEmptyElement;

 string xsdPath = reader.GetAttribute("xsdPath");
 if (!string.IsNullOrEmpty(xsdPath))
 {
 this.xsdPath = xsdPath;
 }
 else
 {
 throw new ConfigurationErrorsException(Messages.MissingXsdPath);
 }

 reader.ReadStartElement("bodyValidator");

 if(!isEmpty)
 reader.ReadEndElement();
 }

(continued)

232 Web Service Security

(continued)

 public override void WriteXml(System.Xml.XmlWriter writer)
 {
 writer.WriteStartElement("bodyValidator");
 writer.WriteAttributeString("xsdPath", this.xsdPath);
 writer.WriteEndElement();
 }

 protected class ServiceInputFilter : SoapFilter
 {
 #region Custom Fields

 private XmlSchema schema;

 #endregion

 #region Constructors
 public ServiceInputFilter(BodyValidatorAssertion assertion)
 {
 string xsdPath = assertion.xsdPath;
 if (!Path.IsPathRooted(xsdPath))
 {
 xsdPath =
Path.Combine(AppDomain.CurrentDomain.SetupInformation.ApplicationBase, xsdPath);
 }

 using (StreamReader streamReader = new StreamReader(xsdPath))
 {
 this.schema = XmlSchema.Read(streamReader, ValidationHandler);
 streamReader.Close();
 }
 }
 #endregion

 #region SoapFilter Methods
 public override SoapFilterResult ProcessMessage(SoapEnvelope envelope)
 {
 ValidationResults results = new ValidationResults();
 SoapContext.Current.MessageState.Set(results);

 ValidateSchema(envelope.Body.InnerXml);

 if (results.ErrorsCount > 0)
 {
 throw new
ApplicationException(string.Format(Messages.ValidationError,
results.ErrorMessage));
 }

 return SoapFilterResult.Continue;
 }
 #endregion

 #region Custom Methods
 /// <summary>

 Chapter 5: Service Boundary Protection Patterns 233

 /// Performs the validation of the SOAP body against the specified XML
Schema (XSD) document.
 /// </summary>
 /// <param name="xmlDoc">SOAP message's body (XML)</param>
 public void ValidateSchema(string xmlDoc)
 {
 try
 {
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.Schemas.Add(this.schema);
 settings.ValidationType = ValidationType.Schema;

 XmlReader reader = XmlReader.Create(new StringReader(xmlDoc),
settings);

 // Validate the document.
 while (reader.Read()) ;

 reader.Close();
 }
 catch(Exception ex)
 {
 throw new
ApplicationException(string.Format(Messages.SchemaValidationException,
ex.Message));
 }
 }

 /// <summary>
 /// Callback method that stores the error messages.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="args"></param>
 public void ValidationHandler(object sender, ValidationEventArgs args)
 {
 if (args.Severity == XmlSeverityType.Error)
 {
 ValidationResults results =
SoapContext.Current.MessageState.Get<ValidationResults>();

 results.ErrorMessage.Append(args.Message + "\r\n");
 results.ErrorsCount++;
 }
 }
 #endregion

 private class ValidationResults
 {
 public StringBuilder ErrorMessage = new StringBuilder();
 public int ErrorsCount;
 }

 }

 }
}

234 Web Service Security

In the preceding example, the Messages.MissingXsdPath refers to a resource string
that provides a message for the ConfigurationErrorsException that is being thrown.
As appropriate, you should substitute this and other resource strings used in the code
example with a simple exception message to describe the nature of the exception.

Note: The validator assertion will only validate the structure of XML data in the message that has
the same namespace as the schema that is used to validate it. Data with other namespaces is
ignored for schema validation.

You should take care when using a policy assertion to validate an XML Schema (XSD)
if a party other than the Web service developer will be responsible for configuring the
service’s policy when it is deployed into production. If the party responsible for
configuring policy in production does not add the validation assertion, the validation
will not be performed. If Web service development and policy configuration
responsibilities are not held by the same individuals, you should consider using a
helper class that is called from within the service to perform the validation instead.
Alternatively, you can add the schema to the resource file for your project. In this
case, the schema does not have to be deployed as a separate file. For more
information, see Resolving the Unknown: Building Custom XmlResolvers in the
.NET Framework on MSDN.

The policy assertion caches the schema in memory that it uses to validate incoming
request messages. If you make changes to the schema, you may have to restart
Microsoft Internet Information Services (IIS) to ensure that the updated schema
is loaded into memory.

Use Regular Expressions to Parse Input
The following code example shows how to use regular expressions to parse input on
the Web service to ensure that only valid characters are used. Place this code where
it can be called to validate input, after the message has been decrypted (if message
layer security is implemented). For example, the following code can be added to the
service to validate each string input parameter.

...
using System.Text.RegularExpressions;
...
private bool Validate(string searchString)
{
Regex r = new Regex("^[0-9A-Za-z]{1,10}$");
 return r.IsMatch(searchString);
}

The preceding example provides a simple example for regular expression validation
that does not allow any non-alphanumeric characters. Consequently, it may not be
suitable for use in all applications. You can use more sophisticated checks for
complex data, such as social security numbers and telephone numbers. For more
information about implementing regular expressions, see How To: Use Regular
Expressions to Constrain Input in ASP.NET on MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html/CusXmlRes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html/CusXmlRes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp

 Chapter 5: Service Boundary Protection Patterns 235

Note: Although the custom policy assertion provided in this pattern is applied after the security
filters in the pipeline (that is, after the message has been decrypted), the regular expression code is
not used in the policy assertion because it would require the policy assertion to have explicit
knowledge of input parameters contained in the data.

You can also use regular expressions to validate user input on client applications. The
main benefit of validating input from the client’s perspective is to save a round trip to
the Web service if data validation fails. For this approach to be effective, you must be
able to validate data according to the Web service’s validation requirements.

However, the service should never depend on the client to perform validation checks.
You must always perform validation checks on the server, because an attacker could
use a different client that does not perform the check or messages could be altered
after a check has been performed at the client.

The following example demonstrates how regular expression validation can be
described within an XML Schema (XSD). Regular expression validation that uses an
XML Schema (XSD) allows the Web service publisher to indicate to consumers what
the Web service expects. However, it does not perform as well as regular expression
validation in code.

...
<xsd:simpleType name="CustomerReferenceType">
 <xsd:restriction base="xsd:normalizedString">
 <xsd:maxLength value="20"/>
<xsd:pattern value="[A-D][0-9]{5}-[0-9A-Z]{7}-[a-z]{3}#*"/>
</xsd:restriction>
</xsd:simpleType>
...

For more information about using regular expressions in XSD schemas, see XML
Schema Regular Expressions on MSDN.

Parameterize SQL Queries

Web services often use a database to store and retrieve data. Web service request
messages could contain malicious input to inject SQL commands into database
queries. The following example provides an example of how to parameterize SQL
queries. Whenever possible, you should use stored procedures for both performance
and security reasons. Stored procedures accept input through parameters, and they
generally work best to enforce minimum privilege for data retrieval and
modification. The example shows how to parameterize dynamic SQL if
your application must use it.

Note: The example assumes that a regular expression has already been used to validate the
searchString parameter. For more information, see the previous section, “Use Regular Expressions
to Parse Input.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp

236 Web Service Security

...
using System.Data.SqlClient;
using System.Configuration;
...
private Customer[] GetCustomerList(string country, string searchString)
{
CustomerCollection customerCollection = new CustomerCollection();
Customer customer = new Customer();
using (SqlConnection conn = new
SqlConnection(ConfigurationManager.ConnectionStrings["Northwind"].ToString()))
{
string selectString = "SELECT * FROM Customers WHERE Country = @Country AND
(CompanyName LIKE '%' + @SearchString + '%' OR ContactName LIKE '%' +
@SearchString + '%' OR @SearchString IS NULL)";
 conn.Open();
 SqlCommand cmd = new SqlCommand(selectString, conn);
 cmd.Parameters.Add("@Country", SqlDbType.VarChar).Value = country;
 cmd.Parameters.Add("@SearchString", SqlDbType.VarChar, 10).Value =
searchString;
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 customer.CustomerID = reader["CustomerID"].ToString();
 customer.CompanyName = reader["CompanyName"].ToString();
 customer.ContactName = reader["ContactName"].ToString();
 customer.ContactTitle = reader["ContactTitle"].ToString();
 customer.Address = reader["Address"].ToString();
 customer.City = reader["City"].ToString();
 customer.Region = reader["Region"].ToString();
 customer.PostalCode = reader["PostalCode"].ToString();
 customer.Country = reader["Country"].ToString();
 customer.Phone = reader["Phone"].ToString();
 customer.Fax = reader["Fax"].ToString();
 customerCollection.Add(customer);
 }
 reader.Close();
 conn.Close();
 }
 return (Customer[])customerCollection.ToArray(typeof(Customer));
 }

In this example, the Customer and CustomerCollection classes are custom data
objects. As appropriate, replace the data objects and SQL query for your application.
The important point is to parameterize the query instead of directly concatenating
input into the SQL query.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

 Chapter 5: Service Boundary Protection Patterns 237

Benefits
The majority of attacks that result from malformed messages, invalid characters,
or SQL injection are mitigated with the approach outlined in this implementation
pattern.

Liabilities
The liabilities associated with the Implementing Message Validation in WSE 3.0
pattern include the following:
● Validating messages against very large schemas can affect system performance.

Typically, the cost of parsing is multiplied two to four times when the schema
validation is performed on an XML message. For more information about XML
performance guidance in the .NET Framework, see Chapter 9, Improving XML
Performance in Improving .NET Application Performance and Scalability on MSDN.
If message schema validation is causing performance problems, you should
consider the following optimizations:
● Make sure that you are reading your schemas only once from the schema file,

and cache them in memory to minimize I/O.
● Reduce the message schema to essential elements that are required for a

particular Web service or Web service operation. Another option is to use
regular expression validation in code to validate structural elements.

● Incorporate more sophisticated regular expression checking. The regular
expression validation example provided in this application is very strict
and does not account for validation requirements specific to your service.
A thorough threat analysis of your application should reveal any need for
a specific form of regular expression checking. For more information about
validating input with regular expressions, see How To: Use Regular
Expressions to Constrain Input in ASP.NET on MSDN.

Security Considerations
Security considerations associated with the Implementing Message Validation in
WSE 3.0 pattern include the following:
● Attackers may attempt to work around message validation. You should be aware

of known attempts to work around message validation and adjust your validation
code accordingly. Keep your platform up to date with the latest security updates
to mitigate issues with built-in security features.

● Schema validation validates only basic data types, such as integers, dates, and
structures; it should always be supplemented with regular expression validation.
You can directly implement regular expression validation in the XML Schema
(XSD) or in code to validate more complex data, such as social security numbers
and telephone numbers. Regular expression validation directly in the XML
Schema (XSD) is useful to communicate what the service requires as valid input
to client applications, but it does not perform as well as regular expressions
implemented in code.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp

238 Web Service Security

Exception Shielding

Context
A client is accessing a Web service. The Web service is designed according to the
principals of service orientation, which ensures that the boundaries of the service
are explicit, and requires that exception information related to the internal
implementation of the service is managed within the service.

Problem
How do you prevent a Web service from disclosing information about the internal
implementation of the service when an exception occurs?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Exception details may contain clues that an attacker can use to exploit resources

used by the system. Detailed fault messages can disclose information about
the Web service or resources accessed by the Web service code that threw the
exception. An attacker may deliberately cause the Web service to throw an
unhandled exception in an attempt to obtain sensitive information, such as
connection strings, server names, SQL queries, XPath commands, stack traces,
and data schemas. The attacker can then use this information to exploit the
Web service or the resources that it accesses.

● Information related to anticipated exceptions needs to be returned to the client.
In cases where an exception is expected, an error message that does not contain
sensitive internal information can be returned to the client. A service may provide
information about the cause of the fault, where the information is not considered a
security risk. In some cases (for example, data validation errors), the potential
savings in administrative support may outweigh the risk of providing the
requestor with more detailed information about an exception.

The following condition is not resolved by the base pattern, but it is resolved by
Extension 1 — Logging Exceptions:
● Exceptions that occur within a Web service should be logged to support

troubleshooting. Information within an exception can be used by monitoring tools
to automatically notify system administrators when an exception occurs. The same
information can also be used by application developers to diagnose exceptions
that occur within the logic of the service or with resources that the service is
dependent on. In some cases, you may require that an error message that is
returned to the client contains an ID that helpdesk staff can use to
troubleshoot user problems.

For more information, see the “Extensions” section at the end of this pattern.

 Chapter 5: Service Boundary Protection Patterns 239

Solution
Use the Exception Shielding pattern to sanitize unsafe exceptions by replacing them
with exceptions that are safe by design. Return only those exceptions to the client that
have been sanitized or exceptions that are safe by design. Exceptions that are safe by
design do not contain sensitive information in the exception message, and they do
not contain a detailed stack trace, either of which might reveal sensitive information
about the Web service’s inner workings.

Participants
Exception shielding involves the following participants:
● Client. The client application that calls a Web service.
● Service. The Web service that processes requests that are received from clients.

Process
Figure 5.6 illustrates how an unhandled exception that is thrown by a Web service is
processed by a service that implements exception shielding.

Send Request

ServiceClient

1

Throw Exception2

Process Exception3

Return Processed
Exception

4

Figure 5.6
A Web service that implements exception shielding

As illustrated in Figure 5.6, the exception shielding process is described in the
following steps:
1. The client submits a request to the service.
2. The service attempts to process the request and throws an exception.

The exception can be safe or unsafe by design.
3. Exception shielding logic processes the exception. If the exception type is safe by

design, it is already considered sanitized and is returned to the client unmodified.
If the exception is unsafe, the exception is replaced with an exception that is safe
by design, which is returned to the client.

4. The service returns the processed exception to the client. The exception is
wrapped in a SOAP fault before it is returned to the client.

240 Web Service Security

Example
Global Bank has designed a Web service that checks the balance of customer
accounts. Global Bank needs to ensure that when exceptions occur, information
potentially useful to attackers is not revealed.

For some anticipated exceptions that are safe by design, such as data validation
errors, the Web service returns appropriate information to the client. For other
exceptions, such as authentication failures, the exception logic sanitizes the
exception, replacing it with an exception that is safe by design.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of using the Exception Shielding pattern include the following:
● Exception shielding prevents sensitive information from being disclosed in

exception details.
● Maintenance staff can enable detailed exception information to be returned

by production Web services. This allows them to troubleshoot issues in the
production environment without exposing exception details to external
consumers.

● Unanticipated exceptions that are thrown by Web services in the enterprise
can be uniformly and centrally managed. Different Web services that implement
disparate methods of exception management make it more difficult for enterprise
architects to ensure that unhandled exceptions are managed securely and
consistently across an enterprise.

Liabilities
Adding exception shielding logic to a Web service increases the amount of processing
the service must perform. You must ensure that exception shielding is performed
efficiently. Any related activities, such as logging, may need to be minimized to
prevent the service from becoming a performance bottleneck.

 Chapter 5: Service Boundary Protection Patterns 241

Security Considerations
Security considerations associated with the Exception Shielding pattern include the
following:
● Unhandled exceptions may be wrapped by another exception. You should ensure

that the outer exception and all wrapped exceptions are checked by the exception
shield logic before they are returned to a Web service client.

● You should use exception handling throughout the entire application’s code base.
This prevents internal implementation details of the service from being revealed to
the client.

● The “deny” model is an alternative to the “allow” model that is used in the
Exception Shielding pattern. In the deny model, specific exceptions are registered
to be sanitized, and all other exceptions are sent back to the client unmodified.
However, the deny model is considered less secure, because unanticipated
exceptions are not sanitized.

Extensions
The extension described here builds on the base pattern to provide additional
capabilities. In addition to resolving the forces stated for the base pattern, this
extension also resolves the following condition:
● Exceptions that occur within a Web service should be logged to support

troubleshooting. Information in an exception can be used by monitoring tools to
automatically notify system administrators when an exception occurs. The same
information can also be used by application developers to diagnose exceptions
that occur within the logic of the service or with resources that the service is
dependent on. In some cases, you may require that an error message that is
returned to the client contains an ID that helpdesk staff can use to troubleshoot
user problems.

Extension 1 — Logging Exceptions
In addition to processing exceptions, the exception shielding logic can also log the
full details of the exception to an event log. This allows maintenance staff to identify
and troubleshoot the exceptions. The information also assists with intrusion detection
and incident response.

The exception shielding logic can also generate an exception identifier for each
exception and pass it back to the client in a message, so that it can be presented to the
user in the form of an error message. This allows the exception that is returned to the
client to be directly traced to detailed exception information located in the event log,
which can assist in dealing with helpdesk calls.

242 Web Service Security

Related Patterns
The following child pattern is related to the Exception Shielding pattern:
● Implementing Exception Shielding. This pattern provides implementation steps

and recommendations for using exception shielding.

Implementing Exception Shielding

Context
You are implementing a Web service that runs on the .NET Framework. You must
ensure that exceptions thrown by the Web service do not disclose sensitive
information about the service or resources that it accesses.

Objectives
The objectives of this pattern are to:
● Prevent the Web service from disclosing sensitive information in exception

messages.
● Create exceptions that are safe by design in which exception information is

returned to Web service clients.
● Write unsanitized exception details to a log to support monitoring and

troubleshooting the Web service.

Content
This pattern consists of the following sections:
● Implementation Strategy. This section provides a high-level description of

the strategy used to implement the solution that includes descriptions of the
participants and the process.

● Implementation Approach. This section describes the following steps that are
required to implement the Exception Shielding pattern:
● Create a custom exception class.
● Enclose code in try/catch blocks.
● Create a method that sanitizes exceptions.

● Resulting Context. This section outlines the benefits, liabilities, and security
considerations when the pattern is implemented.

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

http://go.microsoft.com/fwlink/?LinkId=57044

 Chapter 5: Service Boundary Protection Patterns 243

Implementation Strategy
The strategy for the implementation of this pattern includes the following:
● Implement a custom exception to return sanitized exception data to the client

that does not reveal sensitive information about the Web service, such as database
connection strings and resource URLs.

● Enclose all code in try/catch blocks. Handle the custom “safe” exceptions first,
such as business exceptions derived from a custom “safe” exception type, and
then handle all other exception types and run them through the sanitization
process. After an exception is sanitized, it proceeds up the stack back to the client.

Note: To fully understand this pattern, you must have some familiarity and experience with the
.NET Framework.

Participants
The Exception Shielding pattern involves the following participants:
● Client. The client accesses the Web service. The client provides the credentials for

authentication during the request to the Web service.
● Service. The service is the Web service that requires authentication of a client prior

to authorizing the client.

Process
The Exception Shielding pattern describes the process to prevent detailed exception
information from returning to a client. This implementation pattern provides a
detailed description of that process that is specific to the implementation.

Figure 5.7 illustrates how a Web service processes messages exception details from an
exception.

Send Request

ServiceClient

1

Throw Exception2

Process Exception3

Return Processed
Exception

4

Figure 5.7
A Web service throwing and processing an exception.

244 Web Service Security

The process uses the following steps:
1. The client submits a request to the service.
2. The service attempts to process the request and throws an exception.

The exception could be safe by design or unsafe.
3. Exception shielding logic processes the exception. If the exception type is safe

by design, it is considered sanitized and the service can return it to the client
unmodified. If the exception is unsafe, it is replaced with an exception that is
safe by design, which the service can return to the client.

4. The service returns the processed exception to the client. The sanitized exception
that the service returns is wrapped in a SOAP Fault. The following Web Services
Enhancements (WSE) message trace provides an example of what a sanitized
exception returned by the service would look like on the wire in a response to
the client.

<soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>System.Web.Services.Protocols.SoapException: Server was
unable to process request. --->
Microsoft.Practices.WSSP.WSE3.QuickStart.ExceptionShielding.CustomExceptions.Cl
ientException: An error has occurred while consuming Web service. Please
contact your administrator for more information. ErrorId: acba7202-ef5f-4921-
bbfa-b7a787e3ad53
 at
Microsoft.Practices.WSSP.WSE3.QuickStart.ExceptionShielding.Service.Service.Hel
loWorld()
 --- End of inner exception stack trace ---</faultstring>
 <detail />
 </soap:Fault>

The exception information includes the fully qualified name of the sanitized
exception class, a sanitized exception message, and the location in the stack where the
sanitized exception was thrown. The exception class and limited stack information in
the SOAP Fault do not translate to a physical location on the service. However, if you
have determined after a thorough threat analysis of the service application that these
two items of data may contain sensitive information, you may have to take further
steps to sanitize the exception. For more information about this topic, see the
“Security Considerations” section.

Implementation Approach
This section describes how to implement this pattern. Exception shielding occurs on
the service, which is the focus of the implementation. The following steps describe
the tasks necessary to implement exception shielding on the service:
1. Create a custom exception class.
2. Enclose code in try/catch blocks.
3. Create a method that sanitizes exceptions.

 Chapter 5: Service Boundary Protection Patterns 245

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code, have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

Create a Custom Exception Class
Derive a custom exception class from Exception to create an exception type that is
defined as safe by design. The following code example provides a custom exception
class named ClientException.

using System;

namespace
Microsoft.Practices.WSSP.WSE3.QuickStart.ExceptionShielding.CustomExceptions
{
 public class ClientException : Exception
 {
 public ClientException(string message) : base(message)
 {
 }
 }
}

In this code sample, the ClientException class receives a generic exception message
that is defined in the service’s Web.config file as an argument in its constructor. The
generic exception message is intended to notify the client that an error has occurred
without providing details of the exception stack or the exception.

Enclose Code in Try/Catch Blocks
The following code sample provides an example of how exceptions are handled
based on whether they are considered safe or unsafe. In this example, the only
exception type that is considered safe by design is the ClientException class. The
application may throw other exceptions derived from this class that are returned to
the client in an unsanitized state. All other exceptions are sanitized by converting
them into a ClientException.

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Configuration;
using System.Diagnostics;

using CustomExceptions;

using Microsoft.Web.Services3;

(continued)

246 Web Service Security

(continued)

namespace ExceptionShielding.Service
{
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [Policy("ServicePolicy")]
 public class Service : System.Web.Services.WebService
 {
 ...

 [WebMethod]
 public string HelloWorld()
 {
 try
 {
 // Executes an operation, which can return an exception
 DoSomething();
 }
 catch(ClientException)
 {
 //This exception is safe, so it is returned without any change
 throw;
 }
 catch(Exception unsafeException)
 {
 ClientException clientException = GetSanitizedException(unsafeException);
 throw clientException;
 }

 return "Hello World";
 }

 /// <summary>
 /// Executes a simple operation
 /// </summary>
 private void DoSomething()
 {
 Random rnd = new Random();
 if (rnd.Next(1, 10) > 1)
 {
 throw new
System.Security.SecurityException(ConfigurationManager.AppSettings["SystemExceptio
nMessage"]);
 }
 else
 {
 throw new
ClientException(ConfigurationManager.AppSettings["ClientExceptionMessage"]);
 }
 }
}

 Chapter 5: Service Boundary Protection Patterns 247

In the preceding example, the Web service does something to cause an error. In the
DoSomething() method, different error types are randomly thrown to demonstrate
how exceptions that are safe by design are handled differently from those that have
to be sanitized. If a ClientException is thrown, it is returned to the client unsanitized.
Any other exception types that are not of this class or derived from it are sanitized by
the GetSanitizedException method described in the following section.

Note: Exceptions should be sanitized as far up the Web service call stack as possible to minimize
the stack information that is returned in the sanitized exception. If possible, sanitized exceptions
should be thrown from the Web method processing the request from the client.

Create a Method that Sanitizes Exceptions
If any type of exception thrown is not a ClientException or derived from this class,
the GetSanitizedException() method is called to return a sanitized ClientException.
The ClientException is then returned to the client. The details of the unsanitized
exception are captured in the application log for troubleshooting. The following
code example provides an example of sanitizing unsafe exceptions.

