Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 23199
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  131  132  133  [134]  135  ...
NoWriterDateCnt.TitleFile(s)
1705정성태7/2/201435067VC++: 78. 보이어-무어(Boyer-Moore) 알고리즘이 정말 빠를까? [6]파일 다운로드1
1704정성태7/2/201421658.NET Framework: 447. w3wp.exe AppPool 재생(recycle)하는 방법 정리
1703정성태7/2/201422499.NET Framework: 446. Assembly.Load를 이용해 GAC에 등록된 어셈블리를 로드하는 방법 [1]파일 다운로드1
1702정성태6/23/201422280Phone: 11. Xamarin.Forms - 2. XAML을 이용한 페이지 개발파일 다운로드1
1701정성태6/23/201434451개발 환경 구성: 229. .NET Reflector + Reflexil 도구를 이용해 DLL 코드 변경 [4]
1700정성태6/23/201421299VS.NET IDE: 89. Visual Studio에서 기본 제공되는 성능 프로파일 [2]
1699정성태6/22/201424093Phone: 10. Xamarin.Forms - 1. Forms 시작하기 [2]파일 다운로드1
1698정성태6/22/201426067.NET Framework: 445. [부연 설명] 쉬운 C# 코드를 어럽게 이해하기 [2]
1697정성태6/22/201421359VS.NET IDE: 88. Visual Studio에서 직접 컴파일하는 IL 언어 확장 도구 - IL Support
1696정성태6/22/201421164.NET Framework: 444. clojure와 C#을 통해 이해하는 Sequence와 Vector 형식의 차이점 [1]
1695정성태6/21/201420192개발 환경 구성: 228. PowerShell ISE에서 (입력 기능이 있는) 콘솔 응용 프로그램을 시작하는 방법
1694정성태6/21/201421341개발 환경 구성: 227. 닷넷 용 ClojureCLR 개발환경 설정
1693정성태6/20/201421658개발 환경 구성: 226. Clojure 언어의 윈도우 개발환경 설정
1692정성태6/19/201432247오류 유형: 231. Visual Studio 2013 한글 버전 설치 오류 - The form specified for the subject is not one supported or known by the specified trust provider
1691정성태6/18/201427461개발 환경 구성: 225. 유닉스 계열의 tail 명령어가 제공되는 PowerShell [1]
1690정성태6/18/201430253개발 환경 구성: 224. DirectShow 예제 구하는 방법 [3]
1689정성태6/18/201427097오류 유형: 230. C++ 가변 인자 사용시 va_start 파라미터 전달 방법 [2]
1688정성태6/15/201420643오류 유형: 229. 갤럭시 노트 3 환경에서 Xamarin 앱 배포 충돌
1687정성태6/15/201426655개발 환경 구성: 223. PowerShell로 Visual Studio 빌드 스크립트 작성파일 다운로드1
1686정성태6/12/201424359Windows: 96. 윈도우 8 - 그림 암호를 이용해 로그인 시 지연 현상을 해결하는 방법 [1]
1685정성태6/10/201431116.NET Framework: 443. 자바 8과 C#의 람다(Lambda) 지원에 대한 비교 [12]
1684정성태6/9/201441288.NET Framework: 442. C# - 시스템의 CPU 사용량 및 프로세스(EXE)의 CPU 사용량 알아내는 방법 [5]파일 다운로드1
1683정성태6/2/201420851오류 유형: 228. CLR4 보안 - yield 구문 내에서 SecurityCritical 메서드 사용 불가 [2]파일 다운로드1
1682정성태6/1/201426067.NET Framework: 441. .NET CLR4 보안 모델 - 3. CLR4 보안 모델에서의 APTCA 역할파일 다운로드2
1681정성태6/1/201421935.NET Framework: 440. .NET CLR4 보안 모델 - 2. 샌드박스(Sandbox)을 이용한 보안 [2]파일 다운로드1
1680정성태6/1/201421412.NET Framework: 439. .NET CLR4 보안 모델 - 1. "Security Level 2"란?파일 다운로드1
... 121  122  123  124  125  126  127  128  129  130  131  132  133  [134]  135  ...