
3

Introduction to Microsoft Message
Queuing Services (MSMQ)

Distributed applications run on two or more computers. They communicate
with one another by passing data over machine boundaries through appro-
priate network protocols. Most of these protocols use synchronous technolo-
gies, such as Remote Procedure Calls (RPC) and DCOM. The synchronous
process model has a number of limitations, however. Message queuing pro-
vides an asynchronous programming model and a loosely coupled environ-
ment for different components of distributed applications.

This chapter teaches you the following:

• The limitations of synchronous processing

• Message queuing technology and Microsoft Message Queuing Services
(MSMQ)

• MSMQ architecture

• How to write MSMQ applications in Visual Basic

05 0789724588 CH03 10/25/00 5:06 PM Page 71

Limitations of the Synchronous Processing Model
In a synchronous processing model, components interact with one another
in a tightly coupled manner. DCOM applications are examples of synchro-
nous processing, as shown in Figure 3.1.

72 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Machine 2

Machine 1

Data Store

COM Object COM Object

COM+

Client Application

DCOM

Figure 3.1: DCOM applications use the synchronous processing model.

In Figure 3.1, the client application in machine 1 interacts with the COM
objects that are running on machine 2 using DCOM. This synchronous pro-
cessing model has several limitations:

• A synchronous processing system requires a reliable network connec-
tion. As in Figure 3.1, the client has no way to communicate with the
server when the network is disconnected.

• In a synchronous processing system, both communicating parties must
be available at the same time. In Figure 3.1, if the COM objects on
machine 2 are not up and running, calls from the client application
fail.

E X A M P L E

05 0789724588 CH03 10/25/00 5:06 PM Page 72

• In Figure 3.1, when the client application makes a call to the COM
object on the server, it must wait for the server to finish its processing.
If the server takes a long time to process a client call, the client appli-
cation is blocked (or frozen) until the server finishes processing.

• If machine 2 in Figure 3.1 is shut down for some reason, the calls from
the client to the server fail. Therefore, the synchronous processing
model is not fault tolerant and thus is not a robust architecture.

Message Queuing and MSMQ
This section introduces message queuing and MSMQ and explains why
message queuing technology and products can overcome the shortcomings
of the synchronous processing model.

Asynchronous Processing and Message Queuing
As you can see from the previous discussion, a tightly coupled architecture
is not suitable for today’s distributed applications, such as Windows DNA
applications. In a typical DNA application, having a reliable network con-
nection, available servers, and so on is not always feasible. Message queu-
ing, on the other hand, provides an asynchronous processing model that
addresses the limitations of the synchronous processing model.

Message queuing products use a store-and-forward mechanism to handle
the interaction between different applications. In a typical message queuing
system, like the one in Figure 3.2, instead of calling the server directly as
in DCOM applications, the client sends data in the form of a message to a
temporary data store, which is called a queue. The underlying message
queuing service internally forwards the message to another queue on the
server. A receiver application on the server then picks up the message from
the queue and invokes the server to process.

As shown in Figure 3.2, the request of the client is processed in a loosely
coupled, asynchronous manner. An asynchronous system such as message
queuing can be configured in such a way that if the network is down, the
message stays in the queue on the client machine and the data is not lost.
The message queuing service forwards the message to the server queue if
the network connection becomes available again. The receiver application
on the server machine can pick up and process the message at another
time. Finally, as long as the client application sends the message to the
queue, it is ready to do whatever else it needs to do because it’s not blocked
by the server process any more.

73Message Queuing and MSMQ

E X A M P L E

05 0789724588 CH03 10/25/00 5:06 PM Page 73

Figure 3.2: A message queuing system.

N O T E
The terms client and client application here simply mean the message sender. They are
relative terms. The roles of the sender and the receiver can be reversed.

T I P
The configuration described here is called an independent client in MSMQ. In the IBM
MQSeries system, you can use clustering queue managers to achieve the same results.
IBM MQSeries, which is IBM’s message queuing product, offers capabilities comparable
to MSMQ. I will discuss only MSMQ in this book, because this chapter is intended to
give you all the background information for Chapter 9, “Queued Components.” Queued
Components is an important COM+ services that uses MSMQ to achieve messaging
queuing functionality.

MSMQ
Message queuing products are sometimes referred to as Message-Oriented
Middleware (MOM). Microsoft Message Queue Services 2.0 is now an inte-
grated part of Windows 2000 component services; it is the Microsoft imple-
mentation of MOM technology.

Applications developed for MSMQ can communicate across heterogeneous
networks and with computers that may be offline. MSMQ provides guaran-
teed message delivery, efficient routing, security, transactional support, and
priority-based messaging.

74 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Machine 1 Machine 2

Data Store

COM Object

COM Object

COM+

Receiver

Queue

Message

Queue

Message

Message

Client
Application

05 0789724588 CH03 10/25/00 5:06 PM Page 74

T I P
In Microsoft Windows 2000 documentation, MSMQ 2.0 is referred to as message queu-
ing. In Microsoft Platform SDK documentation, both terms (MSMQ, and message
queuing) are used.

MSMQ Architecture
Depending on your Windows 2000 configuration, MSMQ can be used in a
domain environment or a workgroup environment. The difference is that
for MSMQ, a domain environment includes domain controllers that provide
a directory service, such as Active Directory, whereas a workgroup environ-
ment does not provide such a directory service.

Domain Environment
In a domain environment, an MSMQ network is a group of Windows 2000
sites, connected by routing links. Sites map the physical structure of a net-
work, whereas domains map the logical structure of an organization. Sites
and domain structures are independent of each other. A single site can have
multiple domains, whereas a single domain can also have multiple sites. In
Windows 2000, a site is defined as a set of computers in one or more IP sub-
nets. Routing links are logic communication links created by MSMQ to
route messages between different sites. In MSMQ, a computer that can pro-
vide message queuing, routing, and directory services to client computers is
called an MSMQ server. A routing link is made up of MSMQ servers, one on
each site.

C A U T I O N
Don’t confuse routing links with site links. Routing links are used by MSMQ to route
messages between sites, whereas site links are used by domain controllers to replicate
Active Directory between sites.

Workgroup Environment
An MSMQ computer can also run in a workgroup environment that is not
part of a domain. There are several restrictions, however. All the benefits
provided by Active Directory Services are not available.

First, messages cannot be routed by an MSMQ server; a direct connection
with the destination server is required.