/// <summary>
/// Logs the original exception and returns a more generic exception with a
reference number.
/// </summary>
/// <param name="exception"></param>
/// <returns></returns>

[EventLogPermissionAttribute(System.Security.Permissions.SecurityAction.Demand,
PermissionAccess=EventLogPermissionAccess.Administer)]
private ClientException GetSanitizedException(Exception exception)
{
 string errorId = Guid.NewGuid().ToString();
 string errorMessage = string.Format(Resources.Messages.ExceptionThrownMessage,
 errorId, exception.Message);

 string source = ConfigurationManager.AppSettings["ApplicationName"];
 if (string.IsNullOrEmpty(source))
 {
 source = AppDomain.CurrentDomain.FriendlyName;
 }

 try
 {
 // Logs the original exception.
 EventLog.WriteEntry(
 source,
 errorMessage,
 EventLogEntryType.Error);
 }

(continued)

248 Web Service Security

(continued)

 catch
 {
 // Uses an alternative event log source in case of error.
 string alternativeSource = String.Format("ASP.NET {0}.0",
Environment.Version.ToString(3));

 // Swallowing exceptions like this is generally considered a bad practice -
but the alternative is to
 // possibly return exception information unshielded. Users should consider
the benefits
 // and liabilities in their own environments.
 EventLog.WriteEntry(alternativeSource,
 String.Format(Resources.Messages.InsufficientPermissions,
source),
 EventLogEntryType.Warning);

 EventLog.WriteEntry(alternativeSource,
 errorMessage,
 EventLogEntryType.Error);
 }

 // Returns an exception with a generic message.
 return new
ClientException(String.Format(ConfigurationManager.AppSettings["ClientExceptionGen
ericMessage"], errorId));
}

The code example that sanitizes exceptions uses the following configuration settings,
which are defined in the application’s configuration file.

...
<appSettings>
 <add key="ApplicationName" value="ExceptionShieldingService"/>
 <add key="ClientExceptionGenericMessage" value="An error has occurred while
consuming Web service. Please contact your administrator for more information.
ErrorId: {0}"/>
 <!-- Example text for exceptions that were not safe by design. Exception
shielding should sanitize the login and password from the exception information --
>
 <add key="SystemExceptionMessage" value="SqlError:An exception has occurred.
Cannot connect to database using login='Bob' and password='password'"/>
 <!-- Example text for exceptions that are safe by design -->
 <add key="ClientExceptionMessage" value="This exception is inoffensive and is
not being sanitized."/>
</appSettings>
...

 Chapter 5: Service Boundary Protection Patterns 249

This implementation uses an EventLog instance to log exception details. Depending
on your requirements, you may have to use a different logging mechanism. If you use
a different one, replace the logging code in the GetSantizedException() method with
the appropriate code for your log implementation. By default, this example writes to
the application event log.

The preceding code example uses an EventLogPermissionAttribute to ensure that
the code has the ability to write to the event log. If the assembly in which the sample
code is running does not have this permission based on code access security settings,
the assembly will not load at run time.

The ASP.NET account does not have the required permissions to create a new source
for the event log. The preceding code example specifies itself as the source of the
unsanitized exception details that are written to the event log. If you are not running
your Web service under a custom service account with permissions to create sources
for the event log, you have two options to resolve this issue:
● Grant permissions to the default service account to create new event sources.

Usually, you should not use this approach because it gives any application
running under the default service account the ability to create event sources at
any time.

● Create the event source that the Web service uses beforehand. For example, you
can use an installer application running under an account with the appropriate
security permissions. For more information about this topic, see “Creating a New
Event Source at Install Time” in How To: Use the Network Service Account to
Access Resources in ASP.NET.

If an event source has not been registered for the sample code, it will fail when it
attempts to write the exception to the event log. In this case, it will attempt to write to
the default ASP.NET run-time event source as a fallback measure, so that some record
of the exception can be captured for troubleshooting.

Functionality has been added for a Web service publisher that provides
support to Web service consumers to assist customers in identifying an error for
troubleshooting. The particular occurrence of the exception that is thrown is assigned
a unique identifier. The unique identifier is returned to the client in the sanitized
exception to assist Web service support staff in finding the unsanitized exception
details in the log to diagnose the error.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000015.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000015.asp

250 Web Service Security

Benefits
Only exceptions that are considered safe by design are returned to the calling
application. This allows finer control over the exposure of the Web service’s
internal information.

Liabilities
Although this implementation handles a scenario in which an event source for the
service is not registered for the event log, it does not address the scenario where other
types of exceptions are thrown while sanitizing unsafe exception types.

Security Considerations
Security considerations associated with the Implementing Exception Shielding
pattern include the following:
● If an attacker finds a way to intentionally cause exceptions, the attacker may use

it to attempt a denial of service attack or flood the application log with bogus
exceptions. You can reduce this threat by limiting more resource-intensive
processing of sanitized exception types. For example, logging causes I/O
operations that may impact the performance of the application while it is
sanitizing exceptions.
You should consider logging information only on certain types of sanitized
exceptions that are most essential to log for security or troubleshooting purposes.
However, carefully balance this approach to mitigating the problem with your
auditing and logging requirements.

● This implementation can only sanitize exceptions thrown within the Web service
implementation. It does not sanitize exceptions thrown higher up in the
application stack or in the communication pipeline. WSE 3.0 limits this behavior
by minimizing the information returned in exceptions thrown from within the
WSE 3.0 pipeline through the <detailedErrors> configuration setting. By default,
the Enabled attribute of the <detailedErrors> setting is False, so you do not have
to explicitly enable it.

● The sanitized exceptions thrown by an implementation of this pattern
eliminate potentially sensitive information in unsanitized exceptions,
but the sanitized exceptions themselves do contain the fully qualified
class name of the sanitized exception (for example,
Microsoft.Practices.WSSP.WSE3.QuickStart.ExceptionShielding
.CustomExceptions.ClientException), and the exact point in the stack
trace where the exception was sanitized, (for example,
Microsoft.Practices.WSSP.WSE3.QuickStart.ExceptionShielding.Service
.Service.HelloWorld()).

 Chapter 5: Service Boundary Protection Patterns 251

Usually, this information is considered harmless, but it may be considered
sensitive in certain circumstances. If a thorough threat analysis determines
that this information is sensitive, remove it by building and deploying a custom
WSE 3.0 policy assertion to remove the information from the SOAP Fault before
it is returned to the client. For more information about creating custom policy
assertions in WSE 3.0, see Custom Policy Assertions on MSDN.

● If you must return to the client sensitive information contained in exceptions,
there are additional options available to protect the exceptions. If you implement
message layer security, you can protect fault messages by setting the encryptBody
attribute of the <fault> element to true in the turnkey assertion configuration. If
you are providing message protection at the transport layer, communications
between the client and service are encrypted anyway.

● If you enable debugging for the service through ASP.NET configuration, it may
reveal additional information through sanitized exceptions about the location in
code where the exception occurred. This information may be considered sensitive
in nature because it provides information about the physical location of the code
on the server where the exception occurred. If you do not want this type of
information revealed to clients through sanitized exceptions, make sure that
ASP.NET debugging is disabled on the service.

More Information
For more information about idempotent methods, see “9 Method Definitions”:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

For more information about idempotent, see “Idempotent” on the Wikipedia Web
site: http://en.wikipedia.org/wiki/Idempotent.

For more information about idempotent Web services, see “Idempotent Receiver“
on the Enterprise Integration Patterns Web site: http://www.eaipatterns.com
/IdempotentReceiver.html.

For more information about SOAP Message Security, see OASIS:
“Web Services Security: SOAP Message Security 1.0 (WS Security 2004)”:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

For more information about SQL Server performance optimization, see “Optimizing
Database Performance Overview” on MSDN: http://msdn.microsoft.com/library/?url=
/library/en-us/optimsql/odp_tunovw_9mxz.asp?frame=true.

For more information about security best practices for SQL Server 2000, see
“SQL Server 2000 SP3 Security Features and Best Practices” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx.

Chapter 4, “Design Guidelines for Secure Web Applications,” in Improving Web
Application Security: Threats and Countermeasures on MSDN: http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/5636c932-30d0-42c6-ac17-88c40b5935b8.asp
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://en.wikipedia.org/wiki/Idempotent
http://www.eaipatterns.com/IdempotentReceiver.html
http://www.eaipatterns.com/IdempotentReceiver.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://msdn.microsoft.com/library/?url=/library/en-us/optimsql/odp_tunovw_9mxz.asp?frame=true
http://msdn.microsoft.com/library/?url=/library/en-us/optimsql/odp_tunovw_9mxz.asp?frame=true
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp

252 Web Service Security

For more information about <httpRuntime>, see “<httpRuntime> Element” in
the .NET Framework General Reference on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp.

For more information about WSE 3.0 policy assertions, see “Policy Assertions”
on MSDN: http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html
/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp.

For more information about using the SoapClient/SoapService classes for
messaging, see “How To: Send and Receive a SOAP Message by Using the
SoapClient and SoapService Classes,” in the WSE 3.0 documentation on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/8cbdb522-0672-4c17-b68e-0d3e65067271.asp.

For more information about adding a schema to a resource file see “Resolving the
Unknown: Building Custom XmlResolvers in the .NET Framework,” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html
/CusXmlRes.asp.

For more information about implementing regular expressions, see
“How To: Use Regular Expressions to Constrain Input in ASP.NET” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/PAGHT000001.asp.

For more information about using regular expressions in XML Schemas, see
“XML Schema Regular Expressions” on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp.

For more information about XML performance guidance in the .NET Framework, see
Chapter 9, “Improving XML Performance,” in Improving .NET Application Performance
and Scalability on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpag/html/scalenetchapt09.asp.

For more information about how to create the event source that the Web service uses,
see the “Creating a New Event Source at Install Time” section of “How To: Use the
Network Service Account to Access Resources in ASP.NET” on Microsoft MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/PAGHT000015.asp.

For more information about creating custom Policy Assertions in WSE 3.0, see
“Custom Policy Assertions” in the WSE 3.0 product documentation on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/5636c932-30d0-42c6-ac17-88c40b5935b8.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp
http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522-0672-4c17-b68e-0d3e65067271.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522-0672-4c17-b68e-0d3e65067271.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html/CusXmlRes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html/CusXmlRes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000015.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000015.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/5636c932-30d0-42c6-ac17-88c40b5935b8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/5636c932-30d0-42c6-ac17-88c40b5935b8.asp

6
Service Deployment Patterns

Introduction
One or more Web services are most easily deployed on an application server, such as
Windows Server 2003, that hosts the Web service. Frequently, the application server
then communicates with other resources, such as database servers, and in some cases,
other application servers that contain data for the Web service to process.

As organizations consider externally exposing Web services, there is often a
reluctance to deploy the application server hosting the Web service in the perimeter
network that external applications can access. However, Web service standards are
designed for this scenario through the use of message layer security and
intermediaries that can inspect message content and perform message validation
and routing capabilities. Intermediaries can be used to supplement existing firewall
devices, which are often used to protect an organization’s perimeter network.

This chapter includes a design pattern for a perimeter service router, which acts as
an intermediary that can be deployed in your perimeter network and route messages
to a Web service endpoint that resides on an internal network that is invisible to the
client. It also includes an implementation pattern that shows how the perimeter
service router can be implemented using Microsoft technologies. The implementation
pattern also contains variations from the core design pattern that show how the
intermediary can perform actions such as message validation in addition to routing.
These patterns are the following:
● Perimeter Service Router
● Implementing Perimeter Service Router in WSE 3.0

254 Web Service Security

Perimeter Service Router

Context
External applications require access to one or more Web services that are deployed
within a private network. Access to the Web services and resources in the private
network is restricted to authenticated users. External applications should not have
access to resources used by the Web services in the private network.

Problem
How do you make Web services in a private network available to external
applications without exposing resources in the private network?

Forces
Any of the following conditions justifies using the solution described in this pattern:
● Internal Web services and dependent resources may be targeted by attackers

who are external to the network. The organization must protect Web services on
the internal network, so that any attacks do not affect the internal Web services or
dependent resources.

● Attackers can gain information about the internal network, and use it to
compromise the network. The organization must not reveal information about
the internal network infrastructure that can be useful to attackers.

The following condition is an additional reason to use the solution:
● External clients need reliable access to fixed service endpoints. The location of a

Web service’s internal implementation may need to change dynamically to cater
for the availability of dependent resources, or to cater for maintenance and batch
processing windows. External clients should be unaffected by these changes.

Solution
Design a Web service intermediary that acts as a perimeter service router. The
perimeter service router provides an external interface on the perimeter network
for internal Web services. It accepts messages from external applications and routes
them to the appropriate Web service on the private network.

 Chapter 6: Service Deployment Patterns 255

Participants
Using the Perimeter Service Router pattern involves the following participants:
● External application. An application located outside of the private network that

needs to access the Web services in a private network.
● Perimeter service router. The perimeter service router is a Web service that

provides access to Web services in the private network.
● Service. One or more Web services that are accessed by the perimeter service

router.

Figure 6.1 shows a perimeter service router accepting requests from a client and
routing them to other services.

Private NetworkPerimeter
Network

External
Application

Perimeter
Service
Router

Service B

Service A Database

Legacy
Applications

Figure 6.1
A perimeter service router on the perimeter network

The perimeter service router provides an entry point that external applications use
to access the functionality exposed by internal services. The perimeter service router
is typically deployed in a perimeter network (also known as DMZ or demilitarized
zone), which has access to resources in the private network through a firewall.
A perimeter service router operates at the application layer, and is intended to
work in conjunction with existing firewall technologies and not to replace them.

256 Web Service Security

Process
The following diagram illustrates the functionality of the perimeter service router.

Perimeter
Service
Router

Send Request

Route Response

1

4
Service

Route Request

Response

2

3

Perimeter Network Private Network

External
Application

External Application
Credentials

External Application
Credentials

Figure 6.2
The functionality of the perimeter service router

As illustrated in Figure 6.2, the functionality of the perimeter service router is
described in the following steps:
1. The external application sends a request message. The request message is

addressed to the service’s external interface on the perimeter service router.
The perimeter service router typically “hides” the internal endpoint address by
accepting requests through an external endpoint address that is exposed to
external applications.

2. The perimeter service router forwards the request message to the service.
The message is forwarded to the appropriate endpoint address. If the perimeter
service router provides an external interface for multiple services on the private
network, it will route the request to the appropriate service request based on the
specific address where the request was sent.

3. The service sends a response. The service performs any security checks, such as
authentication, and then processes the request. Based on the contract between the
external application and the service, the service may send a response back to the
external application.

4. The perimeter service router forwards the response to the external application.
If the server sends a response in Step 3, the perimeter service router forwards the
response to the external application.

 Chapter 6: Service Deployment Patterns 257

Note: The basic perimeter service router described previously does not perform security functions as
an intermediary such as authentication, replay detection or message validation. For more information
about the security functions performed on a perimeter service router, see the “Benefits” section.

Example
Northwind Traders is a manufacturer that has created a suite of Web services that
provide the ability to view and manage their inventory. Currently these services are
only accessible to clients through a Web application provided by Northwind Traders.
Many of Northwind’s clients are retailers that also provide applications for their
customers to order products online. When the retail customers order a Northwind
Trader’s product it is not possible to determine if that product is available prior to
making the order. As a result, Northwind’s clients would like direct access to the
Web services that provide inventory information.

Instead of providing direct access to the inventory services, Northwind has decided
to implement a perimeter service router that external clients can access. External
clients can now incorporate calls to the perimeter service router directly into their
applications to provide inventory information to their customers.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of using the Perimeter Service Router pattern include the following:
● Security can be maintained at the perimeter service router, which provides an

extra layer of security to protect the Web services.
● Servers that host internal Web services can be taken offline for maintenance

without affecting the external interface. This can be accomplished by configuring
the perimeter service router to start routing messages to a backup server while the
maintenance is being performed.

● The perimeter service router represents a single point of entry for external clients.
This allows it to be extended to support additional operations that external clients
require. These requirements could include:
● Protocol Transition. External clients can be authenticated with different

mechanisms, such as X.509 certificates, or custom authentication that is
validated against a database. After the external client has been authenticated,
it can be transitioned into an internal protocol, such as the Kerberos version 5
protocol to access internal Web services.

258 Web Service Security

● Message Validation. Request messages from external clients can be validated
to make sure that they do not contain malicious content prior to sending them
to an internal service. Message signatures can also be validated to detect
tampering.

● Exception Shielding. Detailed error messages that are returned by internal
services can be filtered or modified prior to sending responses back to external
clients.

● Replay Detection. The perimeter service router can keep a cache of requests
and reject any duplicate requests that are sent to the interface.

● Message Transformation. Request messages received from clients can be
transformed into a structure that internal Web services require. This provides
the ability to modify internal interfaces without affecting external interfaces.
It is also possible to support several structures from external clients that can be
mapped into an internal structure.

● Auditing. Activities may need to be attributed to a specific user or organization
for accounting or security auditing purposes.

Note: In some cases, you need to provide some or all of these additional requirements for internal
clients as well. In these cases, you need to place the logic that provides these functions on the
internal network, or ensure that the internal clients also pass through the perimeter service router.

Liabilities
The liabilities associated with the Perimeter Service Router pattern include the
following:
● Many platforms make exposing the application functionality simple. However,

this can lead to a poor decision in terms of granularity. If the service interface is
overly fine-grained, you can end up making too many calls to perform a specific
action. You need to design your service interfaces to be appropriate for network
or out-of-process communication.

● Each additional service interface that a service provides increases the amount of
work required to make changes to the functionality that is exposed by a service.

● The Perimeter Service Router pattern adds complexity and performance overhead
that may not be justified for very simple service-oriented applications.

● The perimeter service router may become a bottleneck when routing large
numbers of messages. To avoid this problem, the perimeter service router
should be designed with good performance as a high priority.

 Chapter 6: Service Deployment Patterns 259

Security Considerations
Security considerations associated with the Perimeter Service Router pattern include
the following:
● The perimeter service router is often the only point of entry to the internal

network for external clients. This can make it a prime target for attackers. To guard
against an attack, you must harden the platform on which the perimeter service
router is deployed.

● Although the perimeter service router can provide an extra layer of security
between external clients and internal Web services on a private network, you
should still ensure that you design secure Web services on the internal network.
You should also ensure that communications between the perimeter service router
and internal Web services are secured.

Related Patterns
The following child pattern is related to the Perimeter Service Router pattern:
● Implementing Perimeter Service Router in WSE 3.0. This pattern provides steps

and recommendations to implement a perimeter service router in WSE 3.0. It also
discusses extensibility points in the SoapHttpRouter class in WSE 3.0 that you can
use to address advanced scenarios, such as validation and dynamic routing

Implementing Perimeter Service Router in WSE 3.0

Context
You are exposing Web services deployed in a private network to external
applications. Access to the Web services and resources in the private network is
restricted to authenticated users. Any applications external to the private network
must use a perimeter service router to access the Web services and resources
deployed in the private network.

Objectives
The objectives of this pattern are to:
● Use a perimeter service router to provide an additional layer of security for

services exposed to external clients.
● Allow the perimeter service router to route information to internal Web services

based on a location contained within a configuration file.
● Demonstrate how to implement a perimeter service router using the WSE 3.0

SoapHttpRouter class.
● Discuss extensibility points in the SoapHttpRouter class in WSE 3.0 that you can

use to address advanced scenarios, such as validation and dynamic routing.

260 Web Service Security

Content
This pattern consists of the following sections:
● Implementation Strategy. This section provides a high-level description of the

strategy to implement a perimeter service router.
● Implementation Approach. This section describes the steps required to

implement this pattern:
● General setup
● Configure the external application
● Configure the service router
● Configure the service

● Resulting Context. This section outlines the benefits, liabilities, and the security
considerations related to this pattern.

● Extensions. This section describes how to extend the base pattern to add more
functionality for the router, including security policy enforcement.

Note: The code examples in this pattern are also available as executable QuickStarts on the
Web Service Security community workspace.

Implementation Strategy
The implementation strategy for this pattern includes the following:
● Implement a perimeter service router in WSE 3.0, and deploy it as the service

boundary between the perimeter network and the private network.
● Configure a handler to forward incoming requests from the router to the service.
● Create a routing referral cache that specifies the endpoint Uniform Resource

Identifier (URI) of the service.

As an intermediary, the presence of the perimeter service router is not known to
external applications. The service router represents the outward interface for the
service that is deployed in the private network. External applications appear to
communicate directly with the target service deployed to the internal network,
although in reality they use an external URI for the service that is provided by
the perimeter service router.

The Perimeter Service Router design pattern describes the perimeter service router as
an intermediary that decouples internal services from external applications. This
implementation pattern provides a more detailed description of that process.

Note: To fully understand this pattern, you must have some familiarity and experience with the .NET
Framework, WSE 3.0, and Web service development.

http://go.microsoft.com/fwlink/?LinkId=57044

 Chapter 6: Service Deployment Patterns 261

Participants
Implementing a perimeter service router in WSE 3.0 involves the following
participants:
● External application. An application outside the private network that needs to

access the Web services in the private network.
● Perimeter service router. A Web service that provides access to Web services in the

private network.
● Service. One or more Web services that the perimeter service router can access.

The following diagram displays the participants and their relation to each another in
the private network, the perimeter network, and the public network.

Private NetworkPerimeter
Network

External
Application

Perimeter
Service
Router

Service B

Service A Database

Legacy
Applications

Figure 6.3
The deployment of a perimeter service router

Note: The code examples provided in this implementation pattern display the router and the service
deployed on the same host for demonstration purposes only. Normally, you should deploy the
perimeter service router to a server located on the perimeter network, and then deploy the service to
a private network segment, as the previous diagram indicates.

262 Web Service Security

Process
The Perimeter Service Router pattern provides a high-level overview of the perimeter
service router functionality. This pattern describes the same process with refinements
that are specific to this implementation. Figure 6.4 illustrates the functionality of the
perimeter service router.

External
Application

Perimeter Service
Router

Service

Send Request1 Route Request2

Figure 6.4
The functionality of a perimeter service router

The following steps show how the perimeter service router functions:
1. The external application sends a request message. The request message is

addressed to the service’s external interface as defined in the <r:for> entry in the
referral cache on the perimeter service router.

2. The perimeter service router forwards the request message to the service.
The perimeter service router directs the message to the target service URI defined
in the <r:go> entry in its referral cache.

Implementation Approach
This section describes how to implement the pattern. The section is divided into four
major tasks:
1. General setup. This task provides steps that apply to all applications for this

pattern.
2. Configure the external application. This task lists the steps required to configure

the external application to work with the perimeter service router.
3. Configure the perimeter service router. This task lists the steps required to

configure policy and code on the perimeter service router.
4. Configure the service. This task lists the steps required to configure policy and

code on the service to work with the perimeter service router.

 Chapter 6: Service Deployment Patterns 263

This document describes the steps specific to implementing the perimeter service
router. However, this document does not include details about how to implement
authentication or message protection between the external application and service.
For more information about authentication and securing communication between
the external application and the service, see the following patterns:
● Direct Authentication in Chapter 1, “Authentication Patterns.”
● Brokered Authentication in Chapter 1, “Authentication Patterns.”
● Data Confidentiality in Chapter 2, “Message Protection Patterns.”
● Data Origin Authentication in Chapter 2, “Message Protection Patterns.”

Note: For the code examples included in this pattern, an ellipsis (...) is used where segments of
code, such as class declarations and designer-generated code have been omitted. You must name
variables, methods, and return values and ensure that they are of the appropriate type for the client
application.

General Setup
You must install WSE 3.0 on the computers that you use to develop WSE 3.0-enabled
applications. Once WSE 3.0 is installed, you must enable the perimeter service router
and the service to support WSE 3.0. You can achieve this by performing the following
steps:

f To enable a Visual Studio 2005 project to support WSE 3.0

1. In Visual Studio 2005, right-click the application project and select
WSE Settings 3.0.

2. On the General tab, select the checkboxes for the following options:
a. Enable this project for Web Services Enhancements.
b. Enable Microsoft Web Services Enhancement SOAP Protocol Factory

3. Click OK.

Configure the External Application
The external application requires no special configuration to use the perimeter service
router in order to communicate with resources on the private network. However, the
Web service publisher must create a copy of the service’s WSDL file and change the
URI to the perimeter service router’s URI for external clients. The external copy of the
WSDL file should contain all of the Web service operations that the router publicly
exposes. This is the WSDL that the external application would use to generate its
proxy to communicate with the Web service.

264 Web Service Security

Configure the Perimeter Service Router
To configure the perimeter service router, you need to create an entry for a SOAP
router in the perimeter service router’s configuration file, and then specify the
location of a referral cache. You can achieve this by performing the following steps.

f To configure the perimeter service router

1. In Visual Studio 2005, right-click the service router project, and select
WSE Settings 3.0.

2. On the Routing tab, click Add.
3. In the Type drop-down list box, type

Microsoft.Web.Services3.Messaging.SoapHttpRouter, Microsoft.Web.Services3,
Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35. This sets
the class that WSE 3.0 uses to process messages for routing.

