Microsoft MVP성태의 닷넷 이야기
Math: 17. C# - 복소수 타입의 승수를 지원하는 Power 메서드 [링크 복사], [링크+제목 복사],
조회: 24280
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

C# - 복소수 타입의 승수를 지원하는 Power 메서드

Math.PI를 오일러 공식에 대입하면 다음의 식을 얻게 됩니다.

eπi + 1 = 0;

그런데, 저 값을 실제로 코드로 구현하려면 어떻게 해야 할까요? 직관적인 코드로는 다음과 같이 작성해야 하는데,

Complex i = new Complex(0, 1);

double negOne = Math.Pow(Math.E, (Math.PI * i)); // 컴파일 에러!

애석하게도 닷넷 BCL에 기본 제공되는 Math.Pow 메서드는 복소수 타입의 제곱을 지원하지 않기 때문에 컴파일 오류가 발생합니다.

다행히 검색해 보면, Math.NET 라이브러리에 구현된 Complex32 타입은 복소수 타입의 제곱 함수를 제공해 줍니다.

Math.NET Numerics 3.11.1 
; https://www.nuget.org/packages/MathNet.Numerics/

Math.NET은 Nuget으로도 제공하기 때문에 다음과 같이 참조 추가를 해주고,

Install-Package MathNet.Numerics 

Complex32 타입에서 제공하는 Power 메서드를 사용해 복소수 승수를 사용해 주면 됩니다. 이렇게!

Complex32 i = new Complex32(0, 1);
Complex32 e = new Complex32((float)Math.E, 0);
Complex32 pi = new Complex32((float)Math.PI, 0);

Complex32 negOne = e.Power(pi * i);

Console.WriteLine(negOne); // (-1, 1.509958E-07)




Complex32 타입의 소스 코드를 참조하면 당연히 System.Nuemrics의 Complex 타입에도 복소수를 받는 Pow 메서드를 구현하는 것이 가능합니다. 이를 위해 다음과 같은 도우미 함수를 Math.NET으로부터 복사해 가져오고,

static class Helper
{
    public static readonly Complex Zero = new Complex(0, 0);
    public static readonly Complex One = new Complex(1, 0);
    public static readonly Complex NaN = new Complex(double.NaN, double.NaN);

    public static bool IsReal(this Complex complex)
    {
        return (complex.Imaginary == 0.0);
    }

    public static bool IsZero(this Complex complex)
    {
        return ((complex.Real == 0.0) && (complex.Imaginary == 0.0));
    }

    public static bool IsRealNonNegative(this Complex complex)
    {
        return ((complex.Imaginary == 0.0) && (complex.Real >= 0.0));
    }

    public static Complex Power(this Complex src, Complex exponent)
    {
        if (src.IsZero())
        {
            if (exponent.IsZero())
            {
                return One;
            }

            if (exponent.Real > 0f)
            {
                return Zero;
            }

            if (exponent.Real >= 0f)
            {
                return NaN;
            }

            if (exponent.Imaginary != 0f)
            {
                return new Complex(double.PositiveInfinity, double.PositiveInfinity);
            }

            return new Complex(double.PositiveInfinity, 0f);
        }

        Complex complex = exponent * src.NaturalLogarithm();
        return complex.Exponential();
    }

    public static Complex NaturalLogarithm(this Complex src)
    {
        if (src.IsRealNonNegative())
        {
            return new Complex(Math.Log(src.Real), 0);
        }

        return new Complex(0.5 * (Math.Log(src.MagnitudeSquared())), src.Phase());
    }

    public static double MagnitudeSquared(this Complex src)
    {
        return ((src.Real * src.Real) + (src.Imaginary * src.Imaginary));
    }

    public static double Phase(this Complex src)
    {
        if ((src.Imaginary == 0f) && (src.Real < 0f))
        {
            return Math.PI;
        }

        return Math.Atan2(src.Imaginary, src.Real);
    }

    public static Complex Exponential(this Complex src)
    {
        double real = Math.Exp(src.Real);

        if (src.IsReal())
        {
            return new Complex(real, 0f);
        }

        return new Complex(real * (Math.Cos(src.Imaginary)),
                            real * (Math.Sin(src.Imaginary)));
    }
}

System.Numerics.Complex 타입을 이용해 Math.Pow 기능을 다음과 같이 구현할 수 있습니다.