Second, you can create and manage only private queues on a local computer.
You cannot view or manage public queues. You can, however, send messages
to or read messages from private queues, provided that a direct connection
to the destination MSMQ server is specified.

75MSMQ Architecture

05 0789724588 CH03 10/25/00 5:06 PM Page 75

N O T E
In MSMQ 2.0, public queues are those published in Active Directory and can be
accessed anywhere in the Active Directory forest. Private queues are not published in
Active Directory and can be accessed only by MSMQ applications that know the full
pathname or the format name of the queue. Public queues are persistent. Private
queues are lightweight and more suitable for offline operations in which the directory
services may not be available.

Finally, you cannot use internal certificates to send authenticated mes-
sages. Instead, you must use an external certificate.

Queues
In MSMQ, queues are temporary storage locations for different types of
messages. Queues can be logically divided into two groups: application
queues and system queues. Application queues are created by applications.
System queues are created by MSMQ.

T I P
Application queues can also be created using the Computer Management MMC snap-in.

Figure 3.3 shows the different types of queues in the Message Queuing ser-
vices in the Computer Management snap-in.

76 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Figure 3.3: Message Queuing services in the Computer Management
snap-in.

T I P
If the Message Queuing service is not started yet for some reason, you cannot see it
under the Services and Applications node in the Computer Management snap-in. You
can manually start the Message Queuing service by using the Component Services
snap-in. From Services, locate and right-click the Message Queuing service; then select
Start (as shown in Figure 3.4).

E X A M P L E

05 0789724588 CH03 10/25/00 5:06 PM Page 76

Figure 3.4: Starting the Message Queuing service in the Component
Services snap-in.

In Figure 3.3, you may have noticed another type of queue: the outgoing
queue. Those queues are used for offline operations in which directory ser-
vice is not available. When MSMQ on a client machine is configured for
offline use, it is called an independent client. When MSMQ on a client
machine is configured for real-time access support, it is called a dependent
client.

APPLICATION QUEUES

Application queues include message queues, administration queues, response
queues, and report queues. These queues are created by applications.

Message queues allow applications to exchange data through messages.
Applications can send messages to and receive them from message queues.
Message queues can be either public or private. Figure 3.5 shows an exam-
ple of a message queue called TestQueue that is created as a private queue.

C A U T I O N
When you create a queue from an application, it is always displayed in lowercase under
Message Queuing in the Computer Management snap-in. However, the names in MSMQ
are case sensitive, so be extremely careful in your code when you refer to a queue. For
example, if you create a queue called MyQueue, it shows up in MSMQ as myqueue. In
your code, however, you still need to access this queue by using MyQueue. You get an
error if you refer it as myqueue.

77MSMQ Architecture

E X A M P L E

05 0789724588 CH03 10/25/00 5:06 PM Page 77

Figure 3.5: A message queue.

Administration queues, which are specified by the sending application,
store system-generated acknowledgment messages sent by MSMQ. If you
specify the administration queue when you send a message, MSMQ gener-
ates an acknowledgment message and sends it to the administration queue
specified, indicating whether the original message was successfully sent
(see Figure 3.6).

78 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Specify
Administration

Queue

Application
Message

Acknowledgement
Message

Destination
Queue

Administration
Queue

Sending
Application

MSMQ

Figure 3.6: An administration queue.

E X A M P L E

05 0789724588 CH03 10/25/00 5:06 PM Page 78

Response queues are specified by the sending application and used by the
receiving application to send response messages back to the sending appli-
cation (see Figure 3.7).

79MSMQ Architecture

Response
Message

Application
Message

Specify
Response

Queue

Application
Message

Destination
Queue

Response
Queue

Sending
Application

Sending
Application

Figure 3.7: A response queue.

Report queues track the progress of messages as they move through the
enterprise. When the sending application enables tracking and specifies a
report queue, MSMQ sends report messages to the report queue. A report
message is a system message that is generated each time an application
message passes through an MSMQ routing server.

SYSTEM QUEUES

System queues are created either by MSMQ or the MSMQ administrator.
System queues contain journal queues and dead-letter queues. Whenever an
application queue is created, MSMQ automatically create a journal to track
the messages that are removed from the queue. Dead-letter queues store
messages that could not be delivered. MSMQ provides two dead-letter
queues for each computer: one for nontransactional messages and the other
for transactional messages. Figure 3.8 shows system queues.

E X A M P L E

E X A M P L E

05 0789724588 CH03 10/25/00 5:06 PM Page 79

Figure 3.8: System queues.

Messages
MSMQ messages are data exchanged between applications. Messages can
be generated by MSMQ applications or by MSMQ itself. This chapter
addresses only application-generated messages and some of their important
properties.

For each message, MSMQ generates and assigns a message identifier. The
identifier, or ID, of a message is unique on the computer where the message
resides and can be used along with other message properties to identify a
message. Figure 3.9 shows the property page of a message with its message
identifier highlighted.

80 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Figure 3.9: A message identifier (ID).

A message identifier is composed of the machine GUID of the computer
that sent the message and an identifier that is unique to the computer. For
example, in Figure 3.9, the message identifier is
{E8368CF2-5F95-4A2B-A331-0C8F4883CF84}\12290

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 80

The Label property of a message is used to describe the message, much like
the subject of an email. The Label of the message in Figure 3.9 is Testing.

Unlike an email message, however, the Body property of a message is not
limited to string data types. The body of a message is a variant data type.
It can be literally any data type, including string, date, numeric, currency,
or array of bytes. The body of a message can be a persistent object such as
an Excel spreadsheet or even an ADO recordset.

Journaling
MSMQ journaling allows you to keep track of messages. The two types of
MSMQ journaling are source journaling and target journaling. Source jour-
naling tracks messages sent by a computer, whereas target journaling
tracks messages removed from a queue.

Programming MSMQ in Visual Basic
MSMQ provides both API functions and a COM interface for developers to
interact with it programmatically. This book focuses on the COM interface.
I’ll first introduce MSMQ COM objects. Then I’ll show you some basic
MSMQ examples followed by a couple of advanced MSMQ programming
examples. Finally, I’ll give you an asynchronous ordering example to
demonstrate how to use MSMQ in real-world scenarios.

MSMQ COM Object Model
MSMQ provides a set of COM objects that allow applications to access and
manage message queuing. The three most important MSMQ COM objects
are MSMQQueueInfo, MSMQQueue, and MSMQMessage. Their relationship is illus-
trated in Figure 3.10.