Note: At the time that this document was published, the default value that was available
in the drop-down list box, Microsoft.Web.Services3.Routing.RoutingHandler,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35 would not function properly.
You should therefore use the value specified in Step 3 above.

4. In the path box, type the name of an external interface for the Web service, or if the
service router will handle routing for many Web services, type “*.asmx.”
In this pattern, the service is exposed through the router as ExternalService.asmx.
This is reflected in the URI that the external application uses as the address
for its request messages. For example, if the router is deployed to
http://perimeterserver/router/, the external URI that the external applications
use to communicate with the service through the router is:
http://perimeterserver/router/ExternalService.asmx.

5. In the Verb drop-down list box, select * to route messages based on all verbs,
and then click OK.

6. In the Referral Cache box, type a name for the referral cache, such as
referralCache.config. For security reasons, name the referral cache with a
.config suffix. For more information, see the Security Considerations section
in this pattern.

7. Create a new referral cache file, or copy and modify an existing referral cache file,
and then add it to the perimeter service router project.

Note: The account that the perimeter service router runs under must have read and write
permissions for the referral cache file.

 Chapter 6: Service Deployment Patterns 265

The following is an example of a routing referral cache for a perimeter service router.

<?xml version="1.0" ?>
<!-- This is the referral cache file that forwards calls through the router to a
service -->
<r:referrals xmlns:r="http://schemas.xmlsoap.org/ws/2001/10/referral">
 <r:ref>
 <r:for>

<r:exact>http://localhost/PerimeterServiceRouter/Router/ExternalService.asmx</r:ex
act>
 </r:for>
 <r:if />
 <r:go>

<r:via>http://localhost/PerimeterServiceRouter/Service/InternalService.asmx</r:via>
 </r:go>
 <r:refId>uuid:093DC599-FD40-4bd3-B15F-02698D8EBFC2</r:refId>
 </r:ref>
</r:referrals>

The URI specified in the previous code sample for the <r:for> element is the URI for
the perimeter service router. The <r:go> element contains the URI for the service to
which requests are routed. The <r: via> element specifies a URI to reroute the SOAP
message. When there are multiple <r: via> elements, the SOAP request is routed
only to the first <r: via> element. For more information on referral cache syntax,
see How to: Configure the WSE SOAP Router.

Once the routing handler is configured, you can see an entry for an HTTP handler in
the perimeter service router’s configuration file that should look like the information
in the following code sample.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 ...
 <system.web>
 <httpHandlers>
<add type=" Microsoft.Web.Services3.Messaging.SoapHttpRouter,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" path="ExternalService.asmx" verb="*" />
 ...
 </httpHandlers>
 ...
 </system.web>
 ...
</configuration>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp

266 Web Service Security

Configure the Service
Web services that are not WSE-3.0 enabled will normally accept routed messages
from a perimeter service router. However, a WSE 3.0-enabled Web service will reject
a message that is not specifically addressed to it, unless it is configured to accept a
message addressed to a different party. Because external applications use the external
URI for the service on the perimeter service router to address request messages, you
must configure a WSE-3.0 enabled service to accept messages that are addressed to
the perimeter service router. You can do this by adding a SoapActor attribute above
the class declaration code for your Web service class, as defined in the following
code sample.

...
using Microsoft.Web.Services3.Messaging;
...
[SoapActor("http://localhost/PerimeterServiceRouter/Router/ExternalService.asmx")]

Substitute the URI in this code sample for the one that you use to externally expose
your service on the perimeter service router.

Resulting Context
This section describes some of the more significant benefits, liabilities, and security
considerations of using this implementation pattern.

Note: The information in this section is not intended to be comprehensive. However, it does discuss
many of the issues that are most commonly encountered for this pattern.

Benefits
The benefits of using the Implementing Perimeter Service Router in WSE 3.0 pattern
include the following:
● You can use the perimeter service router to extend the service boundary to the

perimeter of the private network, which allows you to consolidate common
perimeter security functions on the perimeter service router. For more information
about this topic, see the Extensions section.

● You can take servers that host internal Web services offline for maintenance
without affecting the external interface. You can accomplish this by configuring
the perimeter service router to route messages to an alternate server while the staff
performs maintenance on the primary server.

 Chapter 6: Service Deployment Patterns 267

Liabilities
The liabilities associated with the Implementing Perimeter Service Router in WSE 3.0
pattern include the following:
● Each additional service interface that a service provides increases the amount of

work required to change the functionality exposed by the perimeter service router.
● The implementation may add complexity and performance overhead that may not

be justified for simple service-oriented applications.
● Internet Information Services (IIS) 6.0 locks the routing referral cache file for a

deployed perimeter service router, which prevents direct modification of the
cache. If you attempt to make modifications directly to the referral cache, you
must first restart IIS 6.0 before you can save them. This requirement may affect the
availability of the service router or other Web applications that the server may
host. To resolve this issue, you can create another referral cache file, and then
update the perimeter service router’s Web.config file to point to the new referral
cache file.

Security Considerations
Security considerations associated with the Implementing Perimeter Service Router
in WSE 3.0 pattern include the following:
● External interfaces such as perimeter service routers are typically prime targets for

attackers that represent major entry points to the private network.
● You should name your referral cache file with a .config extension. IIS 6.0 filtering

prevents clients from accessing the contents in .config files. If you name the
referral cache with a different extension, the filtering may not work properly and
a client could access the contents to expose the internal URI of the Web service.

Extensions
This section discusses an extension that you can use to increase the functionality
of the perimeter service router.

Extension 1 — Using the Perimeter Service Router as a Policy Enforcer
You can extend the perimeter service router to perform additional security functions
by implementing a custom service router class that extends the SoapHttpRouter
class. The custom service router can act as a policy enforcer to authenticate clients,
perform message validation, reject replayed messages, attribute activity to a specific
user or organization, and perform other security functions.

To use a custom service router class, the routing handler you create (that is described
in the Implementation Approach section) must implement a custom router class that
you can derive from the default SoapHttpRouter class.

268 Web Service Security

You can override the following methods in the custom service router:
● GetRequestPolicy. This method allows you to implement logic that dynamically

determines which policy is enforced for any request message received from the
external application. This capability is useful for implementing message
validation, rejecting replayed messages, and authenticating the caller.

● GetForwardRequestPolicy. This method allows you to implement logic that
dynamically determines which policy is enforced for request messages passed
from the perimeter service router to the service. This capability is useful for
specifying policies for the perimeter service router to sign and encrypt an
incoming request message from the external application.

● ProcessRequestMessage. This method allows you to implement logic that
dynamically routes an incoming request message based on message content or
other factors. For example, you can use this method to route an incoming message
to an alternate destination while the primary recipient is offline and unable to
accept request messages. When you override the ProcessRequestMessage
method, the service might not use a referral cache unless it calls the
ProcessRequestMessage method of the parent SoapHttpRouter class.

You can deploy the perimeter service router as an entry point for a trusted subsystem,
which means that the service authenticates the routed request message, based on the
perimeter service router’s credentials instead of the original caller’s.

In a trusted subsystem model, if you need to forward security claims from the
original caller in the routed message, you must create a custom filter to add the
claims to the security header of the request message. For more information about
trusted subsystems, see Trusted Subsystem in Chapter 4, “Resource Access Patterns.”

If you need to retain the security context of the original caller while doing anything
other than simple pass-through routing as described in the base pattern, the external
application must add claims to the request message to satisfy policy requirements for
the internal service. In this case, the perimeter service router adds its own claims to
the request message in addition to those that the requestor added. It then forwards
the message to the internal service. The internal service then processes claims on
request for both the external application, as the originating client, and the router to
provide assurance that the message has passed through the router. For details on this
approach, see the “SecureRoutingToUltimateReceiver” QuickStart sample in the
WSE 3.0 QuickStarts folder.

For more information about implementing SOAP routers in WSE 3.0, see: Routing
SOAP Messages with WSE.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp

 Chapter 6: Service Deployment Patterns 269

More Information
“Service Interface Pattern” in Enterprise Solution Patterns Using Microsoft .NET on
MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html
/DesServiceInterface.asp.

For more information about using the WseWsdl3.exe utility, see the “WSDL to Proxy
Class Tool” on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/wse3.0/html/fbefe453-3851-439b-9c10-fb036b59ff81.asp.

For more information on referral cache syntax, see “How to: Configure the
WSE SOAP Router” on MSDN: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp.

For more information about implementing SOAP routers in WSE 3.0, see:
“Routing SOAP Messages with WSE” on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/fbefe453-3851-439b-9c10-fb036b59ff81.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/fbefe453-3851-439b-9c10-fb036b59ff81.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp

7
Technical Supplements

Introduction
This chapter contains technical supplements for Kerberos and X.509 brokered
authentication patterns. You can use these supplements in addition to the design and
implementation patterns for their respective technologies. The supplements include
specific guidance that may not directly relate to each design or implementation
pattern, but they are likely to be important resources as you consider deploying
a solution into production.

The Kerberos Technical Supplement for Windows includes:
● In-depth detail about how the Kerberos version 5 protocol is implemented on

Windows Server 2003, including information on topics such as Local Security
Authority (LSA), Security Support Provider Interface (SSPI), and key
management.

● Definition and configuration of service accounts for Web services.
● Configuration of service principal names (SPNs) for use with Windows integrated

authentication and message layer security.
● Kerberos operations for Web services that include the configuration of domain

accounts and deploying Web farms using message layer security.
● Troubleshooting common Kerberos issues.

The X.509 Technical Supplement includes:
● An overview of public key cryptography, X.509 certificates, and digital signatures.
● Various uses of X.509 certificates to provide security.
● An overview of certificate authorities and certificate revocation.
● Information about how to obtain an X.509 certificate.

 Chapter 7: Technical Supplements 271

Kerberos Technical Supplement for Windows
The Kerberos version 5 protocol represents a network-based authentication service
that uses tickets as a proof of identity. In most cases, users are still required to present
a user name and password for authentication. However, after users are authenticated,
they are issued a security ticket that is used to access protected resources. In contrast,
with NTLM authentication, a hashed copy of the user’s password is used to perform
challenge/response authentication for each protected resource that the person wants
to access.

The Brokered Authentication: Kerberos design pattern in Chapter 1, “Authentication
Patterns” provides a step-by-step description of the Kerberos authentication process,
along with benefits and liabilities associated with using the Kerberos protocol.
Understanding the Kerberos authentication process is important, but it is also very
helpful to understand how that process is implemented. As a result, this supplement
focuses on the implementation of the Kerberos protocol on the Windows platform.
It also discusses topics that relate to Web service implementations.

Local Security Authority (LSA)
The LSA Subsystem Service (LSASS) is the security subsystem in Windows that is
responsible for:
● User authentication.
● Local system security policy, which controls who can log on to the computer,

password policies, privileges that are granted to users and groups, and the system
security auditing settings.

● Sending security audit messages to the event log.

User authentication in the LSASS is performed with security packages that are
dynamically loaded at run time. There are two basic types of security packages; one is
an authentication package that is accessed through a set of APIs, which are referred to
as the LSA API. The other is named Security Support Provider (SSP), which is
accessed through the Security Support Provider Interface (SSPI).

The LSA API is used for local authentication on a workstation or server. This API
is called when you enter a user name and password at the CTRL+ALT+DEL login
prompt, or when you use the Win32 LogonUser function that is available through
the advapi32dll.

In Microsoft Windows NT® and Windows 2000, users must have Trusted Computing
Base (TCB) privileges to use the LogonUser function. This is because it uses a low
level LSA API function named LsaLogonUser, which requires system-level rights.
In Windows XP and Windows Server 2003, LogonUser was modified so that TCB
or system-level rights are not required. This function is not available in Windows 95,
Windows 98, and Windows Millennium Edition.

272 Web Service Security

Accessing the LSA
Most of the LSA API functions used for authentication and security context
management require system-level privileges. Windows NT and Windows 2000
allowed users with TCB privileges to access these functions. However, in the
Windows XP and Windows Server 2003 operating systems, a process must execute
under the SYSTEM identity to access these functions. The reason for this restriction is
that these functions have access to confidential information, such as the user’s hashed
password, which should never be accessible outside of the system.

Note: The original version of KerberosToken in Web Service Enhancements (WSE) 1.0 and WSE 2.0
used the LSA API directly. Processes that used this token required either TCB or SYSTEM privileges,
depending on the operating system. There were also issues related to signing and encryption when
the original version of KerberosToken was used in Windows 2000. For these reasons, you should
use KerberosToken2 in WSE 2.0 or KerberosToken in WSE 3.0, which both use SSPI.

When it comes to using the SSPI interface, it is not necessary for a process to run
under the SYSTEM identity, or to have TCB privileges to perform authentication
operations. This is good news for the Kerberos protocol because it means that
applications that use the Kerberos SSP are not required to use a high-privilege level
when they perform authentication. In other words, using TCB privileges or forcing
a process to run as SYSTEM represents a significant security risk, which you can
mitigate by using SSPI.

Security Support Provider Interface (SSPI)
SSPI defines a programming interface that security support providers (SSPs) must
implement. Microsoft provides the following SSPs:
● Negotiate
● NTLM authentication
● Kerberos protocol
● Digest
● Secure Channel, such as transport layer security (TLS) and Secure Sockets

Layer (SSL).

Negotiate is the preferred SSP for application developers to use because it attempts
to first use the Kerberos protocol; if a Kerberos Key Distribution Center (KDC) is not
available, it uses NTLM authentication. The Digest and Secure Channel SSPs are out
of scope for this document.

To use SSPI, the first task is to load the desired SSP and access its security interface,
which provides a table with function pointers to the appropriate SSPI operations.
An application uses these function pointers to interact with the security support
providers. The end result is that an application does not need to bind to a specific
support provider. Instead, the operations are dynamically accessed through a
function table.

 Chapter 7: Technical Supplements 273

SSPI is generally compatible with the Generic Security Services Application
Programming Interface (GSSAPI), which has been published as Internet protocol
specification (RFC 2743). GSSAPI represents a standard protocol that provides
interoperability with other platforms that use the Kerberos protocol.

Note: Even though the GSSAPI has been implemented by the Kerberos SSP, there are some
compatibility issues that you should consider. For more information about GSSAPI interoperability,
see SSPI/Kerberos Interoperability with GSSAPI on MSDN.

The following section discusses important concepts that you should understand
before learning the details of how applications use the SSP Interface for the Kerberos
protocol.

Important Concepts
There are several concepts that are important to understand about implementing and
using the Kerberos protocol. Because the Kerberos protocol is based on the use of
shared secrets, understanding how shared secrets are created and accessed is very
helpful. Other concepts that you should understand include service principal names
(SPNs), and how the authenticator is used.

Shared Secrets
A main concept of the Kerberos protocol is how shared secrets are created and used
for authentication. Essentially, a shared secret is nothing more than an encryption
key that the Kerberos protocol uses to perform symmetric encryption. Symmetric
encryption uses the same key to encrypt and to decrypt data. The Kerberos protocol
uses several symmetric keys to encrypt different pieces of information as part of the
authentication process. In addition, the Kerberos protocol supplies an encryption key
that applications and services can use to sign and encrypt messages.

There are two main patterns related to using shared secrets: one uses a shared
long term key to encrypt data, and the other uses long term keys and session keys.
The following is a brief description of each pattern:
● A user’s long term key is used to encrypt preauthentication data, which is

decrypted by the domain controller that uses the same key.
● A service’s long term key is used to encrypt a ticket, which contains a session key

along with additional data. The session key is used to encrypt the authenticator.
Both the ticket and authenticator are sent in a message. The receiving service uses
its long term key to extract the session key and validate the authenticator.

Note: There are two types of tickets used by the Kerberos protocol: a ticket-granting ticket (TGT)
used to access the ticket-granting service (TGS) and a service ticket used to access a service. Both
keys are discussed later in this technical supplement.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security/sspi_kerberos_interoperability_with_gssapi.asp

274 Web Service Security

Long Term Keys
Long term keys are stored in the credential store on a domain controller and in the
credential cache of the LSA. Because these keys are associated with credentials, access
to them is highly restricted, which means that access is limited to operations that run
within the process of the LSA. In other words, client and server applications do not
have access to the actual keys. Instead, LSA API operations use these keys to perform
security operations.

Note: Long term keys are also referred to as master keys in many Kerberos protocol documents.
When you see the term master key used in a document, remember it is referring to one of the long
term keys in the following list.

The Kerberos protocol uses four long term keys to perform authentication:
● User keys. When a user is created, the user’s password is used to create the user

key. In Active Directory service domains, the user key is stored with the user’s
object in Active Directory. At the workstation, the user key is derived from the
password when the user logs on.

● Service keys. Services use a key based on the password of the Windows account
assigned to the process that is hosting the service. Typically this account is the host
computer account. However, the process that is hosting a service can also be
configured to use a user account.
All KDCs in the same realm use the same service key, which is based on the
password assigned to the krbtgt account. The krbtgt account is a disabled
Windows user account that is created when an Active Directory domain is created.

● System keys. When a workstation or a server joins a Windows domain, a new
computer account is created and a password is automatically generated. In the
same manner as a user account, the computer account’s password is used to create
the system key.

● Inter-realm keys. To support cross-realm authentication, KDCs share an
inter-realm key, which is the basis for transitive trust between domains.

As previously mentioned, a user or computer’s password is converted into a
long term key that is used for authentication with the Kerberos protocol. This is
accomplished by performing a one-way hash on the plaintext password to create a
cryptographic key. The default hash implementation in Windows creates a 128-bit
key to support the RC4-HMAC encryption type.

When a user or computer account is created in Active Directory, the long term key
is stored in the Security Accounts Manager (SAM) accounts database on the domain
controller. This database is normally backed up, which means that offline attacks
could be used to gain access to long term keys. As a result, a system key that is
managed by administrators is used to encrypt the long term keys that are stored
in the SAM.

 Chapter 7: Technical Supplements 275

When a user logs on to Windows, the plaintext password is converted into a
cryptographic key and is immediately discarded. The cryptographic key, which is
also the long term key, is then stored in a volatile memory-based credential cache
on the local computer. If the password was typed correctly, the long term key should
match the one stored in the SAM, which represents a shared secret between the local
computer and domain controller.

Session Keys
Session keys are created for communication with the ticket-granting service
(TGS) and the service. The Kerberos protocol uses the session key to encrypt an
authenticator. The authenticator contains a timestamp and unique information
that is used to authenticate the request. The authenticator also contains an optional
sequence number field that can be used to provide message replay detection. Session
keys are short term keys that can also be used to sign and encrypt messages.

Service Account
The term Service Account is used to describe the Windows account that a service uses
when it performs operations with the Kerberos protocol. In other words, this is the
account that the Kerberos protocol uses to retrieve a service’s long term key from the
credential cache. The actual account that is used is based on the application that is
hosting the service and the configuration of that application. When a service ticket
is requested from the TGS, the request must identify the service account so that the
service ticket can be encrypted using the correct long term service key.

With Internet Information Services (IIS), the security configuration and IIS version
plays an important role in determining what account will be used as the service
account. Windows Integrated Security uses a different process than the one available
when it implements the Kerberos protocol with message layer security. Also, IIS
versions 5.x (which is used on Windows 2000 and Windows XP) has more limitations
than IIS version 6.0 (which is used on Windows 2003).

Windows Integrated Security with IIS

When using Windows integrated security with IIS, the host computer account is used
as the service account by default. With IIS version 6.0 you can override this behavior
by creating a domain user account and using that account as the identity of the
application pool that is used to host a Web service. This new account is the service
account that a client application should use when it requests a service ticket from the
TGS.

With IIS versions 5.x, Windows integrated security only uses the host computer
account as the service account. This is important to remember because any client
application that requests a service ticket for a service that is configured to use
integrated security must use the service’s host computer account as the service
account in the request.

276 Web Service Security

Message Layer Security with IIS

When you implement the Kerberos protocol with message layer security, the service
account is based on the identity of the process that is used to host the Web service.

IIS version 6.0 uses an account named NETWORK SERVICE that has appropriate
rights and which can be used for Kerberos authentication. With IIS 6.0 the identity
of the application pool controls what account is used. By default this identity is set
to NETWORK SERVICE. However, it is possible to use a domain user account or the
SYSTEM account as the identity of the application pool.

With IIS versions 5.x, the default process account is ASPNET, which is a local account
that does not have access to the network or the host computer account. To implement
message layer security using the Kerberos protocol with IIS versions 5.x, you must
modify the configuration of ASP.NET to use either the SYSTEM account or a domain
user account as the process identity.

The “Kerberos Protocol Operations for Web Services“ section later in this technical
supplement provides detailed instructions that you can use to create and configure a
domain user account as the service account used by Web services.

Service Principal Names
An SPN is a unique identifier that applications can use to request a service ticket
instead of using the service account name. The Kerberos protocol implementation
in Windows uses the SPN to retrieve a valid service account from Active Directory.
In other words, an SPN is another type of identifier that can be assigned to an
account in Active Directory.

Without the use of an SPN, client applications that request service tickets must know
the name of the Windows identity that is used as the service account to request a
service ticket.

By using SPNs you do not need to expose account names and you have the ability to
implement mutual authentication. In other words, a valid service response provides
authentication that the service account associated with the SPN was used to process
the request. As a result, when you request a service ticket, the use of SPNs is strongly
recommended over the use of service account names.

SPN Types

There are two types of SPNs that can be created: one that is host-based and
another that is arbitrary. When a new computer account is created in Active Directory,
host-based SPNs are automatically generated for built-in services. Examples of these
services include HOST, LDAP, and HTTP. In reality, SPNs are only created for
the HOST service and all built-in services use the HOST SPN. However, this
implementation is transparent because built-in names act as an alias to the HOST
service unless they have been specifically mapped to a Windows account.

 Chapter 7: Technical Supplements 277

Note: The HOST service represents the host computer. The HOST SPN is used to access the host
computer account whose long term key is used by the Kerberos protocol when it creates a service
ticket.

The syntax that is used to identify a host-based SPN contains information about the
computer that the service is running on and the port that it uses. The actual name is
structured with the following syntax:

<ServiceClass>/<Host>:<Port>.

The following list describes each section of the name:
● ServiceClass is the service you are accessing, such as HTTP.
● Host is the computer name for the computer that hosts the service.
● Port is optional and only used for nonstandard port configurations.

Arbitrary SPNs use the following syntax:

<ServiceClass>/<ServiceName>.

As indicated in the previous example, this does not require the use of computer
information.

The type of SPN that you use is based on the implementation of your service. With
Web services, the same factors that affect what service account you can use also has
an affect on the SPN that you use. For instance, when you use the host computer
account as the service account, you should use a host-based SPN. When you use
a domain user account as the service account, you should use an arbitrary SPN.
However, in some cases, it may be necessary to define a host-based SPN that
references a domain user account.

Tip: When you use Windows Integrated Security, both Internet Explorer and IIS use the HTTP SPN to
request service tickets and to process a request. As a result, when you use a domain user account
in IIS 6.0 as the process identity, you must map the host-based HTTP SPN to the domain account
that is used by the service.

Service Classes

Service classes are arbitrary names that represent services, but are not linked to a
specific service. Instead, the service class is nothing more than part of a unique key
that is used to identify a service account. At the time of writing, a service class has
not been defined for Web services. As a result, most examples use the HTTP service
class. For instance, to access a service on a computer named London in a domain
(a Kerberos protocol realm) named GLOBALBANK.net, the following SPN is used:

http/london.globalbank.net

278 Web Service Security

The HTTP service class is one of the built-in services that act as an alias to the HOST
SPN, which is mapped to the host computer account. This means that when you use
the default HTTP service class, the Kerberos protocol uses the computer account as
the service account when it requests a service ticket. This service class works well
with the default configuration of IIS, regardless of which version you use. However,
when you create new Web services, you should also create new service classes.

Because a service class is arbitrary, you can choose any name for a new service.
However, it is not a good idea to use detailed names that are based on service actions,
because the management of these names could become prohibitive. Instead, you
should use a name that represents a suite of service actions, or even a suite of
services.

When you configure constrained delegation in Windows Server 2003, the Service
Type column contains the service class name. In other words, the service type that
is used by constrained delegation is the same as a service class. As a result, service
classes represent one of the primary identifiers that are used to control access with
constrained delegation.