Complex i = new Complex(0, 1);
Complex e = new Complex(Math.E, 0);

Complex negOne = e.Power(Math.PI * i);

Console.WriteLine(negOne); // (-1, 1.22460635382238E-16)

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/21/2016]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13945정성태6/7/2025458오류 유형: 960. 파이썬 + conda - mysqlclient 사용 시 "NameError: name '_mysql' is not defined" 에러
13944정성태6/7/2025475오류 유형: 959. The trust relationship between this workstation and the primary domain failed. - 네 번째 이야기
13943정성태6/6/2025707개발 환경 구성: 748. Windows + Foundry Local - 로컬에서 AI 모델 활용
13942정성태6/5/2025885오류 유형: 958. winget 설치 시 "0x80d02002 : unknown error"
13941정성태6/2/20251038닷넷: 2334. C# - cpuid 명령어를 이용한 CPU 제조사 문자열 가져오기파일 다운로드1
13940정성태6/1/20251419C/C++: 188. C++의 32비트 + Release 어셈블리 코드를 .NET으로 포팅할 때 주의할 점파일 다운로드1
13939정성태5/29/20251709오류 유형: 957. NVIDIA Triton Inference Server - version `GLIBCXX_3.4.32' not found (required by /opt/tritonserver/backends/python/triton_python_backend_stub)
13938정성태5/29/20251435개발 환경 구성: 747. 파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
13937정성태5/24/20251360개발 환경 구성: 746. Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식
13936정성태5/23/20251189개발 환경 구성: 745. Linux / WSL 환경에 Miniconda 설치하기
13935정성태5/20/20251233파이썬 - pip 사용 시 "ImportError: cannot import name 'html5lib' from 'pip._vendor'" 오류
13934정성태5/20/20251712스크립트: 77. 파이썬 - 'urllib.request' 모듈의 명시적/암시적 로딩 차이
13933정성태5/19/20251291오류 유형: 956. Visual Studio 2022가 17.12 버전부터 업데이트 되지 않는다면?
13932정성태5/18/20251501스크립트: 76. 파이썬 - Version 문자열 다루기(semver 패키지)
13931정성태5/17/20251793스크립트: 75. 파이썬 - Cython 기본 예제 및 컴파일
13930정성태5/17/20251491개발 환경 구성: 744. 파이썬 - Windows embeddable package 환경에서 외부 패키지 사용하는 방법(ex: UFO² 환경 구성)
13929정성태5/16/20251517오류 유형: 955. 파이썬 - "Windows embeddable package" REPL 환경에서 "NameError: name 'exit' is not defined"
13928정성태5/15/20251558오류 유형: 954. UFO² - "'Invalid URL (POST /v1/chat/completions/chat/completions)'"
13927정성태5/15/20251545오류 유형: 953. OpenAI - The API request of HOST_AGENT failed: OpenAI API request exceeded rate limit: Error code: 429
13926정성태5/14/20251907개발 환경 구성: 743. LLM과 윈도우의 만남 - Desktop AgentOS UFO² 기본 환경 구성
13925정성태5/12/20252010닷넷: 2333. C# - (Console 유형의 프로젝트에서) Clipboard 연동파일 다운로드1
13924정성태5/8/20251759닷넷: 2332. C# - (JetBrains Omea Reader 대상으로) 런타임 시에 메서드 가로채기 [2]파일 다운로드1
13923정성태5/5/20251504스크립트: 74. 파이썬 - C# - Python.NET의 RunSimpleScript, Exec, Eval 차이점파일 다운로드1
13922정성태5/3/20251757스크립트: 73. 파이썬 - Windows embeddable package 버전에서 tkinter 환경 구성
13921정성태5/3/20252284오류 유형: 952. 듀얼 채널 메모리 정렬을 지키지 않은 컴퓨터의 Windows 비정상 종료 현상(Blue Screen) [2]
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...