81Programming MSMQ in Visual Basic

MSMQQueueInfo

MSMQQueue

MSMQMessage

Figure 3.10: Important MSMQ COM objects.

MSMQQueueInfo, which provides queue management, allows you to create or
delete a queue, open an existing queue, or manipulate the properties of a
queue.

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 81

MSMQQueue represents an open instance of an MSMQ queue. It provides a
cursor-like mechanism for traversing the messages in an open queue. Like
a database cursor, at any give moment, it points to a particular message in
the queue.

MSMQMessage provides properties to define the behavior of a message and the
methods for sending the message to the queue.

Other MSMQ COM objects support additional functionalities:

• The MSMQApplication object provides methods or properties to retrieve
information from the MSMQ machine. For example, the IsDSEnabled
property tells you whether MSMQ is using the directory service on the
computer.

• The MSMQQueueInfos and MSMQQuery objects allow you to get informa-
tion on public queues. The MSMQQueueInfos object represents a set of
MSMQ public queues and allows you to select a specific public queue
from a collection of queues. The MSMQQuery object allows you to query
the directory service for existing public queues.

• The MSMQEvent object provides an interface for you to implement a sin-
gle event handler that supports multiple queues.

• The MSMQTransaction, MSMQTransactionDispenser, and
MSMQCoordinatedTransactionDispenser objects allow you to manage
internal and external MSMQ transactions.

Basic MSMQ Examples
To work with MSMQ, you need to set a reference to the Microsoft Message
Queue Object Library in a Visual Basic project, as shown in Figure 3.11.
Later, in the code samples, you will notice the syntactical difference
between creating public and private queues.

The first example, Listing 3.1, creates a queue, opens the queue for send
access, and puts a testing message in the queue.

C A U T I O N
Depending in which directory you put the sample code of this chapter, when you load
the source code you may experience an error, “Could Not Create Reference….” If this
error occurs, you should reset the references to “Microsoft Message Queue 2.0 Object
Library” by select Project, References menu option. This object library is usually located
in “\WINNT\system32\MQOA.dll”.

82 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 82

83Programming MSMQ in Visual Basic

Figure 3.11: Setting a reference to the Microsoft Message Queue Object
Library.

Listing 3.1 Creating and Opening a Queue and Sending a Message

Public Sub SendQueueMessage()
‘==
‘In this sub routine, we will create a queue, open
‘the queue and send a testing message to the queue.
‘==
‘Enable the error handler
On Error GoTo SendQueueMessage_Err
‘Declare variables for MSMQ objects.
Dim oQInfo As MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue
Dim oMessage As MSMQ.MSMQMessage

‘Initialize the MSMQQueueInfo object.
Set oQInfo = New MSMQQueueInfo
‘we use a conditional compilation constant
‘to take care of both public and private queues.
#If bUseDS Then

‘If directory service is used, we can create
‘a public queue.
oQInfo.PathName = “.\TestingQueue”

#Else
‘Else we can only create a private queue.
oQInfo.PathName = “.\PRIVATE$\TestQueue”

#End If
‘Now we are ready to create the queue.
oQInfo.Label = “Testing Queue”
oQInfo.Create
‘Open the queue for send access.
Set oQueue = oQInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 83

‘If the queue is opened sccessfully, we send a
‘testing messge to it.
If oQueue.IsOpen Then

‘Initialize the MSMQMessage object.
Set oMessage = New MSMQMessage
‘Prepare the message and send to the queue.
With oMessage

.Label = “Testing Message”

.Priority = 5 ‘Default priority is 3.

.Body = “Testing Message”

.Send oQueue
End With

Else
‘Queue is not open, report the error and get out.
MsgBox “The queue is not open!”
Exit Sub

End If
‘If everything is ok, close the queue and get out.
oQueue.Close
MsgBox “The message is sent!”
Exit Sub

SendQueueMessage_Err:
‘If the queue already exist when we try to create it, ‘
‘ignore the error and move on.
If Err.Number = MQ_ERROR_QUEUE_EXISTS Then

Resume Next
End If
‘Handling other errors.
MsgBox Err.Description

End Sub

In Listing 3.1, you use a Visual Basic conditional compilation constant that
you set on the Make tab of the project’s property page (see Figure 2.12).
This way, you can have a single code base to handle creating both public
and private queues.

The Open method of the MSMQQueueInfo object takes two parameters: Access
Mode and Shared Mode. Access Mode can be MQ_SEND_ACCESS,
MQ_RECEIVE_ACCESS, or MQ_PEEK_ACCESS. Shared Mode can be MQ_DENY_NOEN
(the default) or MQ_DENY_RECEIVE_SHARE. Note that you set the priority to 5
to overwrite the default priority (3). MSMQ puts a message with higher pri-
ority in front of a message with lower priority. MSMQ message priorities
range from 0 to 7. Also note that in the error handler, you test whether the
error was caused by trying to create an already existing queue; then you
ignore the error and continue execution of the next line of code. Figure 3.13

84 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Listing 3.1 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 84

shows that the queue is created, and a testing message with a priority of 5
appears in the queue.

85Programming MSMQ in Visual Basic

Figure 3.12: Setting the conditional compilation constant.

Figure 3.13: A message is sent to the queue.

The next example, Listing 3.2), opens an existing queue, retrieves a mes-
sage from the queue, and prints the contents of the message (label and
body) in the debug window.

Listing 3.2 Opening an Existing Queue and Receiving a Message

Public Sub ReceiveQueueMessage()
‘==
‘In this sub routine, we open an existing queue
‘retrieve the message and print to debug window.
‘==
‘Enable the error handler
On Error GoTo ReceiveQueueMessage_Err
‘Declare variables for MSMQ objects.
Dim oQInfo As MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue
Dim oMessage As MSMQ.MSMQMessage

‘Initialize the MSMQQueueInfo object.
Set oQInfo = New MSMQQueueInfo

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 85

‘we use a conditional compilation constant
‘to take care of both public and private queues.
#If bUseDS Then

oQInfo.PathName = “.\TestingQueue”
#Else

oQInfo.PathName = “.\PRIVATE$\TestQueue”
#End If
‘Open the queue for receive access.
Set oQueue = oQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
‘If the queue is opened sccessfully,
‘we retrieve the messge.
If oQueue.IsOpen Then

‘Retrieve the message and print it.
Set oMessage = oQueue.ReceiveCurrent(ReceiveTimeout:=1000)

Debug.Print “Message Label: “ & oMessage.Label & vbCrLf
Debug.Print “Message Body: “ & oMessage.Body

Else
‘Queue is not open, report the error and get out.
MsgBox “The queue is not open!”
Exit Sub

End If
‘If everything is ok, we are out of here.
Exit Sub

ReceiveQueueMessage_Err:
MsgBox Err.Description

End Sub

C A U T I O N
The code in Listing 3.2 will only work if there is a message in the queue. Otherwise you
will get an “Object variable or With block variable not set” error message. This is
because if there is no message in the queue, the ReceiveCurrent() will time out and
the next line tries to access the oMessage object which is set to Nothing.