Defining an SPN

The tool that you use to create a new SPN is named setspn.exe. It can be found in the
Windows Support Tools for Windows Server 2003.

f To create a new SPN

1. From the Windows Support Tools menu, open the command prompt.
2. Type the following syntax:

setspn -a <ServiceClass>/<Host | ServiceName> <ServiceAccount>

When you create a new service class for a host-based SPN, you need to create the
following two new SPNs:

setspn -a AcmeService/LONDON LONDON
setspn -a AcmeService/LONDON.globalbank.net LONDON

These commands create a new service class for a host-based SPN that is mapped to
the host computer account named LONDON using the Pre-Windows 2000 Domain
Name System (DNS) name and a Fully Qualified Domain Name (FQDN). Both of
these entries are required for host-based SPNs.

When you use a domain user account as the process identity of an IIS 6.0 application
pool, you must map the HTTP SPN to the new domain account to use Windows
Integrated Security. Use the following commands to create the HTTP SPN:

setspn -a HTTP/LONDON WS_Account
setspn -a HTTP/LONDON.globalbank.net WS_Account

 Chapter 7: Technical Supplements 279

With this example you are adding a new HTTP SPN to the Windows domain account
named WS_Account. Because built-in service classes are just aliases to the HOST
SPN, these commands create two new SPNs. However, it is important to understand
that if HTTP SPNs have already been created you must first delete them before you
can map the HTTP SPNs to another Windows account.

Use the following command to create an arbitrary SPN that maps to a specific
domain user account:

setspn -a AcmeService/GlobalBank WS_Account

This command creates an arbitrary SPN named AcmeService/GlobalBank that maps
to the WS_Account domain user account. You should also notice that the syntax is
different. Instead of using a host and a domain after the service class, this uses a
service name, which is also arbitrary. A detailed example that uses setspn.exe to map
a domain account to a service that is running on Windows XP is discussed later in
this chapter.

Kerberos Tickets
The Kerberos protocol specification uses the following description to define a ticket:

“A record that helps a client authenticate itself to a server; it contains the client’s identity,
a session key, a timestamp, and other information, all sealed using the server’s secret key.
It only serves to authenticate a client when presented along with a fresh Authenticator.”

This definition applies to both the ticket-granting ticket (TGT) and the service ticket,
which were introduced in the discussion on shared secrets. Previous sections in this
primer also describe how tickets are encrypted with a long term service key, which
is the same as the “server’s secret key” in the previous definition.

The most important concept to understand about Kerberos tickets is that tickets can
only be accessed by the KDC and the service that a ticket was created for. This is
because these are the only entities that have access to the service’s long term key.
Clients that use the Kerberos protocol do not have access to information that is
contained in the ticket. However, clients do have a copy of the session key that is
found in the ticket, which they use to encrypt the authenticator. A service
authenticates the client by extracting the session key from the ticket and
decrypting the authenticator.

280 Web Service Security

Ticket Lifetimes
Each ticket issued by the Kerberos protocol has a start time and an expiration time.
The ticket can be used as many times as necessary within that time frame. The
Kerberos protocol itself does not keep records of tickets. This means that it is up to
the ticket holder to renew tickets before they expire. If an expired ticket is presented
to a service, an error is returned.

The recommended maximum lifetime for a ticket is one day. However, the default
setting is 10 hours. This lifetime value is managed by Kerberos protocol policy
settings. In addition, attributes on ticket-granting tickets (TGTs) can be used to enable
the automatic renewal for a limited time to extend the lifetime of the TGT.

As previously mentioned, the TGT is used to request service tickets from a TGS. If the
TGT is allowed to expire, it cannot be used to request a service ticket. On the other
hand, service tickets are only used to authenticate new connections with a service.
Ongoing operations are not interrupted if the service ticket expires during the
connection.

Note: There is some inconsistency in how service tickets are described in many Kerberos protocol
documents. Specifically there is a tendency to mix the names “service ticket” and “session ticket.”
In other words, when you read “session ticket” think “service ticket.”

Something to keep in mind is that ticket lifetime is associated with tickets and not the
authenticator, which is discussed in the next section.

Authenticator and Message Replay Detection
As mentioned previously, the Kerberos protocol uses two separate data structures to
communicate with services. One is the actual ticket, which is created by either the
authentication service (AS) for communication with the ticket-granting service (TGS),
or by the TGS for communication with a service. The other structure is an
authenticator. The authenticator contains two fields that can be used for message
replay detection; one is the timestamp and the other is a sequence field.

A constraint imposed by the Kerberos protocol is that messages must be processed
within a short time frame, usually five minutes, which is specified in the Kerberos
protocol configuration. The way that the Kerberos protocol implements this behavior
is through the use of a timestamp field on the authenticator. When a message is
received, the authenticator is decrypted with the session key and the timestamp is
examined to make sure it falls within the configured time frame on the target server.
If it does not fall within the configured time frame, the message is rejected; this
represents a type of message replay detection.

 Chapter 7: Technical Supplements 281

Another factor to consider is that the time on all computers within a realm must
be synchronized for Kerberos protocol authentication to work properly. On the
Windows platform, starting with Windows 2000, computers that are part of a
domain are automatically synchronized with the domain controller.

Usually, relying on the timestamp for message replay does not protect against
repeated messages that occur within the allowed time frame. As a result, the
recommended approach for message replay detection is to use the sequence field in
the authenticator. This is an optional field that is typically used for KERB_PRIV and
KERB_SAFE messages, which are used to detect replays. This field can also contain a
nonce (Number Once) value that can be cached by the service to implement replay
detection. For more information about replay detection with the sequence field, see
section “5.3.2 Authenticators” in RFC 1510, The Kerberos Network Authentication
Service (V5).

Note: Windows does not use the authenticator’s sequence field for message replay detection.
Instead, Windows uses a message replay cache to implement replay detection. With this
implementation, the timestamp is used as a unique value to protect against message replay
attacks.

Delegation Configuration
Delegation on the Windows platform is implemented with the Kerberos
authentication protocol. Windows 2000 Server supports unconstrained delegation
while Windows Server 2003 supports both constrained and unconstrained delegation.
The process of implementing delegation is beyond the scope of this chapter.
However, it is important to understand basic requirements that relate to delegation
configuration.

A key to correctly configure delegation is to understand what service accounts are
being used by the application that attempts to perform the delegation, and what
service is being called. For instance, suppose that you have an IIS Web application
that attempts to access a Web service on a remote server using delegation. With
delegation, the service account of the Web application is used to retrieve a service
ticket to access the Web service. As a result the service account of the IIS Web
application must be configured for delegation.

Delegation represents the ability of one service to request access to another service
on behalf of a user. As a result, delegation is configured on the service account that
requests access and not on the user account. The only exception is that the user
account must be configured to support delegation. To do this, make sure the
following account setting is not selected: Account is sensitive and cannot be
delegated.

http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt

282 Web Service Security

When using a domain user account as the service account, delegation must be
configured on the domain user account and not on the computer account that hosts
the service. To configure delegation in Windows Server 2003, you must first create
an SPN for the domain user account. In other words, delegation options are not
available on an account until that account is mapped to an SPN by using the setspn
utility. On the Windows 2000 platform, delegation options are always available.

When you use constrained delegation, the service account of the application that
is being called must be added to the list of allowed services in the delegation
configuration dialog box on the service account that is implementing delegation.

For more information about constrained delegation, see Protocol Transition with
Constrained Delegation Technical Supplement in Chapter 4, “Resource Access
Patterns.”

The next section describes the detailed process that is performed when applications
use the SSPI interface to perform Kerberos authentication.

Implementing Kerberos with SSPI
Figure 7.1 illustrates the main operations performed by applications that use the
SSPI interface to implement the Kerberos authentication protocol between a client
application and a Web service.

 Chapter 7: Technical Supplements 283

Figure 7.1
SSPI implementation of the Kerberos authentication protocol

284 Web Service Security

As illustrated in Figure 7.1, SSPI implementation of the Kerberos authentication
protocol is described in the following steps:
1. Initial logon is performed outside of SSPI. However, it is important to understand

that a logon operation must be implemented prior to using SSPI. The actual logon
process is based on the type of client application in use. For Windows applications
the logon occurs when a user logs on to a workstation. For Web applications the
logon occurs when a user accesses the Web site.
It is also important to understand that after the logon is complete, all service
operations should be performed with the identity of the user who has logged on
to the system. The user can be either a person who interacts with an application
or a business identity that is used for trusted subsystem implementations.
Impersonation is usually required in Web applications so that SSPI will use the
correct identity.

2. As previously mentioned, starting with Windows 2000 the default authentication
provider is the Kerberos protocol on the Windows platform. As a result, the next
operation is an authentication request that is sent to the LSA on the domain
controller. After this operation completes, it returns a set of credentials that can be
used to access a TGS. The credentials include a session key and a TGT, which are
stored in a credential cache on the local computer.

3. The next step is to call the AcquireCredentialsHandle operation, which returns a
handle to the credentials of the current user that was stored in the credential cache
during the authentication request in the previous step.

4. The credentials handle is then used to initialize a security context that will be
used to call a specific service. With the Kerberos protocol, the security context
represents a data structure that contains credentials that are used to access a
service, such as a session key and service ticket. To initialize the new security
context, the LSA on the client workstation interacts with the LSA on a domain
controller to request a service ticket from the TGS.

5. When performing a ticket request, the TGT and an authenticator that is encrypted
with the session key are sent to the domain controller. The authenticator is a data
structure that contains a timestamp along with other information, such as the
Kerberos protocol version number. The LSA on the domain controller interacts
with the TGS to obtain a new session key and service ticket, which are returned to
the LSA on the client workstation.

6. After the security context is initialized, it is then used to access the Web service in
the same manner that a request was made to the TGS when it obtained the service
ticket. In other words, the session key that was returned in Step 5 is used to
encrypt an authenticator, which is sent with the service ticket to the Web service.

7. When a service receives a message with a Kerberos service ticket and
authenticator, the first step is to acquire the service’s credentials, which are
typically the credentials of the server process. These credentials contain the
service’s long term key that was used to encrypt the service ticket.

 Chapter 7: Technical Supplements 285

8. Both the Kerberos security context and the service’s credentials handle are used in
a call to AcceptSecurityContext, which is the operation that validates the service
ticket that is contained in the message. Validation is performed by using the
service’s long term key to decrypt the service ticket and access the session key.
The session key is used to decrypt the authenticator. Successful decryption of
the authenticator is how the service authenticates the client. In addition, the
timestamp included in the authenticator is used to limit the lifetime of the
authenticator.

9. Optionally, a service can send a response to the client application.

Note: This description focuses on SSPI operations that are used to implement the Kerberos
authentication process. For more information about Kerberos authentication, see Brokered
Authentication: Kerberos in Chapter 1, “Authentication Patterns.”

In addition to using the Kerberos protocol for authentication, you can also use
Kerberos session keys for signing and encryption.

Signing and Encryption
As mentioned earlier, the Kerberos protocol security context contains a session key.
The session key is a short-term symmetric encryption key used to encrypt the
authenticator during authentication operations. This same session key can also
be used by applications to implement XML signing and encryption. For more
information about using symmetric keys for XML signatures and encryption,
see Data Origin Authentication and Data Confidentiality in Chapter 2, “Message
Protection Patterns.”

With SSPI, you can choose from several methods that use the session key for signing
and encryption. The following steps describe how to sign and encrypt a message that
is sent from a client to a server.

Client:

1. Sign the message with MakeSignature.
2. Encrypt the message with EncryptMessage.

Server:

3. Decrypt the message with DecryptMessage.
4. Validate the message with VerifySignature.

Note: Starting with KerberosToken2 in WSE 2.0, another SSPI function named
QueryContextAttributes is used to access the session key directly for signing and encryption.
Unfortunately, this operation is not available in Windows Server 2000. As a result, the only token
in WSE 2.0, and earlier versions of WSE, that supports signing and encryption in Windows 2000
is KerberosToken.

286 Web Service Security

Kerberos Protocol Operations for Web Services
This section provides information that you can use to perform different operations
that relate to the Kerberos protocol and Web services.

Using a Domain Account with IIS 5.x (Windows 2000 and Windows XP)
Instead of using the default account that is defined in the <ProcessModel/> element
of the Machine.config file, a service can use a domain user account as the process
identity. The domain account needs additional privileges and if it is used for message
layer security, an arbitrary SPN should be created.

f To configure a domain account for the Kerberos protocol on a computer running IIS 5.x:

1. Create a new user account in the domain (KDC realm) and add that account to the
user group. This account does not need additional privileges on the domain
computer. This means that you are using an account with the fewest privileges.

2. On the computer running IIS 5.x, the new domain account requires the following
rights, which can be assigned with the Local Security Settings configuration tool:
● Log on as a service
● Impersonate a client after authentication

3. Assign Full Control permissions to the new domain account for the following
folder on the IIS 5.x host:

C:\%WINDOWS%\Microsoft.NET\Framework\v1.1.4322\Temporary ASP.NET Files

4. Update the <ProcessModel/> element in the Machine.config file on the computer
that is running IIS 5.x. Both the user name and password need to be updated to
values associated with the new domain account. Restart IIS.

Note: The following step is required when you are using message layer security with the Kerberos
protocol. When you use standard Windows authentication, it is not necessary to create an SPN
for the account unless the account will be used for Delegation.

5. Use the setspn.exe tool to create an arbitrary SPN for the domain account.
This action is performed on the Active Directory domain controller, not on the
computer that is running IIS 5.x. To perform this action, you must be an
administrator or have SetPrincipalName permissions on the domain controller.
The following example creates an arbitrary SPN named AcmeService/GlobalBank
that maps to a Windows account named WS_Account:

setspn -a AcmeService/GlobalBank WS_Account

 Chapter 7: Technical Supplements 287

When you create a domain account that will be used for delegation with Windows
Integrated Security, it should map to the HTTP host-based SPN. If you use message
layer security with WSE 3.0, use an arbitrary SPN as previously described. Finally, the
process model used by IIS 6.0 in Windows Server 2003 is very different from IIS 5.x.
As a result, the steps previously described will not work in Windows Server 2003.

For step-by-step instructions on creating a domain user account and using the
application pool identity in Windows Server 2003, see Protocol Transition with
Constrained Delegation Technical Supplement in Chapter 4, “Resource Access
Patterns.”

Web Farm Deployment with WSE 3.0
When you deploy Web services to a Web farm, you must use a domain account
that maps to an arbitrary SPN for each Web server in the farm. When you configure
services in a Windows 2000 Web farm, you can use the same technique that was
previously described for using a domain account with IIS 5.x. When you configure
services in a Windows 2003 Web farm, see Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4, “Resources Access Patterns,” as a
guide for using a domain account in that environment.

When you use the Kerberos protocol to access services in a Web farm, you must use
the arbitrary SPN as the target principal, and not the HOST SPN. For example, when
you use WSE 3.0, you use the arbitrary SPN as the targetPrincipal to initialize a
KerberosToken security token.

Troubleshooting
This section contains information that you can use to troubleshoot common problems
with the configuration and the implementation of the Kerberos version 5 protocol.
If you are unable to resolve an issue after reading this section, see Troubleshooting
Kerberos Delegation for in-depth troubleshooting information about the Kerberos
protocol implementation in Windows 2000 and Windows 2003.

Duplicate SPNs
When creating and using new SPNs with Web services, you may need to perform
some troubleshooting. For instance, if you accidentally map the same SPN to two
different accounts, the SPN will no longer work. It may also be necessary to list all of
the SPNs that are associated with an account to determine if a specific SPN has been
created.

Windows Support Tools for Windows Server 2003 contains a utility named Ldifde.exe
that you can use to list all accounts that map to a specific SPN.

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerbdel.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerbdel.mspx

288 Web Service Security

f To perform a query with Ldifde.exe

1. From the Windows Support Tools menu, open the command prompt.
2. Type the following command:

ldifde -f c:\spn_out.txt -d "DC=globalbank,DC=net" -l serviceprincipalname -r
"(serviceprincipalname=HTTP/LONDON*)" -p subtree

This command searches for all of the SPNs in the globalbank.net domain that match
the search mask HTTP/LONDON*. It writes the results to a text file named
spn_out.txt on drive C.

You can also use the setspn utility to list all of the SPNs that map to a specific
account.

f To list SPNs associated with an account

1. From the Windows Support Tools menu, open the command prompt.
2. Type the following command:

setspn -l LONDON

This command lists all of the SPNs that map to the LONDON computer account.
The default list should contain two HOST entries and if SQL Server is installed, it will
contain an MSSQLSvc entry.

If you need to remove an SPN — for instance if you have mapped the HTTP SPNs
to a domain user account and need to remove that mapping — you can use the
following commands:

setspn -d HTTP/LONDON WS_Account
setspn -d HTTP/LONDON.globalbank.net WS_Account

Notice that this is the same syntax that you use to create an account, However,
the command line option is -d (delete) instead of -a (add). Also notice that both
the DNS and FQDN based names have been removed.

Cached Tickets
When a user or computer logs on to a domain with the Kerberos protocol, their
credentials and account information are stored in a cache on the local computer.
This cache only resides in memory and is not persisted to disk. However, it will
remain active while the user or computer is logged in. The end result is that any
ticket created by the Kerberos protocol for a user or computer is stored in the cache
until the user or computer either logs out, or the cache is manually purged.

 Chapter 7: Technical Supplements 289

This behavior has the following significant impacts:
● Changes to account information, such as Active Directory group membership

and delegation configuration, are not updated until the cache is cleared.
● Changes to SPN configuration, such as modifying the HTTP host-based SPN to

use a different Windows account, are not picked up until the cache is cleared.
● Changing the password of a service account causes cached tickets that are

assigned to the account to become invalid.

As a result of this caching, changes to the configuration may cause issues with the
Kerberos protocol that are difficult to determine. The following two approaches can
be used to purge the cache:
● Users can log off their computers and then log on again to purge user information,

and the computers can be restarted to purge computer information.
● You can use tools in the Windows Resource Kit to purge tickets from the cache.

KerbTray and KList

The Windows Resource Kit provides two tools, named KerbTray and KList, which
provide the ability to list and purge tickets that are used by the Kerberos protocol.

The Kerberos Tray (KerbTray) is a graphical user interface tool that displays ticket
information for a computer that runs the Kerberos version 5 protocol. You can view
and purge the ticket cache by using the KerbTray tool icon located in the system tray
on the desktop. By positioning the cursor over the icon, you can see the time left on
the initial TGT associated with the logon session before it expires. The icon also
changes in the last hour before the LSA renews the ticket.

Kerberos List (KList) is a command line tool that can be used to list service tickets
and initial TGT associated with the current logon session. KList also provides the
ability to purge tickets associated with the current logon session.

Caution: Purging tickets used by the Kerberos protocol can impact functionality in the current
logon session. In most cases, you can recover functionality by repeatedly attempting an operation.
However; this method does not always work. If you have purged tickets and are not able to recover
after several attempts, your only option is to log off and then log on again to the computer.

290 Web Service Security

IIS Caching and Delegation
Another area that tends to cause problems when configuring delegation is the
caching implementation in IIS. As previously mentioned, changes to delegation
usually require purging tickets that are associated with the account that was
modified. However, with IIS this behavior is different.

The following information describes how IIS behaves when you modify a service
account to disable or enable delegation:
● When delegation is disabled on an account, IIS immediately picks up the change

and denies access to downstream resources.
● When delegation is enabled on an account, IIS does not recognize the change.

Instead, IIS must be restarted to pick up the delegation change and allow access
to downstream resources.

For more information about configuring delegation, see the “Delegation
Configuration” section earlier in this technical supplement.

X.509 Technical Supplement
The X.509 specification defines a standard for managing public keys through a Public
Key Infrastructure (PKI). Public keys are maintained in X.509 certificates, which are
digital documents that bind a subject’s identity claims to a public key from a
public/private asymmetric key pair. Identity claims are usually understandable by
humans, such as a person’s full name or e-mail address, or a machine host name or
domain name. X.509 certificates are endorsed and issued by a trusted third party,
which is known as a certificate authority (CA).

Public Key Encryption and Digital Signatures
Public key encryption, also known as asymmetric encryption, is based on a
public/private key pair. The keys are mathematically linked, so that data encrypted
with the public key can only be decrypted with the corresponding private key. X509
certificates use public key encryption as an alternative to shared symmetric keys,
which are discussed in the Data Confidentiality pattern in Chapter 2, “Message
Protection Patterns.”

With public key encryption, the sender converts the plaintext message into ciphertext
by encrypting it with the public key in the message recipient’s X.509 certificate. The
message recipient converts the ciphertext back into the plaintext message by
decrypting it with the corresponding private key.

 Chapter 7: Technical Supplements 291

Figure 7.2 illustrates how public key encryption and decryption take place.

Figure 7.2
Public key data encryption and decryption

By using public key encryption, a message sender has assurance that only the
recipient will be able to read the message.

In addition to providing data confidentiality through encryption, you can use the
public key in the X.509 certificate to verify digital signatures created by a message
sender. A digital signature is a value produced by the message sender to bind
message data to the sender’s identity and to provide a means of verifying the
integrity of the message to detect tampering. In this case, the private key of the
message sender is used to create the digital signature. The corresponding public key,
which is found in the sender’s X.509 certificate, is used to verify the signature. Digital
signatures are used to assure the message recipient that the message originated from
the identified sender, and that the message contents have not been altered since they
were signed by the sender.

Note: With digital signatures that use public key cryptography, the origin of the signed message can
be traced to the sender’s identity, thereby satisfying nonrepudiation requirements. This differs from
symmetric key integrity, where a message may have been signed by either party with knowledge of
the shared secret key.

292 Web Service Security

The public key can be distributed openly to encrypt messages and to verify digital
signatures, but the private key in a key pair should be carefully guarded by its owner.
This is necessary because it is used to prove the identity of the certificate subject and
to decrypt messages that are intended for that subject.

Figure 7.3 illustrates the process of using public keys to sign a message.

Figure 7.3
Creation and verification of a digital signature

For a more detailed description of data confidentiality, see the Data Confidentiality
pattern. For more details about digital signatures, see the Data Origin Authentication
pattern.

 Chapter 7: Technical Supplements 293

X.509 Certificates
X.509 certificates contain several required and optional attributes that enable the
identification of the subject. You can obtain the following list of attributes in an
X.509 certificate:
● Version number: The certificate version.

Note: Different versions (version 1, 2, and 3) of X.509 certificates have evolved over time,
to provide additional security and attributes that are bound to the certificate. In practice,
only version 3 certificates should now be used.

● Serial number: A unique identifier for the certificate.
● Signature algorithm ID: The algorithm used to create the digital signature.
● Issuer name: The name of the certificate issuer.
● Validity period: The period during which the certificate is valid. (This is typically

set to be approximately one year.)
● Subject name: The name of the subject represented by the certificate. (The subject

of a certificate is typically a person, an organization, or a Web/application server.)
● Subject public key information: The public key algorithm.
● Issuer unique identifier: The identifier for the issuer.
● Subject unique identifier: The identifier for the subject.
● Extensions: Extensions that can be used to store additional information. such as

KeyUsage or AlternativeNames.
● Signed hash of the certificate data: The hash of the preceding fields encrypted

using the issuer’s private key, which results in a digital signature.

Custom security implementations that use X.509 certificates may depend on custom
extensions that are not widely used or understood. These custom extensions must be
included in the certificate by the certificate issuer when the certificate is created. Not
all CAs may be willing or capable of adding custom extensions to certificates.

The validity period of an X.509 certificate tends to be much longer than that of other
types of security tokens. For example, passwords are normally changed at shorter
intervals, such as every 30 days. For this reason, it is critical to be aware of any
possible compromise of an X.509 certificate private key, because it will be useful to
an attacker for a considerably longer time than the secret key used in other security
token types that have a much shorter lifespan.

Implementations of X.509
Security using X.509 certificates can be implemented at different layers of the
network or application infrastructure, and each implementation had its own
advantages and disadvantages.

294 Web Service Security

Secure Sockets Layer (SSL)
SSL is a secure handshake protocol that supports X.509 certificates at the transport
layer. It enables two parties to establish a session to communicate securely by
providing confidentiality and data integrity. data origin authentication can also be
provided if both parties use X.509 certificates. This is commonly referred to as SSL
with client certificates. Some of the benefits of using SSL are:
● SSL is a well established protocol that is broadly interoperable, and is easy to

configure and use.
● SSL has a performance advantage over message layer security because it is closer

to the operating system than the message layer.

While SSL has some strong benefits, it does have the following liabilities:
● SSL operates point-to-point, which means that messages cannot be persisted

in a secure state. It also means that SSL-encrypted SOAP messages cannot be
processed by intermediaries without first being decrypted.

● If you use SSL in conjunction with WSE 2.0 or WSE 3.0 to provide data
confidentiality and integrity at the transport layer, WSE cannot verify that SSL
is being used to protect messages at the transport layer. Conversely, SSL cannot
verify that clients are satisfying policy requirements defined in WSE, which is a
requirement for client authentication.

WS-Security X.509 Binary Security Token
At the message layer, you can use X.509 certificates as binary security tokens in
accordance with the WS-Security specification to sign and encrypt messages and to
provide data confidentiality and data origin authentication.

The benefits of using X.509 at the message layer with binary security tokens include:
● Message layer security that uses X.509 certificates is flexible enough to provide

point-to-point or end-to-end security. This allows messages to be persisted in a
secure state for short periods for queue-based processing or for longer periods
in an archived state.

● Message layer X.509 provides a high degree of interoperability. It provides
standards based on the messages as they are sent over the wire instead of focusing
on implementation for a particular platform.

Message layer security also has the following liabilities:
● Processing message layer security with X.509 certificates tends to have a greater

impact on system performance than implementations that are lower in the
protocol stack. This is because the message layer is further away from the
hardware layer.

● Message layer security that uses X.509 certificates provides a great deal of
flexibility, but it tends to be more complex to implement than security that uses
X.509 certificates at other layers. This requires more knowledge of the underlying
protocols, security policy, and programming against a Web services security API.

 Chapter 7: Technical Supplements 295

IPSec
IPSec provides a secure tunnel between two computers hosting applications that
access resources or communicate with other applications. You can use X.509 in
IPSec to authenticate hosts and negotiate a secure session between them. IPSec has
some benefits that make it a viable security solution that uses X.509 certificates:
● Performance. IPSec benefits from better performance than security that is

implemented further up the protocol stack, because it is closer to the hardware
layer. It operates in the protocol stack between the data link and network layers.

● Ease of configuration. IPSec is easy to configure and implement on a number of
platforms, including Windows Server 2003.

IPSec that uses X.509 certificates has a liability that must be considered:
● No fine control of security. IPSec policies are implemented based on a host

computer instead of on a user or an application. IPSec that uses X.509 certificates
is a viable option for providing secure communications between two hosts, but not
for authenticating user or application subjects to make authorization decisions.

Certificate Authorities
Certificate authorities (CAs) are organizations that verify the identity of a subject that
is represented in a certificate request, and that issue signed X.509 certificates. CAs can
be internal or external to an organization. They can issue different types of certificates
that are for a specific purpose or confer varying levels of trust.

External CAs are typically commercial entities that provide certificate issuance to
customers for a fee. Examples of external CAs include Thawte, VeriSign, and RSA.

CAs offer different “grades” of signed certificates for purchase. Some have a nominal
fee and come with minimal requirements to prove the subject’s identity. For example,
a certificate that is used to sign e-mail messages may only cost a few dollars and
require only e-mail confirmation to prove that the e-mail address represented by
the subject in the certificate is authentic. A certificate that is used for more trusted
activities may cost upwards of a hundred dollars and require a far more rigorous
screening process to ensure that the subject meets the requirements for the certificate.
Parties that want to use any type of certificate must decide that the criteria to qualify
for such a certificate are sufficient for their needs, and that they consider the CA itself
to be sufficiently reputable. The “grade,” “class,” or other term used by a CA to
describe the quality or use of a certificate is often expressed as a certificate policy.
A certificate policy describes the certificate’s applicability to a set of security
requirements for a given purpose. For more information about certificate policies,
see Internet X.509 Public Key Infrastructure Certificate Policy and Certification
Practices Framework.

http://www.ietf.org/rfc/rfc2527.txt
http://www.ietf.org/rfc/rfc2527.txt

296 Web Service Security

Internal CAs, such as Certificate Services in Windows Server, can simplify certificate
management activities, but in this case the trust of the certificate is now based on
the organization that issued it. Certificates that are issued for subjects within the
organization’s security domain (usually defined in Active Directory) are typically
signed with the organization’s root certificate or another “parent certificate” that
is allowed to sign certificates. For more information about X.509 PKI services on
Windows Server 2003, see Designing a Public Key Infrastructure.

The chain of certificates, from the subject’s certificate to the root certificate that is
used by the CA for signing subject’s certificate, is known as a trust chain. A party
may decide to trust certificates at any level within the trust chain. This allows them
to trust certificates further down the chain, as long as they are able to trace the trust
chain back to the level of the certificate they original trusted.

Note: In test environments, you may choose to use certificates that do not have rigorous
requirements for proving the identity of the subject. Certificates can be generated and self-signed
with the MakeCert utility. However, there are known performance issues when verifying digital
signatures with certificates that are generated by the MakeCert utility. For more information
about the MakeCert utility, see Certificate Creation Tool (Makecert.exe).

Obtaining an X.509 Certificate
Depending on the type of CA, X.509 certificates can be obtained in a variety of ways.
For external CAs, certificates are typically obtained for a subject by submitting a
certificate signing request (CSR). A CSR contains the subject’s name, the public key,
and the algorithm that is used. (The majority of X.509 certificates you are likely to
encounter use RSA for its algorithm).

The public key included in the CSR comes from a public/private key pair, which
is generated specifically for use with the requested certificate. As soon as the
public/private key pair is generated, the private key should be immediately stored
in a secure place, such as a machine key store. Access to the key should be solely
restricted to authorized parties. Ideally, the only party able to access the private
key file is the subject that is represented in the X.509 certificate, although some
infrastructures may allow access to the certificate private key by other accounts.
When parties other than the subject represented by the X.509 certificate are allowed
to access the certificate private key, the ability to support nonrepudiation may not
be possible. The public key of the public/private key pair is required for the CSR,
but the private key should never be sent to the CA under any circumstances.

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp

 Chapter 7: Technical Supplements 297

Internal CAs may also use CSRs to process X.509 certificate requests. However,
because the CA is internal to a specific organization, there can be additional options
that reduce the overhead that is required to process requests and verify subject
identities. For example, an internal CA that uses Windows Certificate Server may
enable autoenrollment, which automates certificate request and issuance for user
accounts that are created within an Active Directory domain. For more information
about Public Key Infrastructure and Windows Server 2003, see Public Key
Infrastructure for Windows Server 2003.

Figure 7.4 illustrates the process of a subject requesting and issuing an X.509
certificate with a CA that processes CSRs.

Figure 7.4
Requesting and obtaining a certificate from a CA

http://www.microsoft.com/windowsserver2003/technologies/pki/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/pki/default.mspx

298 Web Service Security

Certificate Revocation
The issuing CA can revoke X.509 certificates if the integrity of the certificate has
somehow been compromised. The justification to revoke an issued certificate varies
with each CA, but some general causes for certificate revocation include the
following:
● The private key has been stolen or wrongly disclosed due to improper storage

or use. For example, when the subject’s private key is attached to an outgoing
message instead of its X.509 certificate that contains the public key.

● The subject represented in the X.509 certificate has breached the trust of the CA
that issued the certificate. For example, if information about the subject was
intentionally misrepresented to the CA during the process of verifying the
subject’s identity.

● An identity that corresponds to a certificate has been removed from an
organization that manages an Internal CA. For example, a user account is
removed from the system or is disabled when the user’s employment is
terminated.

● A subject no longer requires the certificate (cessation of operation). A CA may
revoke a certificate if the certificate is no longer required and will not be used by
the subject any more.

X.509 CAs typically publish a list of certificates that have been revoked, based on the
CA’s criteria for certificate revocation. These lists are known as certificate revocation
lists (CRLs). CRLs are made publicly available so that a recipient can verify whether
a certificate that was used to sign a message is valid. Any message recipient that
receives a signed message should verify that the subject’s certificate has not been
revoked. This ensures the integrity of the signatures, based on the expected level of
trust associated with the type of certificate.

In some situations, CAs may allow relying parties to query them directly to obtain
the status of an X.509 certificate through an online revocation service (OLRS). A party
that relies on this service communicates with the OLRS by using the Online
Certificate Status Protocol (OCSP). If the CA offers access to an OLRS for the parties
that rely on the service, it provides those parties with the ability to obtain the
certificate status in real time instead of requiring them to download and cache CRLs
published by the CA. One disadvantage of this approach is that it introduces a direct
dependency upon the CA to be available to the parties that rely on it during the
verification process. For more information about OCSP, see RFC 2650, “X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol — OCSP.”

http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2560.txt

 Chapter 7: Technical Supplements 299

Certificate Storage and Access
X.509 certificates can be stored and accessed in a number of ways, including:
● Local repository. X.509 certificates may be exchanged out-of-band and stored in a

locally accessible repository, such as the machine certificate store in the Windows
operating system. You should only use a local repository if a small number of
certificates are required for use by an online application.

● PKI server. Public Key Infrastructure (PKI) is a platform that allows an
organization to centrally manage X.509 certificates that are required by the
organization’s services and subjects to authenticate and verify digital signatures.
Certificates for that organization’s subjects may also be made accessible outside of
the organization. An example of a PKI solution is Certificate Services, which is
included in Windows Server 2003. For more information about this PKI solution,
see What Is Certificate Services?

● Direct presentation. X.509 certificates may be presented to a message recipient by
attaching the certificate directly to the message. The recipient may subsequently
decide to cache the certificate locally, pass it off to a central repository for storage,
or simply reprocess it when it is attached to a new message.

Certificate Management
There are many issues related to certificate management and this section does not
attempt to completely cover them. One issue that is significant to consider for
message layer security is whether distinct certificates should be created for signing
and encrypting message layer data.

For message-based security, it is a best practice to use distinct certificates and key
pairs for encryption and digital signatures instead of a single key pair for both.
One reason is that the contents of the certificates, as well as policies for issuance,
key distribution, revocation, notification of revocation, and key backup are likely
to differ depending on the purpose the keys are used for. This is particularly true
when signatures are used for longer term authentication and integrity of business
documents instead of merely temporary authentication of a session. Also, if
encrypted messages are persisted to disk, you may need to decrypt the messages
with an archived version of the private key. However, you do not want new digital
signatures to be created with this private key.

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx

300 Web Service Security

Using X.509 Certificates in Patterns
Using X.509 certificates for authentication, data origin authentication, and data
confidentiality is described in the following Web service security pattern documents:
● Brokered Authentication: X.509 PKI in Chapter 1, “Authentication Patterns.”
● Implementing Message Layer Security with X.509 Certificates in WSE 3.0 in

Chapter 3, “Implementing Transport and Message Layer Security.”
● Implementing Transport Layer Security Using X.509 Certificates and HTTPS in

Chapter 3, “Implementing Transport and Message Layer Security.”
● Implementing Direct Authentication with UsernameToken in WSE 3.0 in

Chapter 3, “Implementing Transport and Message Layer Security.”

More Information
For information about compatibility issues between GSSAPI and the Kerberos SSP,
see “SSPI/Kerberos Interoperability with GSSAPI” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security
/sspi_kerberos_interoperability_with_gssapi.asp.

For information about replay detection with the sequence field, see section “5.3.2
Authenticators” in RFC 1510: http://www.ietf.org/rfc/rfc1510.txt.

For in-depth troubleshooting information for the Kerberos protocol implementation
in Windows 2000 and Windows 2003, see “Troubleshooting Kerberos Delegation” on
Microsoft TechNet: http://www.microsoft.com/technet/prodtechnol/windowsserver2003
/technologies/security/tkerbdel.mspx.

For information about Kerberos authentication, see “What Is Kerberos
Authentication?” on Microsoft TechNet: http://www.microsoft.com/technet/prodtechnol
/windowsserver2003/library/TechRef/792ed95d-6f13-4181-a218-e4eaab361c1b.mspx.

For information about certificate policies, see “Internet X.509 Public Key
Infrastructure Certificate Policy and Certification Practices Framework”:
http://www.ietf.org/rfc/rfc2527.txt.

For information about X.509 PKI services on Windows Server 2003,
see “Designing a Public Key Infrastructure” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library
/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx.

For information about the MakeCert utility, see “Certificate Creation Tool
(Makecert.exe)” on MSDN: http://winfx.msdn.microsoft.com/library/default.asp?url=
/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp.

For information about PKI and Windows Server 2003, see “Public Key Infrastructure
for Windows Server 2003”: http://www.microsoft.com/windowsserver2003/technologies
/pki/default.mspx.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security/sspi_kerberos_interoperability_with_gssapi.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security/sspi_kerberos_interoperability_with_gssapi.asp
http://www.ietf.org/rfc/rfc1510.txt
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerbdel.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerbdel.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/792ed95d-6f13-4181-a218-e4eaab361c1b.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/792ed95d-6f13-4181-a218-e4eaab361c1b.mspx
http://www.ietf.org/rfc/rfc2527.txt
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp
http://www.microsoft.com/windowsserver2003/technologies/pki/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/pki/default.mspx

 Chapter 7: Technical Supplements 301

For information about the Online Certificate Status Protocol (OCSP), see RFC 2650,
“X.509 Internet Public Key Infrastructure Online Certificate Status Protocol —
OCSP”: http://www.ietf.org/rfc/rfc2560.txt.

For information about the Certificate Services PKI solution in Windows Server 2003,
see “What Is Certificate Services?”: http://www.microsoft.com/technet/prodtechnol
/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx.

For more information about certificates, see “What are certificates?” on the RSA
Laboratories Web site: http://www.rsasecurity.com/rsalabs/node.asp?id=2277.

For information about Secure Sockets Layer (SSL), see “What is SSL?” on the RSA
Laboratories’ Web site: http://www.rsasecurity.com/rsalabs/node.asp?id=2293.

For more information about WS-Security version 1.0, see the OASIS Standards and
Other Approved Work (including WS-Security) on the OASIS Web site:
http://www.oasis-open.org/specs/index.php#wssv1.0.

For information about IPSec, see “Internet Protocol Security (IPsec) Operations
Topics”: http://www.microsoft.com/technet/prodtechnol/windowsserver2003/operations
/ipsec.mspx

For information about the Internet X.509 PKI certificate and CRL profile, see
“Internet X.509 Public Key Infrastructure Certificate and CRL Profile” (RFC 2459):
http://www.ietf.org/rfc/rfc2459.txt.

Kaufman, C., Perlman, R., and Speciner, M. Network Security — PRIVATE
Communication in a PUBLIC World. Upper Saddle River, NJ: Prentice Hall PTR., 2002,
ISBN: 0130460192.

http://www.ietf.org/rfc/rfc2560.txt
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx
http://www.rsasecurity.com/rsalabs/node.asp?id=2277
http://www.rsasecurity.com/rsalabs/node.asp?id=2293
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/operations/ipsec.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/operations/ipsec.mspx
http://www.ietf.org/rfc/rfc2459.txt

Appendix

Introduction
This section contains several topics that provide additional information related to the
rest of the guidance:
● Problem/Solution Index. This index provides an alternative way to navigate the

content in this guide that is based on frequently asked questions from customers.
The index presents customer questions, and then directs you to the appropriate
section of the guide to help you answer those questions.

● WSE 3.0 Security: Interoperability Considerations. This topic provides an
overview of interoperability issues that you may encounter when developing
Web services secured using SOAP message security.

● Policy Advisor for WSE 3.0. The Policy Advisor is a security tool for WSE 3.0 that
you can use to help you review the security of WSE 3.0 installations. The tool
examines the configuration and policy files for one or more WSE 3.0 endpoints,
highlights typical security risks, and provides some remediation advice.

● Patterns: A Common Vocabulary for Information Technology Professionals.
This white paper considers how patterns have influenced the Information
Technology industry and looks forward to propose that patterns should become
the basis for a common vocabulary among Information Technology (IT)
professionals.

● Glossary. The Glossary contains a brief summary of key terms and definitions that
appear in the Web Service Security guide.

Problem/Solution Index
During the research phase for the Web Service Security: Scenarios, Patterns, and
Implementation Guidance for Web Services Enhancements (WSE) 3.0 guide, the Microsoft
patterns & practices team spent many hours communicating with customers, and
collecting information from Microsoft Support Services, blogs, and other sources.
This information helped the team gain a thorough understanding of the types of
security challenges customers encountered when designing and implementing
Web services using WSE 2.0.

 Appendix 303

The Problem/Solution Index provides an alternative way to navigate the content in
this guide that is based on frequently asked questions from customers. The index
presents customer questions, and then directs you to the appropriate section of the
guide to help you answer those questions. The index is not comprehensive, but it
does provide an alternative way to approach specific challenges. The index is divided
into several broad categories to correspond to the areas where customers most
frequently encounter problems.

The patterns & practices team hopes to expand the Problem/Solution Index as more
questions related to the Web Service Security guide content emerge. You can submit
additional questions to Web Service Security community workspace or add new
problem/solution links to the Web Service Security Wiki.

General
For answers to general questions about WSE 3.0, see the resources in Table A.1.

Table A.1: General Questions

Problem Solution

What is the difference between message and
transport layer security?

See the Introduction in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I decide between message and
transport layer security?

See the Introduction in Chapter 3,
“Implementing Transport and Message Layer
Security.”

What interoperability considerations should I be
aware of for WSE 3.0?

See WSE 3.0 Security: Interoperability
Considerations in the “Appendix.”

Authentication and Authorization
For answers to authentication and authorization questions, see the resources in
Table A.2.

Table A.2: Authentication and Authorization Questions

Problem Solution

How do I determine how to authenticate a client
application?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How do identification, authentication and
authorization relate?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How do I decide between Kerberos, X.509 or an
STS based authentication broker?

See the Introduction in Chapter 1,
“Authentication Patterns.”

(continued)

http://go.microsoft.com/fwlink/?LinkId=57044
http://go.microsoft.com/fwlink/?LinkId=57051

304 Web Service Security

Table A.2: Authentication and Authorization Questions (continued)

Problem Solution

How can I obtain single sign on (SSO) within my
intranet?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How do I implement session-based
authentication so that users are not required to
provide their passwords whenever the
application they are using calls a Web service?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How can I use an existing Active Directory
infrastructure for authentication?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How do I provide authentication that is portable
across organizational boundaries?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How do I authenticate when interoperability is a
challenge?

See the Introduction in Chapter 1,
“Authentication Patterns.”

How do I avoid using clear text passwords? See the Introduction in Chapter 1,
“Authentication Patterns.”

How do I authenticate with UsernameTokens
and secure the communication with X.509
certificates?

See Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I to authenticate against a directory
service such as Active Directory or Active
Directory Application Mode (ADAM) using a
user ID and password?

See Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I authenticate against a custom SQL
Server database, using a security token that
contains a user ID and password?

See Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I develop a custom
UsernameTokenManager to support
authentication against ADAM or a custom
SQL Server database?

See Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I make use of Visual Studio 2005
authentication services for SQL Server and a
directory service?

See Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I implement mutual authentication
using X.509 certificates?

See Implementing Direct Authentication with
UsernameToken in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

 Appendix 305

Kerberos Protocol and Windows Server 2003
For answers to questions about the Kerberos protocol and Windows Server 2003 in
WSE 3.0, see the resources in Table A.3.

Table A.3: Kerberos Protocol and Windows Server 2003 Questions

Problem Solution

How do I use an existing Kerberos protocol
infrastructure at the message layer with a
KerberosToken binary security token?

See Implementing Message Layer Security with
Kerberos in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I provide data confidentiality and data
integrity to secure the communication channel
by encrypting and signing the message with the
KerberosToken?

See Implementing Message Layer Security with
Kerberos in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

How do I impersonate the client represented by
the KerberosToken to access a resource on its
behalf?

See Implementing Message Layer Security with
Kerberos in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

Is the Windows implementation of the Kerberos
protocol compatible with other
implementations?

See the Kerberos Technical Supplement for
Windows in Chapter 7, “Technical Supplements.”

How do I configure Active Directory for secure
Web services using the Kerberos protocol in an
implementation deployed in a Web farm?

See the Kerberos Technical Supplement for
Windows in Chapter 7, “Technical Supplements.”

How do I troubleshoot issues related to using
the Kerberos protocol with Web services?

See the Kerberos Technical Supplement for
Windows in Chapter 7, “Technical Supplements.”

X.509 Certificates
For answers to questions about X.509 certificates in WSE 3.0, see the resources in
Table A.4.

Table A.4: X.509 Certificate Questions

Problem Solution

How do I create X.509 certificates? See Brokered Authentication: X.509 PKI in
Chapter 1, “Authentication Patterns,” and
the X.509 Technical Supplement in Chapter 7,
“Technical Supplements.”

How do I use X.509 certificate revocation? See Brokered Authentication: X.509 PKI in
Chapter 1, “Authentication Patterns,” and
the X.509 Technical Supplement in Chapter 7,
“Technical Supplements.”

(continued)

306 Web Service Security

Table A.4: X.509 Certificate Questions (continued)

Problem Solution

How do I authenticate users with X.509
certificates, and then perform role-based
access control using an Active Directory
domain?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I implement a custom WSE 3.0 X.509
SecurityTokenManager to allow additional data,
such as roles to be associated with a user’s
certificate?

See Implementing Message Layer Security with
X.509 Certificates in WSE 3.0 in Chapter 3,
“Implementing Transport and Message Layer
Security.”

Message Protection: Data Confidentiality, Integrity and
Data Origin Authentication
For answers to questions about message protection in WSE 3.0, see the resources in
Table A.5.

Table A.5: Message Protection Questions

Problem Solution

How do I protect against eavesdropping or
unauthorized access to data within a message?

See the Introduction in Chapter 2, “Message
Protection Patterns.”

How do I encrypt data within my message? See the Introduction in Chapter 2, “Message
Protection Patterns.”

How do I protect against data tampering within
a message?

See the Introduction in Chapter 2, “Message
Protection Patterns.”

How do I provide assurance to a message
recipient that a message was sent by the
expected sender?

See the Introduction in Chapter 2, “Message
Protection Patterns.”

How do I provide assurance to a message
recipient that a message has not been altered
after it was sent?

See the Introduction in Chapter 2, “Message
Protection Patterns.”

What is the difference between an XML
signature and a digital signature?

See Data Origin Authentication in Chapter 2,
“Message Protection Patterns.”

 Appendix 307

Resource Access
For answers to questions about resource access in WSE 3.0, see the resources in
Table A.6.

Table A.6: Resource Access Questions

Problem Solution

What is the difference between impersonation
and delegation?

See the Introduction in Chapter 4, “Resource
Access Patterns.”

How do I decide whether to use impersonation
and delegation or the Trusted Subsystem model
to secure access to resources?

See the Introduction in Chapter 4, “Resource
Access Patterns.”

How do I control access to a remote resource
based on a user’s identity instead of the
identity of the application that is accessing
the resource for the user?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I implement protocol transition on a
computer running Windows Server 2003?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I implement impersonation? See Implementing Message Layer Security with
Kerberos in WSE 3.0 and Implementing
Brokered Authentication Using Windows
Integrated Security on IIS in the References for
Transport Layer Security section in Chapter 3,
“Implementing Transport and Message Layer
Security.”

Windows Server 2003 Protocol Transition and Constrained Delegation
For answers to questions about Windows Server 2003 Protocol Transition and
Constrained Delegation in WSE 3.0, see the resources in Table A.7.

Table A.7: Windows Server 2003 Protocol Transition and Constrained Delegation Questions

Problem Solution

How do I authenticate users with one protocol,
and then authorize them to access resources
using another protocol?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I use forms authentication on a
presentation tier Web application, and then
control access to back-end resources using
Active Directory?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

(continued)

308 Web Service Security

Table A.7: Windows Server 2003 Protocol Transition and Constrained Delegation Questions
(continued)

Problem Solution

How do I authenticate users with X.509
certificates, and then perform role-based
access control using an Active Directory
domain?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I use protocol transition to initialize
a WindowsIdentity object for authorization
checks?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I use protocol transition to initialize a
WindowsIdentity object for impersonation?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I use constrained delegation to access
remote resources?

See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

How do I create a service principal name (SPN)? See the Protocol Transition with Constrained
Delegation Technical Supplement in Chapter 4,
“Resource Access Patterns.”

Exception Shielding
For answers to questions about exception shielding in WSE 3.0, see the resources in
Table A.8.

Table A.8: Exception Shielding Questions

Problem Solution

How do I prevent my application from
unintentionally disclosing sensitive information
about itself through unhandled exceptions?

See Exception Shielding and Implementing
Exception Shielding in Chapter 5, “Service
Boundary Protection Patterns.”