In Listing 3.2, you use the Receive method of the MSMQQueue object.
Messages are removed from the queue after the Receive method is called.
This procedure is called dequeuing. Note that you use a Visual Basic named
argument syntax to specify the timeout value to one minute. Figure 3.14
shows the result.

86 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Figure 3.14: A message is received from the queue.

Listing 3.2 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 86

The following example, Listing 3.3, shows you how to locate a public queue
that is registered in Active Directory and delete it if you find one.

Listing 3.3 Locating a Public Queue and Deleting It

Public Sub DeleteTestQueue()
‘==
‘In this sub routine, we locate an pubic queue
‘in the Active Directory and delete it.
‘==
‘Enable the error handler
On Error GoTo DeleteTestQueue_Err
‘Declare variables for MSMQ objects.
Dim oQuery As MSMQ.MSMQQuery
Dim oQInfos As MSMQ.MSMQQueueInfos
Dim oQInfo As MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue

‘Get MSMQQueueInfo objects and search for
‘the TestingQueue.
Set oQuery = New MSMQ.MSMQQuery.
Set oqinfor = oQuery.LookupQueue(Label:=”TestingQueue”)
‘Get the first MSMQQueueInfo object.
Set oQInfo = oQInfos.Next

‘If the queue is not found, report it and get out.
If oQInfo Is Nothing Then

MsgBox “TestingQueue is not found!”
Exit Sub

End If

‘Delete the TestingQueue queue.
oQInfo.Delete

‘If everything is ok, we are out of here.
MsgBox “The queue is deleted!”
Exit Sub

DeleteTestQueue_Err:
MsgBox Err.Description

End Sub

In Listing 3.2, you used the Receive method to read the message and
remove it from the queue. In Listing 3.4, you will use another technique to
read the message selectively and remove only certain messages that meet
certain criteria. Before you test the code in Listing 3.3, though, send two
messages to the queue. Send the first message by running the code in
Listing 3.1 without any modification. Then add .AppSpecific = 25 to
Listing 3.1 between the line .Priority = 5 ‘Default priority is 3 and

87Programming MSMQ in Visual Basic

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 87

the line .Body = “Testing Message”. The code should now read as shown in
the following segment:
Public Sub SendQueueMessage()

‘==
‘In this sub routine, we will create a queue, open
‘the queue and send a testing message to the queue.
‘==

‘Code is omitted here, see listing 3.1 for details.
‘.
‘Prepare the message and send to the queue.
With oMessage

.Label = “Testing Message”

.Priority = 5 ‘Default priority is 3.

.AppSpecific = 25

.Body = “Testing Message”

.Send oQueue
End With
‘The rest of the code is omitted, see Figure 3.1.

End Sub

Then run the modified code, and a message with the AppSpecific property
set to 25 is sent to the queue. Figure 3.15 shows the two messages sent to
the queue.

88 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Figure 3.15: Two messages in the queue.

Listing 3.4 uses Peek methods (PeekCurrent and PeekNext) to search the
queue for specific messages that meek certain criteria without removing
them. If a specific message is found, the code will remove the message from
the queue using the ReceiveCurrent method and also print the label and
body of the message in the Debug window.

Listing 3.4 Searching for Specific Messages to Remove from the Queue

Public Sub FilterMessages()
‘==
‘In this sub routine, we open an existing queue
‘and selectively retrieve a message.
‘==
‘Enable the error handler

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 88

On Error GoTo FilterMessages_Err
‘Declare variables for MSMQ objects.
Dim oQInfo As MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue
Dim oMessage As MSMQ.MSMQMessage

‘Initialize the MSMQQueueInfo object.
Set oQInfo = New MSMQQueueInfo
‘we use a conditional compilation constant
‘to take care of both public and private queues.
#If bUseDS Then

oQInfo.PathName = “.\TestingQueue”
#Else

oQInfo.PathName = “.\PRIVATE$\TestQueue”
#End If
‘Open the queue for receive access while deny shared receive.
Set oQueue = oQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_RECEIVE_SHARE)
‘If the queue is opened sccessfully,
‘we process the messges.
If oQueue.IsOpen Then

‘Peek at the first message in the queue.
Set oMessage = oQueue.PeekCurrent(ReceiveTimeout:=1000)
‘Search for specific messages with AppSpecific set to 25.
‘If found, Retrieve the message and print it.
Do Until oMessage Is Nothing

If oMessage.AppSpecific = 25 Then
Set oMessage =

oQueue.ReceiveCurrent(ReceiveTimeout:=1000)
Debug.Print “Message Label: “ & oMessage.Label & vbCrLf
Debug.Print “Message Body: “ & oMessage.Body
‘Keep searching.
Set oMessage = oQueue.PeekCurrent(ReceiveTimeout:=1000)

Else
Set oMessage = oQueue.PeekNext

End If
Loop

Else
‘Queue is not open, report the error and get out.
MsgBox “The queue is not open!”
Exit Sub

End If
‘If everything is ok, we are out of here.
Exit Sub

FilterMessages_Err:
MsgBox Err.Description

End Sub

89Programming MSMQ in Visual Basic

Listing 3.4 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 89

After executing the code in Listing 3.4, you get results similar to those
shown in Figure 3.14. If you open the Computer Management snap-in, you
will notice that the second message you saw in Figure 3.15 is gone, as you
can see in Figure 3.16.

90 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Figure 3.16: The message with AppSpecific = 25 is removed from the
queue.

Listing 3.4 filters messages based on the AppSpecific property. You can also
use other message properties to look for specific messages. For example,
you can use the MsgClass property to filter out report messages. To do so,
simply change the line .AppSpecific = 25 in Listing 3.4 to
.MsgClass = MQMSG_CLASS_REPORT

Advanced MSMQ Techniques
In this section, you will look at some more advanced MSMQ techniques.
The first example demonstrates how to use the MSMQEvent object to retrieve
messages asynchronously. In this example, you will create two Visual Basic
applications: one to act as a message sender and another to act as a mes-
sage receiver, as illustrated in Figure 3.17.