How do I prevent the service from disclosing
sensitive information in exception messages?

See Implementing Exception Shielding in
Chapter 5, “Service Boundary Protection
Patterns.”

How do I create exceptions that are safe by
design containing information that I can return
to Web service clients?

See Implementing Exception Shielding in
Chapter 5, “Service Boundary Protection
Patterns.”

How do I write unsanitized exception details
to a log to support monitoring and
troubleshooting?

See Implementing Exception Shielding in
Chapter 5, “Service Boundary Protection
Patterns.”

 Appendix 309

Message Validation
For answers to questions about message validation in WSE 3.0, see the resources in
Table A.9.

Table A.9: Message Validation Questions

Problem Solution

How do I prevent a Web service from processing
a message that contains malicious content?

See Message Validator and Implementing
Message Validation in WSE 3.0 sections in
Chapter 5, “Service Boundary Protection
Patterns.”

How do I reduce an attacker’s ability to bring
down my Web service with junk messages?

See Message Validator and Implementing
Message Validation in WSE 3.0 sections in
Chapter 5, “Service Boundary Protection
Patterns.”

How do I prevent the service from processing
request messages that are greater in size than
a specified limit?

See Implementing Message Validation in
WSE 3.0 in Chapter 5, “Service Boundary
Protection Patterns.”

How do I prevent the service from processing
messages that are not formed correctly or that
do not conform to an expected XML schema?

See Implementing Message Validation in
WSE 3.0 in Chapter 5, “Service Boundary
Protection Patterns.”

How do I validate input messages before
deserializing them into Microsoft .NET
Framework data types so that they can be
interpreted as regular expressions?

See Implementing Message Validation in
WSE 3.0 in Chapter 5, “Service Boundary
Protection Patterns.”

How do I create a custom assertion on
WSE 3.0?

See Implementing Message Validation in
WSE 3.0 in Chapter 5, “Service Boundary
Protection Patterns.”

What ASP.NET and WSE 3.0 configuration
settings exist to limit usage of resources such
as CPU?

See Implementing Message Validation in
WSE 3.0 in Chapter 5, “Service Boundary
Protection Patterns.”

310 Web Service Security

Message Replay Detection
For answers to questions about message replay detection in WSE 3.0, see the
resources in Table A.10.

Table A.10: Message Replay Detection Questions

Problem Solution

How do I protect a Web service from an attacker
replaying intercepted messages?

See Message Replay Detection in Chapter 5,
“Service Boundary Protection Patterns.”

How do I prevent the service from accepting
and processing messages that have expired,
after allowing for variable clock skew?

See Message Replay Detection in Chapter 5,
“Service Boundary Protection Patterns.”

How do I prevent the service from accepting
and processing messages that have been
replayed by attackers?

See Message Replay Detection in Chapter 5,
“Service Boundary Protection Patterns.”

How do I support preventing against replay
attacks for Web services deployed in a web
farm through the use of a database backed
replay cache?

See Message Replay Detection in Chapter 5,
“Service Boundary Protection Patterns.”

How do I implement message replay detection
using a WSE 3.0 custom assertion?

See Implementing Message Replay Detection in
WSE 3.0 in Chapter 5, “Service Boundary
Protection Patterns.”

Secure Conversation
For answers to questions about secure conversation in WSE 3.0, see the resources in
Table A.11.

Table A.11: Secure Conversation Questions

Problem Solution

How do I optimize secure communications
between two parties?

See “Extension 2 — Web Service Federation“ in
Brokered Authentication: Security Token Service
(STS) in Chapter 1, “Authentication Patterns.”

 Appendix 311

Service Router
For answers to questions about the service router in WSE 3.0, see the resources in
Table A.12.

Table A.12: Service Router Questions

Problem Solution

How do I make internal Web services available
to external clients?

See Perimeter Service Router in Chapter 6,
“Service Deployment Patterns.”

How do I route SOAP messages to an alternate
service when my primary service is down for
maintenance?

See Perimeter Service Router in Chapter 6,
“Service Deployment Patterns.”

How do I create a policy enforcer that performs
security functions before a message reaches
my Web service?

See Perimeter Service Router in Chapter 6,
“Service Deployment Patterns.”

How do I minimize exposure of my Web services
while providing access to them through
controlled points?

See Perimeter Service Router in Chapter 6,
“Service Deployment Patterns.”

How do I route SOAP messages based on their
content?

See Perimeter Service Router in Chapter 6,
“Service Deployment Patterns.”

How do I configure and use the SoapHttpRouter
class in WSE 3.0?

See Implementing Perimeter Service Router in
WSE 3.0 in Chapter 6, “Service Deployment
Patterns.”

More Information
To submit additional questions related to this guidance, see the community
workspace “Web Service Security: Scenarios, Patterns, and Implementation
Guidance”: http://go.microsoft.com/fwlink/?LinkId=57044.

To add new problem/solution links related to this guidance, see the “Web Service
Security Wiki”: http://go.microsoft.com/fwlink/?LinkId=57051.

http://go.microsoft.com/fwlink/?LinkId=57044
http://go.microsoft.com/fwlink/?LinkId=57051

312 Web Service Security

WSE 3.0 Security: Interoperability Considerations
The Web Service Security guide provides detailed information about how to provide
Web services security in your environment, including implementation patterns that
use Web Services Enhancements (WSE) 3.0 to implement a set of core standards,
such as XML, SOAP, Web Services Description Language (WSDL), and WS-Security.
In many cases, your environment will include multiple platforms, so to successfully
act on some of the guidance, you need to understand some important interoperability
issues that arise in a Web services environment.

This appendix provides an overview of interoperability issues that you may
encounter when developing Web services secured using SOAP message security. It is
not intended to provide a detailed analysis of other areas of interoperability relating
to technologies such as XSD, WSDL, or SOAP. For in-depth information about
interoperability and Web service security, see WS-I Basic Security Profile 1.0 Reference
Implementation: Preview release for the .NET Framework version 1.1 on MSDN. There is
also a WSE 3.0 Community Technical Preview (CTP) of this application available on
the Microsoft WS-I Basic Security Profile community workspace.

Interoperability Between WSE 2.0, WSE 3.0, and WCF
This section details the degree of interoperability that is available between the
different Microsoft platforms for Web Service development.

WSE 3.0 and the Windows Communication Framework (WCF)
Microsoft provides on the wire interoperability between WSE 3.0 and WCF (formally
code-named “Indigo”). This allows messages sent from a client based on WSE 3.0 to
be consumed by a WCF service, and vice versa. WCF includes two standard
bindings for backward compatibility with ASMX Web services and WSE 3.0. The
BasicHttpBinding, which does not incorporate message layer security, provides
wire-level compatibility with ASMX Web services, while the WsHttpBinding is
fully interoperable with WSE 3.0 (with a few minor configuration changes).

However, there will not be an automated mechanism to upgrade WSE 3.0
applications to run on WCF. The WS-I BSP Reference Implementation application
was designed to reduce the burden of upgrading code. For more information, see
Chapter 6, Designing Web Services for Interoperability and Resilience of WS-I Basic
Security Profile 1.0 Sample Application: Preview release for the .NET Framework version 1.0.

http://msdn.microsoft.com/practices/guidetype/RefImp/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp
http://msdn.microsoft.com/practices/guidetype/RefImp/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp
http://go.microsoft.com/fwlink/?linkid=47780&clcid=0x409
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/mswsibsp_chapter06.asp

 Appendix 313

WSE 3.0 and WSE 2.0

Because of changes in the underlying specifications for WS-Addressing, WS-Trust,
and WS-SecureConversation, WSE 3.0-enabled applications do not interoperate with
WSE 2.0-enabled applications. However, WSE 3.0 and WSE 2.0 client applications can
run side-by-side with the .NET Framework 2.0. You can host WSE 3.0-enabled Web
services and WSE 2.0-enabled Web services on the same computer, but they must be
in separate virtual directories for ASP.NET or separate applications for Windows
Forms applications.

It is theoretically possible to develop Web services using WSE 2.0 in such a way
that they can interoperate with WSE 3.0 (and WCF) by using only a reduced set of
specifications — specifically, SOAP 1.1, WSDL 1.0, and WS-Security 1.0. However,
Microsoft does not support interoperability in this situation. The safest way to plan
for interoperability with WCF is to upgrade the WSE 2.0 code to WSE 3.0.

Web Services Security Interoperability with Other Platforms
Interoperability issues can arise for many reasons, ranging from incorrect
implementations of XSD data types to varying support for extensibility points, such
as which algorithms are implemented. Complete coverage of these issues is outside
the scope of this appendix, but it does discuss three major areas that may result in
interoperability issues.

Support for Advanced Web Services Specifications
Web service specifications are intentionally designed to be composable. Because of
this, there are more advanced capabilities, such as layering security on top of the
fundamental specifications that relate to messaging. To achieve interoperability
between different platforms, you should understand how each platform has
implemented the underlying Web service specifications.

Web services specifications implemented in WSE 3.0 include: WS-Security 1.0 and 1.1,
WS-Trust, WS-SecureConversation, WS-Addressing (08/2004 draft), SOAP Message
Transmission Optimization Mechanism (MTOM), SOAP 1.1, and SOAP 1.2. For more
information about the implemented specifications, see the WSE 3.0 documentation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp

314 Web Service Security

Figure A.1 illustrates an overview of the Web services specifications related to
security.

WS-Security
Policy

WS-Federation

WS-Trust

WS-Secure
Conversation

M
et

ad
at

a:
 W

S
-P

ol
ic

y

Messaging: SOAP, WS-Addressing, MTOM

XML

WS-Security

Web Service Security

Figure A.1

The SOAP message security stack

Note that not all Web services specifications in Figure A.1 are currently implemented
in WSE 3.0. Most major vendors currently support WS-Security 1.0, but some vendors
may not yet have implemented more advanced specifications, such as WS-Trust and
WS-SecureConversation.

Support for New Versions of Web Services Specifications
WSE 2.0 implemented WS-Security 1.0, but WSE 3.0 implements both WS-Security 1.0
(WSS1.0) and WS-Security 1.1 (WSS1.1). WS-Security 1.1 introduces several new
capabilities that include:
● XML digital signature confirmation. Web services can now confirm to a client

when an XML digital signature is verified. Clients can decide whether to accept
SOAP responses from Web services that do not send signature confirmations.

● EncryptedKey security tokens. EncryptedKeyToken security tokens are used
to optimize the performance of cryptographic operations when only the public
key from an asymmetric key pair, such as a certificate, is present. You can use
EncryptedKeyToken security tokens to secure SOAP message exchanges between
anonymous clients that have only the public key for a Web service’s certificate.

 Appendix 315

For a detailed description of each turnkey scenario, see the WSE 3.0 documentation.
However, Table A.13 also provides a summary of WSE 3.0 turnkey scenarios, and
their dependency on WS-Security specifications. If interoperability with WSS1.0 is
required, make sure you use an assertion marked with an “X” in the WSS 1.0 column.
You should ensure that your Web services support WSS 1.1 before requiring the client
to check for the optional SignatureConfirmation capability because this is a WSS 1.1
feature. WSE 3.0 tooling automatically generates policy that has the
SignatureConfirmation option set to false.

Table A.13: Summary of WSE 3.0 Turnkey Scenarios and WS-Security Dependence

WSE 3.0 Assertion WSS 1.0 WSS 1.1 Features that require WSS 1.0

UsernameOverTransportSecurity X

UsernameForCertificateSecurity X EncryptedKey (required)

SignatureConfirmation (optional)

MutualCertificate11 X EncryptedKey (required)

SignatureConfirmation (optional)

MutualCertificate10 X X SignatureConfirmation (optional)

KerberosSecurity X X SignatureConfirmation (optional)

AnonymousForCertificateSecurity X EncryptedKey (required)

SignatureConfirmation (optional)

The following code example shows an example of the MutualCertifcate10 policy
assertion with the requireSignatureConfirmation field, which you can be set to true
or false.

<mutualCertificate10
 clientActor
 requireDerivedKeys="true|false"
 establishSecurityContext="true|false"
 messageProtectionOrder="Signature and encryption order"
 renewExpiredSecurityContext="true|false"
 serviceActor
 requireSignatureConfirmation="true|false"
 ttlInSeconds >
 <clientToken>
 <serviceToken>
 <protection>
</mutualCertificate10 >

Most major vendors currently support WS-Security 1.0, but some vendors may not
yet have implemented WS-Security 1.1.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/0246eb35-4599-4fec-beea-af0419fe8926.asp

316 Web Service Security

Varying Support for Extensibility Options Within the Specifications
A number of Web services specifications contain extensibility points that vendors
may implement. For example, an extensibility point within the WS-Security
specification is the selection of cryptography algorithms. WS-I has created profiles
that help to reduce the number of options within extensibility points. For this reason,
it is more likely that different platforms will interoperate.

One extensibility point used by WSE 3.0 and WCF that is not implemented by
all vendors is the key transport algorithm. Key transport algorithms are used
to optimize encryption by encrypting symmetric encryption keys, such as data
encryption keys, with asymmetric encryption keys. WSE 3.0 and WCF use a default
setting of RSA_OAEP. If you need to interoperate with an application that has not
implemented RSA_OAEP, you may need to consider changing to RSA15 instead.
RSA_OAEP is also not supported on Windows operating systems earlier than
Windows XP. The following excerpt from the WS-I Basic Security Profile refers
to the key transport algorithm.

R5621 When used for Key Transport, any xenc:EncryptionMethod/@Algorithm attribute in an
ENCRYPTED_KEY MUST have a value of “http://www.w3.org/2001/04/xmlenc#rsa-1_5” or
“http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p”

The RSA (PKCS#1.5) algorithm (“http://www.w3.org/2001/04/xmlenc#rsa-1_5”) is widely
implemented and deployed in existing practice. The RSA-OAEP algorithm
(“http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p”) is relatively new and becoming widely
implemented and deployed.

Example
The following configuration example specifies that symmetric session keys generated
for X509SecurityToken security tokens are encrypted using the RSA15 algorithm
instead of the default RSA_OAEP algorithm. This configuration is placed in the
App.config file or the Web.config file of the server.

<configuration>
 <microsoft.web.services3>
 <security>
 <binarySecurityTokenManager>
 <add valueType="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509v3"
 type="Microsoft.Web.Services3.Security.Tokens.X509SecurityTokenManager,
Microsoft.Web.Services3, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" priority="1" group="0">
 <!--Default value is keyAlgorithm name="RSAOAEP" -->
 <keyAlgorithm name="RSA15"/>
 </add>
 </security>
 </microsoft.web.services3>
</configuration>

If you encounter additional interoperability issues related to WSE 3.0, post a message
on the Microsoft WS-I Basic Security Profile community workspace.

http://go.microsoft.com/fwlink/?linkid=47780&clcid=0x409

 Appendix 317

More Information
For in-depth information about interoperability and Web service security, see WS-I
Basic Security Profile 1.0 Reference Implementation: Preview release for the .NET Framework
version 1.1 on MSDN: http://msdn.microsoft.com/practices/guidetype/RefImp
/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp.

For information about how the WS-I BSP Reference Implementation application
reduces the burden of upgrading code, see Chapter 6, “Designing Web Services
for Interoperability and Resilience” of WS-I Basic Security Profile 1.0 Reference
Implementation: Preview release for the .NET Framework version 1.0 on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/mswsibsp_chapter06.asp.

For information about the WS-I Basic Security Profile 1.0 Reference Implementation
application, see the WSE 3.0 Community Technical Preview (CTP) on the
“Microsoft WS-I Basic Security Profile community workspace”:
http://go.microsoft.com/fwlink/?linkid=47780&clcid=0x409.

For information about the implemented specifications, see the “WSE 3.0
documentation”: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0
/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp.

For information about the WS-I Basic Security Profile, see “Basic Security Profile
Version 1.0”: http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html.

For information about SOAP Message Security 1.0, see “Web Services
Security: SOAP Message Security 1.0 (WS-Security 2004) from OASIS”:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

Policy Advisor for WSE 3.0
In Web services and clients implemented with WSE 3.0, you can use declarative
XML configuration and policy files to determine many aspects of SOAP message
processing. Separating security critical processing from code is considered good
practice, because it makes it easier for manual review, and it allows you to customize
during deployment without recompiling code. However, the flexibility of the
configuration and policy formats creates a risk that subtle errors can occur. These
errors can leave Web services vulnerable to replay, man-in-the-middle, redirection,
and dictionary attacks. In the context of SOAP security, these are known as XML
rewriting attacks to distinguish them from other types of attack, such as buffer
overruns or SQL injections.

http://msdn.microsoft.com/practices/guidetype/RefImp/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp
http://msdn.microsoft.com/practices/guidetype/RefImp/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/mswsibsp_chapter06.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/mswsibsp_chapter06.asp
http://go.microsoft.com/fwlink/?linkid=47780&clcid=0x409
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

318 Web Service Security

Policy Advisor is a security tool for WSE 3.0 that you can use to help you review the
security of WSE 3.0 installations. The tool examines the configuration and policy files
for one or more WSE 3.0 endpoints, highlights typical security risks, including XML
rewriting attacks, and provides some remedial advice. The tool also summarizes the
associated trace files when they are present, and displays message flows between the
endpoints. Like most automated security tools, Policy Advisor can generate false
alarms. Conversely, an absence of warnings does not guarantee an absence of security
vulnerabilities. However, Policy Advisor isolates a range of vulnerabilities to XML
rewriting attacks that you otherwise might not detect.

PolicyAdvisor.xml
Policy Advisor is implemented as an XSL transform that processes a user-
supplied XML endpoints file to discover and analyze WSE 3.0 security policy and
configuration files. After you install the samples, you can access the Policy Advisor
tool in the WSE 3.0 installation at /samples/Policy Advisor/PolicyAdvisor.xml.

If you open the PolicyAdvisor.xml file in Internet Explorer, you can view the
documentation for the Policy Advisor, including a list of all the security risks that
the Advisor identifies, as shown in Figure A.2.

Figure A.2
PolicyAdvisor.xml viewed in Internet Explorer

 Appendix 319

Input Format
An example endpoints file named WSE Sample Endpoints.xml is located in the same
folder as the PolicyAdvisor.xml file. This file lists a selection of the client and server
endpoints in the WSE 3.0 samples.

If you open the WSE Sample Endpoints.xml file in Notepad, you can see the XML
input format, which is a sequence of endpoint elements within a root endpoints
element, as shown in Figure A.3.

Figure A.3
WSE Sample Endpoints.xml displaying how endpoints are configured in the policy advisor

An endpoint element may have the following attributes, each of which is optional:
● name: This is a name to identify the endpoint in the report that the Policy Advisor

generates.
● path: This is a base path for the following attributes.
● config: This is the configuration file for the endpoint. The concatenation of path

and config is the path to the configuration file.
● policyCache: This is the policy file for the endpoint. The concatenation of path

and policyCache is the path to the policy file.
● input: This is an existing trace of input messages for the endpoint that when

present illustrates its message flow. The concatenation of path and input is the
path to the trace file.

● output: This is an existing trace of output messages for the endpoint that when
present illustrates its message flow. The concatenation of path and output is the
path to the trace file.

320 Web Service Security

The relative paths are resolved with respect to the folder containing the
PolicyAdvisor.xml file, not the folder containing the endpoints file, (which is
incorrectly stated in the Policy Advisor documentation). This file format is specific
to the Policy Advisor tool and contains the XSLT expressions that generate the
evaluation report. No other WSE 3.0 components use it.

Use caution when editing the input files. If any of the paths cannot resolve to a file,
the XSL engine will fail when running the code in the PolicyAdvisor.xml file, which
generates an error message, such as: “The system cannot locate the resource
specified.”

Output Format
If you open the WSE Sample Endpoints.xml file in Internet Explorer, you can see a
sample report, as shown in Figure A.4.

Figure A.4
WSE Sample Endpoints.xml illustrates a Policy Advisor sample report

The first part of the report lists the names of the endpoints in the input file, and links
to the associated files, such as the configuration and policy files.

 Appendix 321

The next part of the report, shown in Figure A.5, aggregates the results of running a
collection of security queries on all the configuration and policy files provided as
input. For each query that is triggered, the report includes a one-line summary, a list
of the endpoints that triggered the query, a description of the risk, and advice for a
suggested action.

Figure A.5
WSE Sample Endpoints.xml illustrating how the Policy Advisor tool issues advisories

The report describes issues such as weak or apparently inconsistent security
properties, shows settings that are useful during test, but inappropriate in
production, and raises some questions that you can address during security reviews.

As well as presentational markup, the Extensible Hypertext Markup Language
(XHTML) output includes <instance> elements that contain the raw results of
queries. This means that it is possible to use batch scripts to run the Policy Advisor
tool and then extract the raw data of the report to compare it with previous reports.

322 Web Service Security

Using Policy Advisor with Visual Studio 2005
You can include an endpoints file in a project and invoke Policy Advisor directly in
Visual Studio 2005, as shown in Figure A.6.

Figure A.6
Using Policy Advisor in Visual Studio 2005

To invoke Policy Advisor in Visual Studio 2005, perform the following steps.

f To use Policy Advisor in Visual Studio 2005

1. Open the solution, then in the Solution Explorer, right-click the project and click
Add Existing Item.

2. Navigate to the directory in WSE 3.0 where the policy advisor sample is installed.
By default, it is located at C:\Program Files\Microsoft WSE\v3.0\Samples
\Policy Advisor.

3. Select the PolicyAdvisor.xml file and click Add.
4. In the Solution Explorer, right-click the project and click Add New Item.
5. In the same directory as the PolicyAdvisor.xml file, locate the WSE Sample

Endpoints.xml file, select it, and then click Add.
6. In the Solution Explorer, right-click the WSE Sample Endpoints.xml file,

select Rename, and then rename the file as endpoints.xml.
7. In the Solution Explorer, double-click the endpoints.xml file to open it.

 Appendix 323

8. Identify as many <endpoint> elements in the file for as many applications as you
want to run against the Policy Advisor tool.

9. Delete the remaining <endpoint> elements from the file.
10. Update the name attribute of each <endpoint> element that remains in the file

with the name that you want to use for the endpoint.
11. Update the path attribute of each <endpoint> element to point to the project

folder for that endpoint. Ensure that a back slash “\” appears at the end of the
path.

12. Update the config attribute of each <endpoint> element to point to the
configuration file for that application. This is usually “App.config” or
“Web.config” for client applications and Web applications, respectively.

13. Update the policyCache attribute of each <endpoint> element to point to the
policy cache file for that application. If you used the default settings to configure
policy on the application, the policy cache file name is “wse3policyCache.config.”

14. In the Properties window, specify the output location in the Output property.
This is usually an .htm file, such as “PolicyOutput.htm.”

15. Specify the Stylesheet as the PolicyAdvisor.xml file that you added in Step 3.
16. On the toolbar, click the Show XSLT Output button to display the results of the

policy analysis of your configured applications as shown in Figure A.7.

Figure A.7
The Policy Advisor output file that displays in Visual Studio 2005

324 Web Service Security

Patterns: A Common Vocabulary for Information
Technology Professionals

Overview
In the last decade or so, Microsoft and its competitors have focused a lot of attention
on finding better ways to capture, persist, and organize information gained through
analysis of data, so that knowledge can be shared effectively between people.

Early knowledge management solutions focused on capturing knowledge in
documents and providing access through rudimentary tagging and search
mechanisms. Over time, more sophisticated solutions have evolved that incorporate
advanced collaboration technologies alongside sophisticated tools that generate
taxonomies for the knowledge in an organization.

This paper demonstrates the need for the Information Technology industry to
focus on establishing a similar knowledge management solution to increase the
effectiveness of communications among software engineers including architects,
software designers, developers, and testers. Such a solution will increase the
effectiveness of application development, and will also increase our ability to
communicate clearly and consistently within large organizations and across
organizational boundaries.

The Challenge
Communication across large organizations is difficult. Some key factors are
organizational, cultural, time and geographical. For software engineers in particular,
the problem has increased over time due to the lack of a single, standard mechanism
for persisting knowledge about proven software designs which has often resulted in,
at best, inconsistent reinvention of the wheel, and at worst, overlapping or duplicated
functionality.

It is interesting to note that these symptoms are similar to those facing knowledge
workers in organizations without sophisticated knowledge management solutions.
Workers duplicate efforts, quality is compromised through inconsistent analysis,
and the organization is less able to leverage agility to its competitive advantage.