Message
Arrived
Event

TestQueue

Message

Message Sender
(VB EXE Application)

Message Receiver
(VB EXE Application)

Figure 3.17: An MSMQ event example.

The Message Sender application in Figure 3.17 is a standard Visual Basic
EXE project that contains a single form with a text box and a command
button (see Figure 3.18).

05 0789724588 CH03 10/25/00 5:07 PM Page 90

Figure 3.18: The MSMQMsgSender Visual Basic project.

The MultiLine property of the text box is better set to True so that it will
function more like a text editor.

Listing 3.5 contains the code for the Message Sender application.

Listing 3.5 The MSMQMsgSender Project

‘==
‘This is a sample MSMQ message sender application.
‘It is paired with another MSMQ Receiver
‘application to demonstrate how MSMQ event works.
‘==
Option Explicit

‘===
‘The Change event of the text box tracks your key
‘stroke and sends a message to the TestQueue every
‘time when you press a key on the keyboard
‘===
Private Sub txtMessage_Change()

‘Enable the error handler
On Error GoTo MessageSend_Error
‘Declare variables for MSMQ objects.
Dim oQInfo As New MSMQ.MSMQQueueInfo
Dim oQMsg As New MSMQ.MSMQMessage
Dim oQueue As MSMQ.MSMQQueue

‘Set the path name to the TestQueue.
#If bUseDS Then

oQInfo.PathName = “.\TestQueue”

91Programming MSMQ in Visual Basic

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 91

#Else
oQInfo.PathName = “.\PRIVATE$\TestQueue”

#End If

‘Open the queue for send access.
Set oQueue = oQInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

‘Prepare the message and send the queue.
With oQMsg

.Label = “MSMQ Event Testing”

.Body = txtMessage.Text

.Send oQueue
End With
‘If everything is ok, close the queue and get out.
oQueue.Close
Exit Sub

MessageSend_Error:
MsgBox Err.Description

End Sub

‘===================================
‘The Click event of the Exit button.
‘===================================
Private Sub cmdExit_Click()

‘Exit the program.
Unload Me

End Sub

The code in Listing 3.5 is very straightforward. In the txtMessage_Change()
event of the text box, you put some code to send the content of the text box
as a message to the TestQueue created in previous sections.

The Message Receiver application in Figure 3.17 is another Standard
Visual Basic EXE project that has a single form with a text box and com-
mand button on it. It looks similar to the Message Sender application with
the text box grayed out and locked to prevent editing (see Figure 3.19).

The size of each MSMQ message is limited to 4MB. As you learned earlier,
however, the data type of the message can be almost anything. In the next
example, you will create a disconnected ADO recordset from the database
and send the recordset as a message to the queue. Later, you’ll retrieve the
message (ADO recordset) from the queue and display its content in the
Visual Basic debug window. For details about ADO programming, see
Chapter 2, “Windows DNA 2000 and COM+.”

92 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Listing 3.5 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 92

Figure 3.19: The MSMQMessageReceiver Visual Basic project.

Listing 3.6 shows the code for the Message Receiver application.

Listing 3.6 The MSMQMessageReceiver Project

‘==
‘This is a sample MSMQ message receiver application.
‘It is paired with the MSMQ Sender
‘application to demonstrate how MSMQ event works.
‘==
Option Explicit
‘Declare some model level variables for MSMQ objects.
Dim oQInfo As New MSMQ.MSMQQueueInfo
Dim oQReceive As MSMQ.MSMQQueue
Dim WithEvents oQEvent As MSMQ.MSMQEvent

‘===
‘The form load event then opens the
‘TestQueue and enables event notification.
‘===
Private Sub Form_Load()

‘Enable error handler.
On Error GoTo Load_Err
‘Set the PathName of the queue.
#If bUseDS Then

oQInfo.PathName = “.\TestQueue”
#Else

oQInfo.PathName = “.\PRIVATE$\TestQueue”
#End If
‘Open the queue for receive access.
Set oQReceive = oQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
‘Set the MSMQEvent object.

93Programming MSMQ in Visual Basic

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 93

Set oQEvent = New MSMQ.MSMQEvent
‘Enable MSMQ event notification.
oQReceive.EnableNotification oQEvent
Exit Sub

Load_Err:
MsgBox Err.Description

End Sub

‘====================================
‘The Click event of the Exit button.
‘====================================
Private Sub cmdExit_Click()

‘Exit the program.
Unload Me

End Sub

‘===
‘The Arrived event of the MSMQEvent object.
‘Whenever this event fires, we update the content
‘of the text box. Remember to enable the event
‘notification for ensuring the firing of the
‘subsequent events.
‘===
Private Sub oQEvent_Arrived(ByVal Queue As Object, _

ByVal Cursor As Long)
‘Enable error handler.
On Error GoTo Event_Arrived_Err
‘Declare the MSMQMessage object.
Dim oQMsg As MSMQ.MSMQMessage
‘Retrieve the message and display its contents in the text box.
Set oQMsg = oQReceive.ReceiveCurrent(ReceiveTimeout:=1000)
txtMessage = oQMsg.Body
‘Important!!!---Enable event notification before exiting the event.
oQReceive.EnableNotification Event:=oQEvent, Cursor:=MQMSG_FIRST
Exit Sub

Event_Arrived_Err:
MsgBox Err.Description

End Sub

‘==
‘The ArrivedError event of MSMQEvent object.
‘This event will be fired when the EnableNotification
‘of the message object is called and an error has
‘been generated. The ErrorCode is the return code
‘of the ReceiveCurrent call of the MSMQQueue object.
‘==

94 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Listing 3.6 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 94

Private Sub oQEvent_ArrivedError(ByVal Queue As Object, _
ByVal ErrorCode As Long, _
ByVal Cursor As Long)

MsgBox “Error event fired!” & vbCrLf & _
“Error: “ & Hex(ErrorCode)

End Sub

In Listing 3.6, the Load event of the form opens the queue, initializes the
event object, and enables event notification. The Arrived event receives the
message, updates the content of the text box with the message, and enables
event notification before you exit the event procedure. To see how this list-
ing works, run two separate instances of the Message Sender and the
Message Receiver applications. Arrange the screens so that you can see
both of them at the same time. Notice that whenever you type something in
the text box of the Send application, its content also appears in the text box
of the Receiver application, as shown in Figure 3.20.