Due to the similarity of these symptoms our hypothesis is that a similar solution
to the one that is currently being deployed for knowledge workers is required for
architects and developers.

 Appendix 325

The Solution
The solution is a knowledge management solution for software engineers. Such a
solution should incorporate the following capabilities:
● A standard notation for describing proven architectural designs that incorporates

information such as when the design is applicable, tradeoffs associated with using
the design and a solution that is reproducible.

● A standard vocabulary to describe architectural designs.
● A searchable repository for publishing, sharing, and locating architectural designs.
● A layered model for describing taxonomies of architectural designs, including

support for composite designs.
● A means of incorporating architectural designs, and models based upon those

designs, into integrated development environments such as Visual Studio.

In the last few years, the IT industry has thought about many of these capabilities and
has developed solutions with various degrees of acceptance. The Microsoft patterns
& practices team is also working on a set of solutions to each of these challenges with
the goal being to contribute to the development and adoption of a common
vocabulary across the IT industry.

We will briefly describe individual solutions that are available with the goal being to
encourage and increase adoption of patterns as a standard means of communicating
architectural designs.

A Standard Notation for Designs — Design Patterns
Patterns provide an effective means of communicating best practices for solving
recurring design challenges. Patterns use a template that incorporates a pattern name,
the context in which the pattern exists, a description of the problem the pattern
solves, a solution to the problem, and consequences or tradeoffs that arise from using
the pattern.

In the IT industry we often remark how similar a problem is on latest technologies to something we
solved a decade ago on technologies long since retired. A good example of this is the way in which
we used to design CICS applications on a mainframe — an approach called pseudo-conversational
development was a primary design pattern for building scalable CICS applications. This varied from
the conversational (and significantly less scalable) equivalent used within the TSO environment on a
mainframe.

The conceptual lessons learned from the mainframe are just as applicable to development in
.NET and J2EE. In fact, had our industry standardized on a standard vocabulary for describing such
problems 20 years ago it might be simpler to transition developers from the mainframe to newer
technologies. At minimum the issues surrounding how state and connections should be maintained
in scalable online application would have been better understood and resulted in a lot fewer
eCommerce organizations experiencing outages due to poor resource management when their
applications experienced spikes in traffic.

326 Web Service Security

A significant benefit from using design patterns is their inherent longevity — in many
cases architecture and design patterns outlast the platform upon which they were
first described. The Microsoft patterns & practices team deliberately separates the
implementation of patterns from the corresponding architectural or design patterns
that they implement. This allows the implementation to be demonstrated on multiple
products (for example, .NET Enterprise Services, WCF, and BizTalk) and allows the
implementation to be replaced as our technologies evolve (for example, from WSE 2.0
to WSE 3.0 to WCF to…).

It is difficult to measure the success of a design pattern or even patterns-based
guidance. Consider the impact that the original Design Patterns: Elements of Reusable
Object-Oriented Software book has had on the software industry, were it measured in
terms of actual sales it would probably be considered moderately successful — but
would never appear on a New York Times best seller list. Now, consider how
frequently you hear software engineers, often working in different teams,
organizations, or geographic locations, describe solutions to problems by referencing
patterns such as the Façade or Abstract Factory — and you get some insight into the
value of patterns and their importance as part of the software engineering
vocabulary.

A Standard Vocabulary — Pattern Languages
Design patterns are named so that the solutions they encompass can be
communicated and discussed with clarity. Over time, the names establish a common
understanding of the key characteristics of their implementation, just as has been the
case for algorithms such as Bubble Sort and Quick Sort.

There is an emerging trend for design patterns to be created as a group to help
establish vocabulary within a particular domain. Gregor Hohpe’s Enterprise
Integration Patterns1 is a good example — it provides a common vocabulary for
architects focusing on integration and messaging.

People often reminisce about similarities between technologies that are prevalent for developing
distributed applications. This may or may not be true, but imagine how much simpler it would be to
move developers from J2EE, CORBA, and COM+ to .NET and SOA if all distributed applications had a
common understanding of key message exchange patterns and an understanding of the roles and
responsibilities of key concepts, such as the naming service, the stub, skeleton, and even IDL. Sure,
new messaging patterns would emerge as our technologies evolve, but these patterns would build
off a well established base reducing the learning curve and expediting adoption of new technologies.

1 Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns : Designing, Building, and

Deploying Messaging Solutions, Reading, MA: Addison-Wesley Professional, 2003.

 Appendix 327

The Microsoft patterns & practices team has been working on a series of architecture
and design patterns focused on the domain of service orientation. The first release
establishes a vocabulary around Web service security, with future releases aimed
to focus on messaging and data consistency. If used effectively, such a vocabulary
allows underlying products to change, while still helping developers to understand
core concepts that need to be addressed by each pattern.

Enterprise Architecture Patterns

Patterns related to Service Orientation

Patterns not directly related to Service Orientation

Messaging
Patterns

Security
Patterns

Data
Consistency

Patterns
Integration
Patterns

Deployment
& Management

Patterns

Smart
Client

Patterns

Description
& Discovery

Patterns

Service
Design

Patterns

Figure A.8
Patterns of Service Orientation

328 Web Service Security

A Standard Repository — PatternShare
Any knowledge management solution requires a means of publishing and discussing
content. The Microsoft patterns & practices team has developed a content
management solution called PatternShare that is based on a wiki. PatternShare
allows developers across the world to publish patterns that they use. PatternShare
encourages other developers to apply, discuss and even edit the patterns that are
posted.

PatternShare also provides access to the patterns using full-text search or through the
use of a visual model based on a layered view of a particular domain. The existing
search capabilities must evolve overtime to allow people to find patterns based on
problems they are trying to solve. Search results displayed within visual information
models should help software engineers locate patterns more easily. Some ideas for
this visualization are proposed in the next section. For more information, see
PatternShare. PatternShare is an open wiki and you are invited to participate in
its growth.

A Layered Model — The Pattern Frame
As described earlier, the ability to describe architectural and design level challenges
independent of their implementation allows the patterns to truly transcend the life
of a particular product. A great example of this is provided by the original Design
Patterns: Elements of Reusable Object-Oriented Software design patterns — they initially
provided implementations in C++, but all of these patterns have since been
implemented in C, SmallTalk, Java, C#, and Visual Basic. NET.

The organizational frame used within Microsoft’s Enterprise Solution patterns
provides a basic model that allows patterns to be organized not just by levels of
abstraction — but also based on the area of technology with which the pattern is
focused.

http://www.patternshare.org/

 Appendix 329

Design

Implementation

Architecture

Database Application Deployment Infrastructure

Figure A.9
The basic model provided by Microsoft’s Enterprise Solution patterns

Frequently, guidance to software engineers on the use of technologies is at the
implementation level — which means that every time a technology changes, the
guidance needs to change and software engineers have to relearn how to solve the
same problem with new technologies. Focusing on architectural and design level
guidance, and then showing implementations on particular products, is not only
more efficient — it also establishes a group memory for software engineers.

A more sophisticated model has also been developed that allows organizations
to describe enterprise architectures in terms of patterns — allowing for increased
visibility into the organization’s architecture and underlying relationships between
systems. For more information on this model, see Describing the Enterprise
Architectural Space.

More importantly, PatternShare incorporates a visual model that provides an
example of how a series of patterns can be organized. This helps developers
searching for guidance on a particular problem to find what patterns exist. Please
see Enterprise Architectural Space Organizing Table for more on this example.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/entarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/entarch.asp
http://patternshare.org/default.aspx/Home.EnterpriseArchitecturalSpaceOrganizingTable

330 Web Service Security

IDE Integration — Guidance Automation Toolkit (GAT)
A critical aspect of empowering developers in using patterns as the basis for
describing designs is to incorporate such patterns into IDE’s such as Visual Studio.
As mentioned earlier, this is important for enterprise developers who are often more
capable of addressing complex business problems (such as how to calculate housing
loan interest rates) than they are at solving complex technical challenges (such as
ensuring a password stored within a database is stored using an appropriate hashing
mechanism).

The Guidance Automation toolkit, developed by patterns & practices, is an extension
to Visual Studio 2005 that allows architects to author rich, integrated user experiences
for reusable assets including frameworks, components and patterns.

A pattern such as Direct Authentication, which simply describes how a client and a service can
authenticate using a shared secret, can appear trivial at the surface. However, when you consider
aspects such as: how to ensure the shared secret is stored in a database in a secure (hashed)
format, how to hash the shared secret, whether to hash it on the client or the service and what the
implications are for securing the message — you get some idea of why a pattern describing what
the associated best practices are, is valuable.

If you then examine the number of factors that you need to consider when implementing such a
simple solution — for example, a custom UsernameToken manager, a custom hashing algorithm,
WSE 3.0 security policy and modifications to the Web.config file and associated Web service
interface — it becomes clear why patterns and their implementations in Visual Studio are so
important.

http://msdn.microsoft.com/vstudio/teamsystem/Workshop/gat/default.aspx

 Appendix 331

Figure A.10
A prototype of GAT based guidance

Figure A.10 is a prototype of GAT based guidance that has been developed to
accompany the patterns & practices Web service security pattern’s initiative.
For more information, join the Web Service Security community workspace.

http://go.microsoft.com/fwlink/?LinkId=57044

332 Web Service Security

Conclusion and Recommendation
A pattern based knowledge management solution will allow software engineers to
start capturing proven software designs and reusing them across organizations.
The pattern language that naturally emerges from such a solution will also, over time,
form a technical vocabulary that will increase effectiveness of communications — not
just across teams within an organization but also across our industry — resulting in
better communication, increased productivity and of course better quality.

The capabilities presented within this paper already exist in varying degrees of
maturity. In some cases the capabilities have existed for at least a decade, and in
others the capabilities exist only as prototype work within the Microsoft patterns
& practices team. To truly reap the benefits of a unified knowledge management
solution for software engineers, all of these capabilities must be considered
collectively.

Author: Jason Hogg, Microsoft Corporation

Reviewer and Editor: Paul Slater, Wadeware LLC

Reviewers: Per Vonge Nielsen, Edward Jezierski, David Trowbridge, Matt Deacon,
Microsoft Corporation; Ward Cunningham

More Information
Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Reading, MA: Addison-Wesley Professional, 2003,
ISBN: 0321200683.

Enterprise Solution Patterns Using Microsoft .NET, Redmond: Microsoft Press, 2003,
ISBN: 0735618399. Also available on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp.

Web Service Security: Scenarios, Patterns, and Implementation Guidance community
workspace: http://go.microsoft.com/fwlink/?linkid=52393&clcid=0x409.

Describing the Enterprise Architectural Space: http://msdn.microsoft.com/practices
/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/entarch.asp.

PatternShare: http://www.patternshare.org/.

Enterprise Architectural Space Organizing Table: http://patternshare.org/default.aspx
/Home.EnterpriseArchitecturalSpaceOrganizingTable.

Gamma, Eric, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, MA: Addison-Wesley
Professional, 1995, ISBN: 0201633612.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal, Pattern-Oriented Software Architecture, Volume 1: A System of Patterns, Hoboken,
NJ: John Wiley & Sons, 1996, ISBN: 0471958697.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp
http://go.microsoft.com/fwlink/?linkid=52393&clcid=0x409
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/entarch.asp
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/entarch.asp
http://www.patternshare.org/
http://patternshare.org/default.aspx/Home.EnterpriseArchitecturalSpaceOrganizingTable
http://patternshare.org/default.aspx/Home.EnterpriseArchitecturalSpaceOrganizingTable

 Appendix 333

Glossary
This section contains a brief summary of key terms and definitions that appear
in Web Service Security: Scenarios, Patterns, and Implementation Guidance for Web
Services Enhancements 3.0. This glossary is not intended to be an authoritative or
comprehensive security glossary for this guide because many such resources already
exist. The numbers at the end of the definition indicate where terms are directly cited
from one of the resources in the “References” section.

authentication
The process of identifying an individual using the credentials of that individual.
For example, a bank teller may be required to authenticate who you are by examining
your driver’s license. Authentication typically occurs immediately after
identification.

authorization
The process of determining whether an authenticated subject is allowed to access a
resource or perform a task within a security domain. Authorization uses information
about a client’s identity and/or roles to determine the resources or tasks that a client
can perform.

Brokered authentication
A type of authentication where a trusted authority is used to broker authentication
services between a client and a service. An example is shown in Figure A.11.

Figure A.11
Using a broker to perform authentication when a client and service do not share a trust relationship

334 Web Service Security

claim
A claim is a declaration made by an entity. Examples include name, identity, key,
group, privilege, and capability. [2]

client
The client accesses the Web service. The client provides credentials for authentication
during the request to the Web service.

confidentiality
A process by which data is protected so that only authorized actors or security token
owners can view the data.

credentials
A set of claims used to prove the identity of a client. They contain an identifier for the
client and a proof of the client’s identity, such as a password. They may also include
information, such as a signature, to indicate that the issuer certifies the claims in the
credential.

data confidentiality
The encrypting of message data so that unauthorized entities cannot view the
contents of the message.

data integrity
The verification that a message has not changed in transit.

Data origin authentication
Data origin authentication takes data integrity a step further by supporting the ability
to identify and validate the origin of a message.

data encryption
Encryption is the process of converting data (plaintext) into something that appears
to be random and meaningless (ciphertext), which is difficult to decode without a
secret key. Encryption is used to provide message confidentiality.

delegation
A process where the service account is allowed to access a remote resource on behalf
of another Windows account, which is typically the client accessing a service.

digital signature
This is an asymmetric signature that is created with the private key of a client. Digital
signatures can be used to support non-repudiation requirements.

 Appendix 335

Direct authentication
A type of authentication where the service validates credentials directly with an
identity store, such as a database or directory service. When both the client and
service participate in a trust relationship that allows them to exchange and validate
credentials including passwords, direct authentication can be performed, as shown in
Figure A.12.

Figure A.12
Direct authentication when a client and service share a trust relationship

identification
Represents the use of an identifier that allows a system to recognize a particular
subject and distinguish it from other users of the system.

impersonation
Impersonation is the act of assuming a different identity on a temporary basis so that
a different security context or set of credentials can be used to access a resource.

impersonation/delegation model
A resource access model that flows the security context of the original caller through
successive application tiers and onto back-end resource managers. This allows
resource managers to implement authorization decisions based on the identity of
the original caller. This is in contrast to the trusted subsystem model. [1]

message layer security
Message layer security represents an approach where all the information that is
related to security is encapsulated in the message. In other words, with message
layer security, the credentials are passed in the message.

mutual authentication
Mutual authentication is a form of authentication where the client authenticates the
server in addition to the server that authenticates the client. [1]

336 Web Service Security

proof-of-possession
A value that a client presents to demonstrate knowledge of either a shared secret or
a private key to support client authentication. Proof-of-possession that uses a shared
secret can be established using the actual shared secret, such as a user’s password,
or a password equivalent, such as a digest of the shared secret, which is typically
created with a hash of the shared secret and a salt value. Proof-of-possession can also
be established using the XML signature within a SOAP message where the XML
signature is generated symmetrically based on the shared secret or asymmetrically
based on the sender’s private key.

protection scope
This term describes the scope of protection for a Web service message. Protection
scope refers to the extent the message will be protected, whether it is for its entire
message lifetime or only while it is in transit between servers.

protocol transition
Protocol transition is a process where the service account transitions an identity that
was authenticated using a non-Windows protocol into a Windows security context.

public-private key encryption
Public-private key encryption is an asymmetric form of encryption that relies on a
cryptographically generated public/private key pair. Data encrypted with a private
key can only be decrypted with the corresponding public key (and vice-versa).

security context
A generic term used to refer to the collection of security settings that affect the
security-related behavior of a process or thread. The attributes from a process logon
session and an access token combine to form the security context of the process. [1]

security context token (SCT)
A lightweight token that can be established for multiple message exchanges between
two endpoints using the protocol defined in the WS-SecureConversation
specification. [4]

security token
A set of claims used to prove the identity of a client. They contain an identifier for the
client and a proof of the client’s identity, such as a password. They may also include
information, such as a signature, to indicate that the issuer certifies the claims in the
credential. Most security tokens will also contain additional information that is
specific to the authentication broker that issued the token.

security token service (STS)
A Web service that issues security tokens (see WS-Security). An STS makes assertions
based on evidence that it trusts, to whomever trusts it (or to specific recipients). To
communicate trust, a service requires proof, such as a signature to prove knowledge
of a security token or set of security tokens. An STS can generate tokens or it can rely
on a separate STS to issue a security token with its own trust statement. (Note that for
some security token formats, this can be nothing more than a re-issuance or co-
signature). This process forms the basis of trust brokering. [3]

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

 Appendix 337

service account
This is the Windows account that the operating system process uses when it hosts
a service. Web services are usually hosted in a process managed by an application
server, such as Internet Information Services (IIS) that performs operations using
the identity of a service account.

signed security token
A signed security token is a security token that is asserted and cryptographically
signed by a specific authority, such as an X.409 certificate or a Kerberos ticket. [2]

service
A service is a Web service that requires authentication.

transport layer security
Transport layer security represents an approach where security protection is enforced
by lower level network communication protocols.

trust
Trust is the characteristic that one entity is willing to rely upon a second entity to
execute a set of actions and/or to make a set of assertions about a set of subjects
and/or scopes. [2]

trusted subsystem
This is a process where a trusted business identity is used to access a resource on
behalf of the client. The identity could belong to a service account or it could be the
identity of an application account created specifically for access to remote resources.

References
For more security glossary information, see the following resources:
1. “Building Secure ASP.NET Applications: Authentication, Authorization,

and Secure Communication” on MSDN: http://msdn.microsoft.com/practices
/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetAPgl.asp.

2. “Web Services Security: SOAP Message Security 1.0 (WS-Security 2003)” on the
Oasis Web site: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf.

3. “Web Services Trust Language (WS-Trust)” on MSDN:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf.

4. “Managing Security Context Tokens in a Web Farm” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html
/sctinfarm.asp.

http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetAPgl.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetAPgl.asp
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/sctinfarm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/sctinfarm.asp

Bibliography

This section contains a consolidated list of referenced resources that appear in the
Web Service Security guide.

General Information
The following references provide useful background information that will help you
gain a better overall understanding of this guide.

Security Background
Brown, K. The .NET Developer’s Guide to Windows Security, Reading, MA: Addison-
Wesley Professional, 2005, ISBN: 0321228359.

Kaufman, C., Perlman, R., and Speciner, M. Network Security — PRIVATE
Communication in a PUBLIC World. Upper Saddle River, NJ: Prentice Hall PTR., 2002,
ISBN: 0130460192.

Improving Web Application Security: Threats and Countermeasures on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/ThreatCounter.asp.

Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnnetsec/html/SecNetch10.asp.

“Threat Modeling Web Applications” on MSDN: http://msdn.microsoft.com/practices
/Topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp.

Security Challenges, Threats and Countermeasures Version 1.0 on the WS-I Web site:
http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf.

OASIS Standards and Other Approved Work (including WS-Security) on the OASIS
Web site: http://www.oasis-open.org/.

Pattern Resources
PatternShare: http://www.patternshare.org/.

Gamma, Eric, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, MA: Addison-Wesley
Professional, 1995, ISBN: 0201633612.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal, Pattern-Oriented Software Architecture, Volume 1: A System of Patterns, Hoboken,
NJ: John Wiley & Sons, 1996, ISBN: 0471958697.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/ThreatCounter.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnpag2/html/tmwa.asp
http://www.ws-i.org/Profiles/BasicSecurity/SecurityChallenges-1.0.pdf
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.patternshare.org/

 Bibliography 339

Hohpe, Gregor, and Bobby Woolf, Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Reading, MA: Addison-Wesley Professional, 2003,
ISBN: 0321200683. Also available on: http://www.eaipatterns.com.

Enterprise Solution Patterns Using Microsoft .NET, Redmond: Microsoft Press, 2003,
ISBN: 0735618399. Also available on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp.

Integration Patterns, Redmond: Microsoft Press, 2004, ISBN: 073561850X. Also
available on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-u
s/dnpag/html/intpatt.asp.

Chapter 1, “Authentication Patterns”
For more information about authorization on the .NET Framework, see
“Authentication and Authorization” in Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication on MSDN:
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us
/dnnetsec/html/SecNetch03.asp.

For more information about the Kerberos protocol specifications, see RFC 1510: The
Kerberos Network Authentication Service (V5): http://www.faqs.org/rfcs/rfc1510.html.

For more information about Kerberos authentication in Windows Server 2003,
see “Kerberos Authentication Technical Reference” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef
/b748fb3f-dbf0-4b01-9b22-be14a8b4ae10.mspx.

For a general overview of PKI technologies, see “PKI Technologies” on Microsoft
TechNet: http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef
/6d5d9ef3-75ca-46c1-acf6-57dc7e9a6adf.mspx.

For more information about WS-Trust, see Web Services Trust Language (WS-Trust) on
MSDN: http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf.

For more information about ADFS, see “Introduction to ADFS” on Microsoft TechNet:
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e
-092696f40c171033.mspx.

For more information about Security Assertion Markup Language (SAML),
go to the OASIS Web site: http://www.oasis-open.org/specs/index.php#samlv1.1.

For more information about WS-SecureConversation, see Web Services
Secure Conversation Language (WS-SecureConversation) on MSDN:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf.

For more information about SAML 1.1 core specification, go to the Oasis Web site:
http://www.oasis-open.org/specs/index.php#samlv1.1.

For more information about SAML token profile 1.0, see
Web Security Services: SAML Token Profile on the Oasis Web site:
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf.

http://www.eaipatterns.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetch03.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetch03.asp
http://www.faqs.org/rfcs/rfc1510.html
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b748fb3f-dbf0-4b01-9b22-be14a8b4ae10.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b748fb3f-dbf0-4b01-9b22-be14a8b4ae10.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/6d5d9ef3-75ca-46c1-acf6-57dc7e9a6adf.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/6d5d9ef3-75ca-46c1-acf6-57dc7e9a6adf.mspx
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e-092696f40c171033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/c67c9b41-1017-420d-a50e-092696f40c171033.mspx
http://www.oasis-open.org/specs/index.php#samlv1.1
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-secureconversation.pdf
http://www.oasis-open.org/specs/index.php#samlv1.0
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

340 Web Service Security

Chapter 2, “Message Protection Patterns”
For more information on WS-Security version 1.0, see the OASIS Standards
and Other Approved Work (including WS-Security) on the OASIS Web site:
http://www.oasis-open.org/specs/index.php#wssv1.0.

For more information about HMAC, see RFC 2104 — HMAC: Keyed Hashing for
Message Authentication: http://www.ietf.org/rfc/rfc2104.txt?number=2104.

Chapter 3, “Implementing Transport and Message Layer Security”
For information about Web Services Security, see “Web Services Security: SOAP
Message Security 1.0 (WS-Security 2004)”: http://docs.oasis-open.org/wss/2004/01
/oasis-200401-wss-soap-message-security-1.0.pdf.

For information about derived key tokens, see “Web Services Secure Conversation
Language (WS-SecureConversation)”: http://specs.xmlsoap.org/ws/2005/02/sc
/WS-SecureConversation.pdf.

For information about how to configure a SqlMembershipProvider, see “How To:
Use Membership in ASP.NET 2.0” on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp.

For information about creating a custom ASP.NET 2.0 membership provider, see
“Building Custom Providers for ASP.NET 2.0 Membership” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/bucupro.asp.

For information about configuring WSE 3.0 to prevent replay attacks, see
“Web Services Enhancements 3.0 <replayDetection> Element” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b4fa188d
-4804-40bd-877b-c01058555013.asp.

For more information about performance objectives, see “Improving .NET
Performance and Scalability” on MSDN: http://msdn.microsoft.com/practices
/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp.

For information about WSE 3.0 policy, see “Securing a Web Service” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/7b8f29da
-22d5-4e03-b645-15011a80e548.asp.

For information about Kerberos assertion policy settings, see “<kerberosSecurity>
Element” on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp.

For more information about performance objectives see, “Improving .NET
Performance and Scalability” on MSDN: http://msdn.microsoft.com/practices/Topics
/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp.

http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.ietf.org/rfc/rfc2104.txt?number=2104
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000022.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/bucupro.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b4fa188d-4804-40bd-877b-c01058555013.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b4fa188d-4804-40bd-877b-c01058555013.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/7b8f29da-22d5-4e03-b645-15011a80e548.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/7b8f29da-22d5-4e03-b645-15011a80e548.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/bde6a6dd-00e4-4c37-aa8d-8821f2f25bc5.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/practices/Topics/perfscale/default.aspx?pull=/library/en-us/dnpag/html/scalenet.asp

 Bibliography 341

For information about installing X.509 certificates in the local certificate store,
see “How to: Use the X.509 Certificate Management Tools” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html
/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true.