95Programming MSMQ in Visual Basic

Listing 3.6 continued

Figure 3.20: An MSMQ event in action.

The event notification capability of MSMQ enables you to develop some
very powerful applications that are event-driven rather than message
pulling (such as frequently checking the message according to a predefined
time interval).

The next example demonstrates another powerful feature of MSMQ: send-
ing an ADO recordset as a message. In this example, you will use a simple
Visual Basic form with two command buttons: cmdSendRecordset and
cmdReadRecordset (see Figure 3.21).

In the click event of cmdSendRecordset, you will create a disconnected
recordset with six programming titles from the pubs database of SQL
Server and send the recordset as a message to the TestQueue created ear-
lier. In the click event of the cmdReadRecordset, you will receive the mes-
sage of the recordset and display its contents in the debug window. Listing
3.7 illustrates the code for this example.

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 95

Figure 3.21: An MSMQ ADO recordset example.

Listing 3.7 ADO Recordset as the MSMQ Message

‘===
‘In this example, we demonstrate how to send
‘a disconnected recordset as a MSMQ message.
‘===
Option Explicit

Private Sub cmdSendRecordset_Click()
‘Enable the error handler.
On Error GoTo SendRecordset_Err

‘Declare variables.
Dim rsTitles As New ADODB.Recordset
Dim oQinfo As New MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue
Dim oMessage As New MSMQ.MSMQMessage
Dim sConnection As String
Dim sSQL As String

‘Set connection string and SQL statement.
sConnection = “pubs”
sSQL = “select title from titles where title_id like ‘BU%’”

‘Create a disconnected recordset.
With rsTitles

.CursorLocation = adUseClient

.CursorType = adOpenStatic

.LockType = adLockBatchOptimistic

.Open sSQL, sConnection
End With

‘Set the PathName of the MSMQQueueInfo object.
#If bUseDS Then

oQinfo.PathName = “.\TestQueue”
#Else

96 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

05 0789724588 CH03 10/25/00 5:07 PM Page 96

oQinfo.PathName = “.\PRIVATE$\TestQueue”
#End If

‘Open the queue for send access.
Set oQueue = oQinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

‘Send the ADO recordset to the queue.
With oMessage

.Label = “ADO recordset”

.Body = rsTitles

.Send oQueue
End With

‘If everything is okay, clean up and get out of here.
oQueue.Close
rsTitles.Close

MsgBox “Recordset sent!”
Exit Sub

SendRecordset_Err:
MsgBox Err.Description

End Sub

Private Sub cmdReadRecordset_Click()
‘Enable the error handler.
On Error GoTo ReadRecordset_Err

‘Declare object variables.
Dim rsTitles As ADODB.Recordset
Dim oQinfo As New MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue
Dim oMessage As MSMQ.MSMQMessage

‘Set the PathName of the MSMQQueueInfo object.
#If bUseDS Then

oQinfo.PathName = “.\TestQueue”
#Else

oQinfo.PathName = “.\PRIVATE$\TestQueue”
#End If

‘Open the queue for read access.
Set oQueue = oQinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

‘Read the message.
Set oMessage = oQueue.Receive(ReceiveTimeout:=1000)

97Programming MSMQ in Visual Basic

Listing 3.7 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 97

If Not oMessage Is Nothing Then
‘Assign the message body to an ADO recordset.
Set rsTitles = oMessage.Body
‘Loop through the recordset and display its contents.
Do Until rsTitles.EOF

Debug.Print rsTitles(“title”)
rsTitles.MoveNext

Loop
rsTitles.Close

End If
oQueue.Close
‘If everything is okay, we are out of there.
Exit Sub

ReadRecordset_Err:
MsgBox Err.Description

End Sub

Run this example, and click the Send Recordset button. A disconnected
ADO recordset is then placed on the TestQueue (see Figure 3.22).

98 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Figure 3.22: The ADO recordset is put in the queue.

N O T E
The size of the message on your machine may be a little different from the size you saw in
Figure 3.22.

If you then click the Read Recordset button, the recordset is dequeued, and
its contents are listed in the debug window (see Figure 3.23).

Figure 3.23: The content of the recordset in the debug window.

Creating a disconnected ADO recordset is a very efficient means by which
you can pass data between different tiers in DNA applications. With this

Listing 3.7 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 98

technique, combined with the asynchronous processing power of MSMQ,
you can build more scalable and robust enterprise and Internet applications.

An Asynchronous Ordering Application
So far, I have introduced all MSMQ programming techniques in Visual
Basic. In this section, you will use a more complicated example, an asyn-
chronous ordering system, to learn how to use MSMQ in the real world.

Figure 3.24 illustrates the workflow of this ordering system. An ordering
application sends the order data to OrderQueue as a message (step 1),
which specifies OrderResponseQueue as the response queue (step 2). When
the order message arrives in the OrderQueue, an event fires in the order
processing application (step 3), which in turn inserts the order into the
Orders table in the database by calling a stored procedure (step 4). When
the order processing application finishes processing, it sends a confirmation
message back to the OrderResponseQueue (step 5). When the confirmation
message arrives in the OrderResponseQueue, an event fires and the results
are displayed (step 6).

99Programming MSMQ in Visual Basic

5. Order Confirmation
Message

6. Event
fires when
confirmation
message
arrives

2. Specify Response
Queue

3. Event fires
when an order
message arrives

1. Order Data
(Message)

4. Insert an
order into
the orders
table in the
database

OrderQueue

Order
Response

Queue

Ordering
Application

Order
Processor

Orders Database
Table

Figure 3.24: The workflow of the asynchronous ordering system.

05 0789724588 CH03 10/25/00 5:07 PM Page 99

The purpose of this example is to demonstrate how to leverage the asyn-
chronous processing power of MSMQ to build highly scalable and robust
applications. You will use the Orders table in the Northwind database that
comes with SQL Server 7.0 in this example. For the sake of simplicity, you
can ignore the Order Details table. To follow this example in Listing 3.8
and Listing 3.9, you need to create a system DSN named Northwind, which
points to the Northwind database. You also need to create a stored proce-
dure that inserts a row in the Orders table and returns the current OrderID
as an output parameter.