For information about how to install X.509 certificates in the local
machine certificate store, see “Certificates How To” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp
/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx.

For more information on configuring the behavior of X.509 security in WSE 3.0,
see “<x509> Element” on MSDN: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp in the
WSE documentation.

For information about how to set the findType and findValue attributes for the
<x509> element, see “<x509> Element (Policy)” in the WSE 3.0 documentation
on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html
/4caad727-778e-4c57-90f8-0edca69eed1f.asp.

For information about configuring other settings for this policy assertion, see
“<mutualCertificate10> Element” in the WSE 3.0 documentation on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/973d38d8
-6347-4617-983f-089e64a2b02c.asp.

To learn more about Windows Integrated Security, see the “Authentication
and Authorization Strategies” section in “Web Services Security” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch10.asp.

To call a Web service configured to use Windows Integrated Authentication, see the
“Specifying Client Credentials for Windows Authentication” section in “Web Services
Security” on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/SecNetch10.asp.

To learn how to configure IIS for HTTP basic authentication, see “Basic
Authentication in IIS 6.0” on Microsoft TechNet: http://www.microsoft.com/technet
/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1-1ea89d861eb4.mspx.

To learn how an SSL session is established between two parties, see “Description
of the Secure Sockets Layer (SSL) Handshake” on Microsoft Help and Support:
http://support.microsoft.com/default.aspx?scid=kb;%5bLN%5d;Q257591.

To learn about how a client authenticating to a service using SSL operates, see
“Description of the Client Authentication Process During the SSL Handshake”
on Microsoft Help and Support: http://support.microsoft.com/kb/257586/EN-US/.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp?frame=true
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/ServerHelp/fb037b9f-8956-411c-a3e8-ce1dfe37da11.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/72b7b9c9-63dd-4ce7-a25f-e40b164912d2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/4caad727-778e-4c57-90f8-0edca69eed1f.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/4caad727-778e-4c57-90f8-0edca69eed1f.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/973d38d8-6347-4617-983f-089e64a2b02c.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/973d38d8-6347-4617-983f-089e64a2b02c.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1-1ea89d861eb4.mspx
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/abbca505-6f63-4267-aac1-1ea89d861eb4.mspx
http://support.microsoft.com/default.aspx?scid=kb;%5bLN%5d;Q257591
http://support.microsoft.com/kb/257586/EN-US/

342 Web Service Security

To learn how to implement SSL, see:
● “How To Set Up SSL on a Web Server” on MSDN: http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/secmod/html/secmod30.asp.
● “How To Call a Web Service Using SSL” on MSDN: http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/secmod/html/secmod28.asp.
● “How To Call a Web Service Using Client Certificates from ASP.NET” on MSDN:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html
/secmod27.asp.

To learn how to call a Web service that requires credentials, see the “Passing
Credentials for Authentication to Web Services” section in “Web Services Security”
on MSDN: http://msdn.microsoft.com/library/en-us/secmod/html/secmod10.asp.

For more information about implementing transport layer security with
Kerberos and IPSec on Windows Server 2003, see “IPSec” on Microsoft.com:
http://www.microsoft.com/windowsserver2003/technologies/networking/ipsec/default.mspx.

For more information about XML performance guidance in the .NET Framework, see
Chapter 9, “Improving XML Performance,” in Improving .NET Application Performance
and Scalability on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpag/html/scalenetchapt09.asp.

Chapter 4, “Resource Access Patterns”
For more information about Web services security, see “Web Services Security”
in Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnnetsec/html/SecNetch10.asp.

For more information about using impersonation and delegation in ASP.NET 2.0,
see “How To: Use Impersonation and Delegation in ASP.NET 2.0” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/PAGHT000023.asp.

For more information about designing the authentication and authorization
mechanisms for a distributed ASP.NET Web application, see “Authentication and
Authorization” on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/secmod/html/secmod03.asp.

For more information about developing identity-aware applications, see “Developing
Identity-Aware ASP.NET Applications, Identity and Access Management Services” on
MSDN: http://www.microsoft.com/technet/security/topics/identitymanagement/idmanage
/P3ASPD_1.mspx.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod30.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod28.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod27.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod27.asp
http://msdn.microsoft.com/library/en-us/secmod/html/secmod10.asp
http://www.microsoft.com/windowsserver2003/technologies/networking/ipsec/default.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000023.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000023.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod03.asp
http://www.microsoft.com/technet/security/topics/identitymanagement/idmanage/P3ASPD_1.mspx
http://www.microsoft.com/technet/security/topics/identitymanagement/idmanage/P3ASPD_1.mspx

 Bibliography 343

Chapter 5, “Service Boundary Protection Patterns”
For more information about idempotent methods, see “9 Method Definitions”:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

For more information about idempotent, see “Idempotent” on the Wikipedia Web
site: http://en.wikipedia.org/wiki/Idempotent.

For more information about idempotent Web services, see “Idempotent Receiver“
on the Enterprise Integration Patterns Web site:
http://www.eaipatterns.com/IdempotentReceiver.html.

For more information about SOAP Message Security, see OASIS:
“Web Services Security: SOAP Message Security 1.0 (WS Security 2004)”:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

For more information about SQL Server performance optimization,
see “Optimizing Database Performance Overview” on MSDN:
http://msdn.microsoft.com/library/?url=/library/en-us/optimsql/odp_tunovw_9mxz.asp.

For more information about security best practices for SQL Server 2000, see
“SQL Server 2000 SP3 Security Features and Best Practices” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx.

Chapter 4, “Design Guidelines for Secure Web Applications,” in Improving
Web Application Security: Threats and Countermeasures on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/THCMCh04.asp.

For more information about <httpRuntime>, see “<httpRuntime> Element” in
the .NET Framework General Reference on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp.

For more information about WSE 3.0 policy assertions, see “Policy Assertions” on
MSDN: http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb
-45cf-beca-3cfcefceaa8b.asp.

For more information about using the SoapClient/SoapService classes for
messaging, see “How To: Send and Receive a SOAP Message by Using the
SoapClient and SoapService Classes,” in the WSE 3.0 documentation on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522
-0672-4c17-b68e-0d3e65067271.asp.

For more information about adding a schema to a resource file see “Resolving the
Unknown: Building Custom XmlResolvers in the .NET Framework,” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html
/CusXmlRes.asp.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://en.wikipedia.org/wiki/Idempotent
http://www.eaipatterns.com/IdempotentReceiver.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://msdn.microsoft.com/library/?url=/library/en-us/optimsql/odp_tunovw_9mxz.asp
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sp3sec00.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfhttpruntimesection.asp
http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522-0672-4c17-b68e-0d3e65067271.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/8cbdb522-0672-4c17-b68e-0d3e65067271.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html/CusXmlRes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxmlnet/html/CusXmlRes.asp

344 Web Service Security

For more information about implementing regular expressions, see “How To:
Use Regular Expressions to Constrain Input in ASP.NET” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/PAGHT000001.asp.

For more information about using regular expressions in XML Schemas, see
“XML Schema Regular Expressions” on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp.

For more information about XML performance guidance in the .NET Framework, see
Chapter 9, “Improving XML Performance,” in Improving .NET Application Performance
and Scalability on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpag/html/scalenetchapt09.asp.

For more information about how to create the event source that the Web service
uses, see the “Creating a New Event Source at Install Time” section of “How To:
Use the Network Service Account to Access Resources in ASP.NET” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html
/PAGHT000015.asp.

For more information about creating custom Policy Assertions in WSE 3.0, see
“Custom Policy Assertions” in the WSE 3.0 product documentation on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/5636c932
-30d0-42c6-ac17-88c40b5935b8.asp.

Chapter 6, “Service Deployment Patterns”
“Service Interface Pattern” in Enterprise Solution Patterns Using Microsoft .NET on
MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html
/DesServiceInterface.asp.

For more information about using the WseWsdl3.exe utility, see the “WSDL to Proxy
Class Tool” on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/wse3.0/html/fbefe453-3851-439b-9c10-fb036b59ff81.asp.

For more information on referral cache syntax, see “How to: Configure the
WSE SOAP Router” on MSDN: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp.

For more information about implementing SOAP routers in WSE 3.0, see:
“Routing SOAP Messages with WSE” on MSDN: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp.

For more information about XML performance guidance in the .NET Framework, see
Chapter 9, “Improving XML Performance,” in Improving .NET Application Performance
and Scalability on MSDN: http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnpag/html/scalenetchapt09.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/ea72d044-6b46-4124-b6dc-95976e411b4a.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000015.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000015.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/5636c932-30d0-42c6-ac17-88c40b5935b8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/5636c932-30d0-42c6-ac17-88c40b5935b8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesServiceInterface.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/fbefe453-3851-439b-9c10-fb036b59ff81.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/fbefe453-3851-439b-9c10-fb036b59ff81.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/6414f229-cead-48af-a293-cb893c24c0e6.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/b41230fb-d0e1-48b1-88c0-3daf7a40c9e8.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt09.asp

 Bibliography 345

Chapter 7, “Technical Supplements”
For information about compatibility issues between GSSAPI and the
Kerberos SSP, see “SSPI/Kerberos Interoperability with GSSAPI” on MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security
/sspi_kerberos_interoperability_with_gssapi.asp.

For information about replay detection with the sequence field, see section
“5.3.2 Authenticators” in RFC 1510: http://www.ietf.org/rfc/rfc1510.txt.

For in-depth troubleshooting information for the Kerberos protocol implementation
in Windows 2000 and Windows 2003, see “Troubleshooting Kerberos Delegation” on
Microsoft TechNet: http://www.microsoft.com/technet/prodtechnol/windowsserver2003
/technologies/security/tkerbdel.mspx.

For information about Kerberos authentication, see “What Is Kerberos
Authentication?” on Microsoft TechNet: http://www.microsoft.com/technet/prodtechnol
/windowsserver2003/library/TechRef/792ed95d-6f13-4181-a218-e4eaab361c1b.mspx.

For information about certificate policies, see “Internet X.509 Public Key
Infrastructure Certificate Policy and Certification Practices Framework”:
http://www.ietf.org/rfc/rfc2527.txt.

For information about X.509 PKI services on Windows Server 2003,
see “Designing a Public Key Infrastructure” on Microsoft TechNet:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library
/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx.

For information about the MakeCert utility, see “Certificate Creation Tool
(Makecert.exe)” on MSDN: http://winfx.msdn.microsoft.com/library/default.asp?url=
/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp.

For information about PKI and Windows Server 2003, see “Public Key Infrastructure
for Windows Server 2003”: http://www.microsoft.com/windowsserver2003/technologies/pki
/default.mspx.

For information about the Online Certificate Status Protocol (OCSP), see “RFC 2650,
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol — OCSP”:
http://www.ietf.org/rfc/rfc2560.txt.

For information about the Certificate Services PKI solution in Windows Server 2003,
see “What Is Certificate Services?”: http://www.microsoft.com/technet/prodtechnol
/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx.

For more information about certificates, see “What are certificates?” on the RSA
Laboratories Web site: http://www.rsasecurity.com/rsalabs/node.asp?id=2277.

For information about Secure Sockets Layer (SSL), see “What is SSL?” on the RSA
Laboratories’ Web site: http://www.rsasecurity.com/rsalabs/node.asp?id=2293.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security/sspi_kerberos_interoperability_with_gssapi.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security/sspi_kerberos_interoperability_with_gssapi.asp
http://www.ietf.org/rfc/rfc1510.txt
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerbdel.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerbdel.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/792ed95d-6f13-4181-a218-e4eaab361c1b.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/792ed95d-6f13-4181-a218-e4eaab361c1b.mspx
http://www.ietf.org/rfc/rfc2527.txt
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/DepKit/b1ee9920-d7ef-4ce5-b63c-3661c72e0f0b.mspx
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_fxtools/html/b0343f8e-9c41-4852-a85c-f8a0c408cf0d.asp
http://www.microsoft.com/windowsserver2003/technologies/pki/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/pki/default.mspx
http://www.ietf.org/rfc/rfc2560.txt
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/63e3ba1c-cc23-40b1-9ca2-853869677318.mspx
http://www.rsasecurity.com/rsalabs/node.asp?id=2277
http://www.rsasecurity.com/rsalabs/node.asp?id=2293

346 Web Service Security

For more information about WS-Security version 1.0, see the OASIS Standards
and Other Approved Work (including WS-Security) on the OASIS Web site:
http://www.oasis-open.org/specs/index.php#wssv1.0.

For information about IPSec, see “Internet Protocol Security (IPsec) Operations
Topics”: http://www.microsoft.com/technet/prodtechnol/windowsserver2003/operations
/ipsec.mspx

For information about the Internet X.509 PKI certificate and CRL profile, see
“Internet X.509 Public Key Infrastructure Certificate and CRL Profile” (RFC 2459):
http://www.ietf.org/rfc/rfc2459.txt.

Appendix
For in-depth information about interoperability and Web service security, see WS-I
Basic Security Profile 1.0 Reference Implementation: Preview release for the .NET Framework
version 1.1 on MSDN: http://msdn.microsoft.com/practices/guidetype/RefImp
/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp.

For information about the implemented specifications, see the “WSE 3.0
documentation”: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0
/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp.

For information about the WS-I Basic Security Profile, see “Basic Security Profile
Version 1.0”: http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html.

For information about SOAP Message Security 1.0, see “Web Services
Security: SOAP Message Security 1.0 (WS-Security 2004) from OASIS”:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

Describing the Enterprise Architectural Space: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag/html/entarch.asp.

For more security glossary information, see the following resources:
● “Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication” on MSDN at http://msdn.microsoft.com/practices/Topics
/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetAPgl.asp.

● “Web Services Security: SOAP Message Security 1.0 (WS-Security 2003)” on the
Oasis Web site at http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf.

● “Web Services Trust Language (WS-Trust)” on MSDN at
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf

● “Managing Security Context Tokens in a Web Farm” on MSDN at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv
/html/sctinfarm.asp.

http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/operations/ipsec.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/operations/ipsec.mspx
http://www.ietf.org/rfc/rfc2459.txt
http://msdn.microsoft.com/practices/guidetype/RefImp/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp
http://msdn.microsoft.com/practices/guidetype/RefImp/default.aspx?pull=/library/en-us/dnpag2/html/MSWSIBSP.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/1d3257fd-fcfb-45cf-beca-3cfcefceaa8b.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse3.0/html/d0ed7f06-504b-40f8-939c-b884ffce77c0.asp
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/entarch.asp
http://msdn.microsoft.com/practices/guidetype/Guides/default.aspx?pull=/library/en-us/dnpag/html/entarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/entarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/entarch.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetAPgl.asp
http://msdn.microsoft.com/practices/Topics/security/default.aspx?pull=/library/en-us/dnnetsec/html/SecNetAPgl.asp
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-trust.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/sctinfarm.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/sctinfarm.asp

 Bibliography 347

Community Workspace and Wiki
To post questions, provide feedback, or connect with other users for sharing ideas,
visit the community workspace “Web Service Security: Scenarios, Patterns, and
Implementation Guidance”: http://go.microsoft.com/fwlink/?LinkId=57044.

To add new problem/solution links related to this guidance, see the “Web Service
Security Wiki”: http://go.microsoft.com/fwlink/?LinkId=57051.

http://go.microsoft.com/fwlink/?LinkId=57044
http://go.microsoft.com/fwlink/?LinkId=57051

Microsoft’s proven recommendations for how to design, develop, deploy, and operate
architecturally sound applications for the Microsoft platform.
● UNDERSTAND proven architecture, design, and implementation patterns
● RE_USE tested, performance-tuned source code and application blocks
● IMPLEMENT security, performance, and scalability engineering practices
● BUILD enterprise .NET applications faster with confidence

http://msdn.microsoft.com/practices

http://msdn.microsoft.com/practices

	Web Service Security
	Contents
	Forewards
	Foreword by Alex Stamos and Scott Stender
	Foreword by Rudolph Araujo

	Preface
	Intended Audience
	How This Guide Is Organized
	Community
	Feedback and Support
	The Team Who Brought You This Guide

	Introduction
	Overview
	Navigating the Web Service Security Guide
	Important Concepts

	Common Scenarios
	Public Web Service Scenario
	Distributor Web Service Profile
	Solution Approach
	Candidate Solution

	Intranet Web Service Scenario
	Banking Application Profile
	Solution Approach
	Candidate Solution

	Internet Business-to-Business Scenario
	Supply Chain Management Application Profile
	Solution Approach
	Candidate Solution

	Multiple Internet Web Services Scenario
	Travel Booking Application Profile
	Solution Approach
	Solutions Description

	Part I: Core Web Service Security Patterns
	Chapter 1: Authentication Patterns
	Introduction
	Important Concepts
	Direct Authentication vs. Brokered Authentication
	Brokered Authentication Options

	Authorization Methods
	Role-Based Authorization
	Resource-based Authorization
	Policy

	Direct Authentication
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Brokered Authentication
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Brokered Authentication: Kerberos
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Brokered Authentication: X.509 PKI
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Brokered Authentication: Security Token Service (STS)
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Extensions
	Extension 1 — Establishing a Secure Conversation
	Extension 2 — Web Service Federation

	Related Patterns

	More Information

	Chapter 2: Message Protection Patterns
	Introduction
	Data Integrity, Data Origin Authentication, and Data Confidentiality

	Data Confidentiality
	Context
	Problem
	Forces
	Solution
	Participants
	Process
	Example

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Data Origin Authentication
	Context
	Problem
	Forces
	Solution
	Participants
	Process
	Example

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	More Information

	Chapter 3: Implementing Transport and Message Layer Security
	Introduction
	Important Concepts
	Transport Layer vs. Message Layer Security

	Implementing Direct Authentication with UsernameT
	Context
	Objectives
	Content
	Implementation Strategy
	Identity Store Options
	Providing Secure Communication
	Participants
	Process

	Implementation Approach
	General Setup
	Configure the Client
	Configure the Service

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Variants
	Variant 1 — Using a Database as the Identity Stor
	Variant 2 — Using an LDAP Directory Service as th
	Create a Custom UsernameTokenManager

	Implementing Message Layer Security with Kerberos
	Context
	Objectives
	Content
	Implementation Strategy
	Participants
	Process

	Implementation Approach
	General Setup
	Client Setup
	Service Setup

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Implementing Message Layer Security with X.509 Ce
	Context
	Objectives
	Content
	Implementation Strategy
	Participants
	Process

	Implementation Approach
	General Setup
	Configure the Client
	Configure the Service

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Extensions
	Role-based Authorization

	Implementing Message Layer Security with a Securi
	Context
	Implementation Strategy

	References for Transport Layer Security
	Implementing Brokered Authentication Using Windows Integrated Security on IIS
	Implementing Transport Layer Data Confidentiality Using HTTPS
	Implementing Transport Layer Security Using HTTP Basic over HTTPS
	Implementing Transport Layer Security Using X.509 Certificates and HTTPS
	Implementing Transport Layer Security with Kerberos and IPSec on Windows Server 2003

	More Information

	Part II: Additional Web Service Security Patterns and Guidance
	Chapter 4: Resource Access Patterns
	Introduction
	Important Concepts
	Resource Access Methods

	Trusted Subsystem
	Context
	Problem
	Forces
	Solution
	Participants
	Process
	Enforcing the Trust Relationship
	Example

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Extensions
	Extension 1 — Flowing the Identity of the Client

	Protocol Transition with Constrained Delegation T
	New Kerberos Extensions
	Protocol Transition
	Constrained Delegation
	Scenarios

	Implementation
	Sample Code

	Implementation Context
	Benefits
	Liabilities
	Security Considerations

	More Information

	Chapter 5: Service Boundary Protection Patterns
	Introduction
	Message Replay Detection
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Variants
	Related Patterns

	Implementing Message Replay Detection in WSE 3.0
	Context
	Objectives
	Content
	Implementation Strategy
	Participants
	Process

	Implementation Approach
	General Setup
	Configure the Client
	Configure the Service

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Message Validator
	Context
	Problem
	Forces
	Solution
	Participants
	Process

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Implementing Message Validation in WSE 3.0
	Context
	Objectives
	Content
	Implementation Strategy
	Participants
	Process

	Implementation Approach
	Configure the Client
	Configure the Service

	Resulting Context
	Benefits
	Liabilities

	Security Considerations

	Exception Shielding
	Context
	Problem
	Forces
	Solution
	Participants
	Process
	Example

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Extensions
	Extension 1 — Logging Exceptions

	Related Patterns

	Implementing Exception Shielding
	Context
	Objectives
	Content
	Implementation Strategy
	Participants
	Process

	Implementation Approach
	Create a Custom Exception Class
	Enclose Code in Try/Catch Blocks
	Create a Method that Sanitizes Exceptions

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	More Information

	Chapter 6: Service Deployment Patterns
	Introduction
	Perimeter Service Router
	Context
	Problem
	Forces
	Solution
	Participants
	Process
	Example

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Related Patterns

	Implementing Perimeter Service Router in WSE 3.0
	Context
	Objectives
	Content
	Implementation Strategy
	Participants
	Process

	Implementation Approach
	General Setup
	Configure the External Application
	Configure the Perimeter Service Router
	Configure the Service

	Resulting Context
	Benefits
	Liabilities
	Security Considerations

	Extensions
	Extension 1 — Using the Perimeter Service Router

	More Information

	Chapter 7: Technical Supplements
	Introduction
	Kerberos Technical Supplement for Windows
	Local Security Authority (LSA)
	Accessing the LSA
	Security Support Provider Interface (SSPI)

	Important Concepts
	Shared Secrets
	Long Term Keys
	Session Keys
	Service Account
	Service Principal Names
	Kerberos Tickets
	Ticket Lifetimes
	Authenticator and Message Replay Detection
	Delegation Configuration
	Implementing Kerberos with SSPI
	Signing and Encryption

	Kerberos Protocol Operations for Web Services
	Using a Domain Account with IIS 5.x (Windows 2000 and Windows XP)
	Web Farm Deployment with WSE 3.0

	Troubleshooting
	Duplicate SPNs
	Cached Tickets
	IIS Caching and Delegation

	X.509 Technical Supplement
	Public Key Encryption and Digital Signatures
	X.509 Certificates
	Implementations of X.509
	Secure Sockets Layer (SSL)
	WS-Security X.509 Binary Security Token
	IPSec

	Certificate Authorities
	Obtaining an X.509 Certificate
	Certificate Revocation
	Certificate Storage and Access
	Certificate Management

	Using X.509 Certificates in Patterns

	More Information

	Appendix
	Introduction
	Problem/Solution Index
	General
	Authentication and Authorization
	Kerberos Protocol and Windows Server 2003
	X.509 Certificates
	Message Protection: Data Confidentiality, Integri
	Resource Access
	Windows Server 2003 Protocol Transition and Constrained Delegation
	Exception Shielding
	Message Validation
	Message Replay Detection
	Secure Conversation
	Service Router
	More Information

	WSE 3.0 Security: Interoperability Consideration�
	Interoperability Between WSE 2.0, WSE 3.0, and W
	WSE 3.0 and the Windows Communication Framework �

	Web Services Security Interoperability with Other Platforms
	Support for Advanced Web Services Specifications
	Support for New Versions of Web Services Specifications
	Varying Support for Extensibility Options Within the Specifications

	More Information

	Policy Advisor for WSE 3.0
	PolicyAdvisor.xml
	Input Format
	Output Format
	Using Policy Advisor with Visual Studio 2005

	Patterns: A Common Vocabulary for Information Tec
	Overview
	The Challenge
	The Solution
	A Standard Notation for Designs — Design Patterns
	A Standard Vocabulary — Pattern Languages
	A Standard Repository — PatternShare
	A Layered Model — The Pattern Frame
	IDE Integration — Guidance Automation Toolkit \(

	Conclusion and Recommendation
	More Information

	Glossary
	References

	Bibliography
	General Information
	Security Background
	Pattern Resources

	Chapter 1, “Authentication Patterns”
	Chapter 2, “Message Protection Patterns”
	Chapter 3, “Implementing Transport and Message L�
	Chapter 4, “Resource Access Patterns”
	Chapter 5, “Service Boundary Protection Patterns 
	Chapter 6, “Service Deployment Patterns”
	Chapter 7, “Technical Supplements”
	Appendix
	Community Workspace and Wiki

	Additional Resources