Listing 3.8 Stored Procedure PlaceOrder

Use Northwind
go

if exists (select * from sysobjects where id = object_id(‘PlaceOrder’))
drop proc PlaceOrder

go

create proc PlaceOrder
@Order varchar(300),
@OrderID int out

as
declare @sql varchar(600)

select @sql= ‘insert Orders (‘
+ ‘CustomerID, ‘

+ ‘EmployeeID, ‘
+ ‘OrderDate,’
+ ‘RequiredDate,’
+ ‘ShippedDate,’
+ ‘ShipVia,’
+ ‘Freight,’
+ ‘ShipName,’
+ ‘ShipAddress,’
+ ‘ShipCity,’
+ ‘ShipPostalCode,’
+ ‘ShipCountry’
+ ‘) values (‘ + @Order + ‘)’

--Insert the order to the Orders table.
exec(@sql)
--Return the OrderID for the newly inserted order.
select @OrderID = max(OrderID) from Orders
go

100 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 100

You can use the Computer Management snap-in to create the two queues
for this example: the OrderQueue and the OrderResponseQueue (see
Figure 3.25).

101Programming MSMQ in Visual Basic

Figure 3.25: The OrderQueue and the OrderResponseQueue.

Figure 3.26 shows the asynchronous ordering system with the ordering
application on the left and the order processing application on the right.

Figure 3.26: The asynchronous ordering system.

When you fill up the order information on the form and click the Submit
Order button, the status of the ordering processing application briefly
changes to Processing order and then back to Ready. Depending on the
CPU speed and how much RAM you have on your machine, you may hardly
notice the status change. Soon a message box pops up and confirms that
your order (with an OrderID) is processed (see Figure 3.27).

Figure 3.27: The confirmation message of the asynchronous ordering
system.

Listings 3.9 and 3.10 provide the complete code for this application and
reveal what’s happening behind the scenes.E X A M P L E

05 0789724588 CH03 10/25/00 5:07 PM Page 101

Listing 3.9 The Ordering Application

‘=================================
‘The ordering application of the
‘asynchronous ordering system
‘=================================

‘=============================
‘General Declarations section
‘=============================
Option Explicit
‘Declare module level variables.
Dim oQinfoOrder As New MSMQ.MSMQQueueInfo
Dim oQInfoOrderResponse As New MSMQ.MSMQQueueInfo
Dim oQueueResponse As MSMQ.MSMQQueue
Dim WithEvents oQEvent As MSMQ.MSMQEvent

‘===========================
‘The Load event of the form
‘===========================
Private Sub Form_Load()

‘In the load event of the form, specify PathNames for
‘both OrderQueue and OrderResponseQueue.
On Error GoTo Load_Err
#If bUseDS Then

oQinfoOrder.PathName = “.\OrderQueue”
oQInfoOrderResponse.PathName = “.\OrderResponseQueue”

#Else
oQinfoOrder.PathName = “.\PRIVATE$\OrderQueue”
oQInfoOrderResponse.PathName = “.\PRIVATE$\OrderResponseQueue”

#End If

‘Open the OrderResponseQueue and prepare to receive events.
Set oQueueResponse = oQInfoOrderResponse.Open(MQ_RECEIVE_ACCESS, _

MQ_DENY_NONE)
Set oQEvent = New MSMQ.MSMQEvent

‘Enable message notification.
oQueueResponse.EnableNotification oQEvent
Exit Sub

Load_Err:
MsgBox Err.Description

End Sub

‘==
‘The Click event of the New Order button
‘==

102 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

05 0789724588 CH03 10/25/00 5:07 PM Page 102

Private Sub cmdNewOrder_Click()
‘Clear all input boxes.
Dim oControl As Control
For Each oControl In Me.Controls

If TypeOf oControl Is TextBox Then
oControl.Text = “”

End If
Next oControl

End Sub

‘===
‘The Click event of the Submit Order button
‘===
Private Sub cmdSubmit_Click()

On Error GoTo SubmitOrder_Err
Dim oQueue As MSMQ.MSMQQueue
Dim oMessage As New MSMQ.MSMQMessage
Dim sMessage As String

‘Simple client side data validation.
If Len(txtCustomerID) + _

Len(txtEmployeeID) + _
Len(txtOrderDate) + _
Len(txtRequiredDate) + _
Len(txtShipDate) + _
Len(txtShipVia) + _
Len(txtFreight) + _
Len(txtShipName) + _
Len(txtShipAddress) + _
Len(txtShipCity) + _
Len(txtShipPostalCode) + _
Len(txtShipCountry) = 0 Then

MsgBox “Incomplete order!”, vbCritical
Exit Sub

End If

‘Gather information from the order form
‘and pad them into a message.
sMessage = “‘“ & txtCustomerID & “‘,” _

& txtEmployeeID & “,” _
& “‘“ & txtOrderDate & “‘,” _
& “‘“ & txtRequiredDate & “‘,” _
& “‘“ & txtShipDate & “‘,” _
& txtShipVia & “,” _
& txtFreight & “,” _

103Programming MSMQ in Visual Basic

Listing 3.9 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 103

& “‘“ & txtShipName & “‘,” _
& “‘“ & txtShipAddress & “‘,” _
& “‘“ & txtShipCity & “‘,” _
& “‘“ & txtShipPostalCode & “‘,” _
& “‘“ & txtShipCountry & “‘“

Screen.MousePointer = vbHourglass

‘Open the OrderQueue for send access and send the order
‘message to the queue.
Set oQueue = oQinfoOrder.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
sMessage = sMessage
With oMessage

.Label = “Order”

.Body = sMessage
‘Specify the response queue.
Set .ResponseQueueInfo = oQInfoOrderResponse
.Send oQueue

End With
oQueue.Close
Screen.MousePointer = vbDefault

Exit Sub

SubmitOrder_Err:
Screen.MousePointer = vbDefault
MsgBox Err.Description

End Sub

‘==
‘The Arrived event of the OrderResponseQueue
‘==
Private Sub oQEvent_Arrived(ByVal Queue As Object, ByVal Cursor As Long)

‘Display the response message when it arrives.
On Error GoTo Event_Arrived_Err

Dim oMessage As New MSMQ.MSMQMessage
Set oMessage = oQueueResponse.ReceiveCurrent(ReceiveTimeout:=1000)
MsgBox oMessage.Body

‘Enable message notification before exiting the event.
oQueueResponse.EnableNotification oQEvent

Exit Sub
Event_Arrived_Err:

104 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Listing 3.9 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 104

MsgBox Err.Description
End Sub

‘===
‘The ArrivedError event of the OrderResponseQueue
‘===
Private Sub oQEvent_ArrivedError(ByVal Queue As Object, _

ByVal ErrorCode As Long, _
ByVal Cursor As Long)

MsgBox “Error event fired!” & vbCrLf & _
“Error: “ & Hex(ErrorCode)

End Sub

‘===================================
‘The Click event of the Exit button
‘===================================
Private Sub cmdExit_Click()

Unload Me
End Sub

Listing 3.10 The Order Processing Application

‘===================================
‘The order processing application of
‘the asynchronous ordering system
‘===================================

‘=============================
‘General Declarations section
‘=============================
Option Explicit
‘Declare module level variables.
Dim oQinfoOrder As New MSMQ.MSMQQueueInfo
Dim oQueue As MSMQ.MSMQQueue
Dim WithEvents oQEvent As MSMQ.MSMQEvent

‘===========================
‘The Load event of the form
‘===========================
Private Sub Form_Load()

‘Listen to the event of the OrderQueue.
#If bUseDS Then

oQinfoOrder.PathName = “.\OrderQueue”
#Else

105Programming MSMQ in Visual Basic

Listing 3.9 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 105

oQinfoOrder.PathName = “.\PRIVATE$\OrderQueue”
#End If

Set oQueue = oQinfoOrder.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set oQEvent = New MSMQ.MSMQEvent

lblStatus = “Ready”

‘Enable message notification.
oQueue.EnableNotification oQEvent

End Sub

‘=====================================
‘The Arrived event of the OrderQueue
‘=====================================
Private Sub oQEvent_Arrived(ByVal Queue As Object, ByVal Cursor As Long)

‘Process the order message when it arrives and
‘send a response message when the process is finished.
On Error GoTo Event_Arrived_Err

Dim oMessage As New MSMQ.MSMQMessage
Dim oQueueResponse As MSMQ.MSMQQueue
Dim oResponseMessage As New MSMQ.MSMQMessage
Dim oConnection As New ADODB.Connection
Dim oCommand As New ADODB.Command
Dim iOrderID As Integer
Dim sMessage As String

‘Update the status.
Screen.MousePointer = vbHourglass
lblStatus = “Processing order...”
DoEvents
‘Read the message.
Set oMessage = oQueue.ReceiveCurrent(ReceiveTimeout:=1000)
sMessage = oMessage.Body

‘Connect to the Northwind database.
oConnection.Open “Northwind”

‘Call the stored procedure “PlaceOrder”.
With oCommand

.ActiveConnection = oConnection

106 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Listing 3.10 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 106

.CommandType = adCmdStoredProc

.CommandText = “PlaceOrder”

.Parameters.Append .CreateParameter(“@Order”, _
adVarChar, _
adParamInput, _
300)

.Parameters.Append .CreateParameter(“@OrderID”, _
adInteger, _
adParamOutput)

.Parameters(“@Order”) = sMessage

.Execute
iOrderID = .Parameters(“@OrderID”)

End With

‘If the response queue is specified then send a confirmation mes-
sage.

If Not oMessage.ResponseQueueInfo Is Nothing Then
Set oQueueResponse = _

oMessage.ResponseQueueInfo.Open(MQ_SEND_ACCESS,
MQ_DENY_NONE)

With oResponseMessage
.Label = “Order Confirmation Message”
.Body = “Order “ & CStr(iOrderID) & “ has been processed!”
.Send oQueueResponse

End With
End If
lblStatus = “Ready”

‘Enable message notification.
oQueue.EnableNotification oQEvent
Screen.MousePointer = vbDefault

Exit Sub
Event_Arrived_Err:

Screen.MousePointer = vbDefault
lblStatus = “Ready”
MsgBox Err.Description

End Sub

‘===
‘The ArrivedError event of the OrderQueue
‘===
Private Sub oQEvent_ArrivedError(ByVal Queue As Object, _

107Programming MSMQ in Visual Basic

Listing 3.10 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 107

ByVal ErrorCode As Long, _
ByVal Cursor As Long)

MsgBox “Error event fired!” & vbCrLf & _
“Error: “ & Hex(ErrorCode)

End Sub

‘===================================
‘The Click event of the Exit button
‘===================================
Private Sub cmdExit_Click()

Unload Me
End Sub

When the form of the ordering application is loaded, it establishes the
pathnames for both OrderQueue and OrderResponseQueue, opens
OrderResponseQueue, and enables the event for receiving order confirma-
tion messages (refer to Listing 3.9). After you fill in the order form and click
the Submit Order button, the click event packs the order into a string mes-
sage and sends the message to the OrderQueue, specifying
OrderResponseQueue as the response queue (refer to Listing 3.9). When
the order processing application starts, the Load event of the form estab-
lishes a pathname for the OrderQueue and enables the event to receive
ordering messages (refer to Listing 3.10). When an ordering message
arrives, it triggers the Arrived event. The code in the event calls a stored
procedure that inserts the order to the Orders table in the Northwind data-
base and returns an order ID. Then a confirmation message is sent to
OrderResponseQueue (refer to Listing 3.10), which in turn triggers the
event of the ordering application to display the confirmation message (refer
to Listing 3.9).

To better understand how the system works, run the applications in a slow
motion mode. Stop the order process application if it is running. Then start
the ordering application, fill in the form, and click the Submit Order but-
ton. If you look at both OrderQueue and OrderResponseQueue at this point,
you will find that the order message you just sent stays in OrderQueue,
whereas no messages appear in OrderResponseQueue (see Figure 3.28).

Now stop the ordering application and start the order processing applica-
tion. If you check the queues, you will notice that the order message on
OrderQueue is gone and a confirmation message appears in
OrderResponseQueue (see Figure 3.29).

108 Chapter 3: Introduction to Microsoft Message Queuing Services (MSMQ)

Listing 3.10 continued

05 0789724588 CH03 10/25/00 5:07 PM Page 108

Figure 3.28: An order message in OrderQueue.

109What’s Next

Figure 3.29: A confirmation message in OrderResponseQueue.

Now start the ordering application again. This time, you will see a confir-
mation message box. If you check the queues again, you will notice that no
messages appear in OrderQueue or OrderResponseQueue.

What’s Next
This chapter introduced MSMQ and showed you how to program MSMQ in
Visual Basic. The knowledge you learned will be essential for you to under-
stand important COM+ services, such as Queued Components (QC). In
Chapter 4, “Introduction to Visual Basic COM Programming,” you will
learn how to develop COM components in Visual Basic.

05 0789724588 CH03 10/25/00 5:07 PM Page 109

