Microsoft MVP성태의 닷넷 이야기
.NET Framework: 592. C# - Lights Out 퍼즐 풀기 [링크 복사], [링크+제목 복사],
조회: 29133
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

C# - Lights Out 퍼즐 풀기

역시 "코딩 더 매트릭스"의 이야기입니다.

코딩 더 매트릭스 
; http://www.yes24.co.kr/24/goods/17967245

(검색해 보면, '전구 불끄기 게임'으로 알려진) Lights Out 게임에 대한 설명이 있는데요.

Lights Out (game)
; https://en.wikipedia.org/wiki/Lights_Out_(game)

규칙은 간단합니다. 버튼을 누르면 그것의 On/Off 상태가 토글되면서 동시에 그 버튼의 상/하/좌/우 4개의 버튼도 상태가 토글됩니다. 임의의 N1 * N2 격자로 된 버튼들이 제각각 임의의 상태로 초기화되었을 때 일련의 버튼들을 눌러 모든 버튼을 Off 상태로 만드는 것이 문제입니다.

예를 들어, 다음의 초기 상태를 갖는 버튼(빨간색 == 1, 파란색 == 0)들이 있을 때,

lightsOut_gf2_1.png

여기서 (0,0) 버튼을 누르면 다음과 같이 상태가 변경됩니다.

lightsOut_gf2_2.png

이어서 (1,1) 버튼을 누르면 다음과 같이 상태가 변경되는 것이고.

lightsOut_gf2_3.png

이런 식으로 일련의 버튼을 눌러, 모든 상태를 Off 상태(위의 그림에서는 파란색)로 만들어야 합니다.

이 책이 재미있는 것은, 그 상태 변화의 규칙을 나타내는 정확한 수학적 풀이를 먼저 해본다는 것입니다.

우선 버튼이 토글되는 것에 대한 상태 변화를,

0 상태의 버튼을 누르면 1
1 상태의 버튼을 누르면 0

다음과 같이 GF(2) 연산으로 연결한다는 점입니다.

0 상태이므로 0 스스로를 더해서 1로.
1 상태이므로 1 스스로를 더해서 0으로.

이와 함께 각각의 버튼에 대해 변화하는 버튼들을 일련의 리스트로 정의합니다. 예를 들어, (0, 0)의 버튼을 누르는 경우 변화되는 버튼들은 다음과 같습니다.

v0 = { (0,0), (0,1), (1,0) }

이런 식으로 버튼 하나를 누를 때마다 변화되는 버튼들을 v0, v1, ..., v24로 정의할 수 있습니다. 이와 함께 현재의 원본 버튼 상태를 s라고 해보면, 이제 모든 버튼의 상태를 끄는 것을 다음의 수식으로 정리할 수 있습니다.

s + (v0 + v1 + ... + v24) = { 0, ...., 0 }

그리고 위의 수식 양변에 동일하게 (+ s)를 해봅니다. 그럼, 좌변은 (s + s)는 XOR 결합이므로 { 0, ..., 0 }로 되고, 우변은 { 0, ..., 0 } + s가 되므로 결국 s가 됩니다. 따라서 다음과 같이 정리가 됩니다.

(v0 + v1 + ... + v24) = s

게다가 GF(2)는 교환법칙이 성립하는 연산이라는 점과, 동일한 vn 연산이 2번 나오는 경우 스스로 {0,...,0}으로 상쇄된다는 점을 고려했을 때 버튼을 누르는 동작은 단 한 번이라는 걸로 한정 지을 수 있습니다.

따라서, 문제를 풀이하는 방법은 결국 v0 ~ v24의 상태를 조합해서 연산한 다음 그것이 s 상태의 값과 같은 것이 있는지를 찾으면 되는 것입니다.

와~~~ 멋있습니다. ^^

이렇게 수식으로 증명되었으니 남은 것은 그에 맞게 코딩을 하면 됩니다. 우선, 지난번 소개한 GF(2) 코드를 기반으로,

C# - 갈루아 필드 GF(2) 연산
; https://www.sysnet.pe.kr/2/0/10972

초기 버튼 상태 s를 다음과 같이 설정할 수 있습니다.

using System;
using System.Collections.Generic;
using FiniteFieldArithmetics;

namespace LightsOutSample
{
    class Program
    {
        static FiniteField GF2 = new FiniteField(2);
        static Polynomial one = new Polynomial(GF2, 1);
        static Polynomial zero = new Polynomial(GF2, 0);
        
        static void Main(string[] args)
        {
            Polynomial[,] s = new Polynomial[,]
            {
                { one, one, one, one, zero },
                { one, one, one, zero, one},
                { one, one, one, zero, one },
                { zero, zero, zero, one, one },
                { one, one, zero, one, one },
            };
        }
    }
}

그리고, 각 버튼이 눌렸을 때 그 버튼과 함께 상태 변화가 될 버튼 목록 v0 ~ v24을 구해둡니다.

List<ButtonVector> v = InitButtonList(s);

private static List<ButtonVector> InitButtonList(Polynomial[,] s)
{
    List<ButtonVector> list = new List<ButtonVector>();

    for (int row = 0; row < s.GetLength(0); row++)
    {
        for (int col = 0; col < s.GetLength(1); col++)
        {
            ButtonState[] items = GetButtonList(s, row, col);
            ButtonVector v = new ButtonVector(items, string.Format("v({0},{1})", row, col));
            list.Add(v);
        }
    }

    return list;
}

private static ButtonState[] GetButtonList(Polynomial[,] s, int row, int col)
{
    List<ButtonState> list = new List<ButtonState>();

    list.Add(new ButtonState(one, row, col));

    if (row != 0)
    {
        list.Add(new ButtonState(one, row - 1, col));
    }

    if (col != 0)
    {
        list.Add(new ButtonState(one, row, col - 1));
    }

    if (row != s.GetLength(0) - 1)
    {
        list.Add(new ButtonState(one, row + 1, col));
    }

    if (col != s.GetLength(1) - 1)
    {
        list.Add(new ButtonState(one, row, col + 1));
    }

    return list.ToArray();
}

이제, 버튼에 따른 상태 변화 목록을 다음의 코드를 이용해,

C# - 모든 경우의 수를 조합하는 코드 (1)
; https://www.sysnet.pe.kr/2/0/10977

모든 경우의 수를 열람하고, 그 열람된 경우의 수에 대한 상태를 모두 반영한 값과 처음의 s 목록을 비교하는 것으로 코드를 완료할 수 있습니다.

Polynomial[,] newState = new Polynomial[,]
{
    { zero, zero, zero, zero, zero },
    { zero, zero, zero, zero, zero },
    { zero, zero, zero, zero, zero },
    { zero, zero, zero, zero, zero },
    { zero, zero, zero, zero, zero },
};

Combination<ButtonVector> c = new Combination<ButtonVector>(v.ToArray());

int equalState = 0;

foreach (var elems in c.Successor())
{
    ButtonVector[] items = c.Apply();

    MakeZero(newState);
    ApplyState(newState, items);

    if (IsEquals(s, newState) == true)
    {
        PrintCombinations(items);
        Console.WriteLine(" == s");
        equalState++;
    }
}

예제 코드의 경우, 다음과 같은 4가지 조합이 출력됩니다.

{ v(0,0) + v(0,1) + v(0,2) + v(0,4) + v(1,0) + v(1,2) + v(1,3) + v(1,4) + v(2,0) + v(2,3) + v(3,0) + v(3,2) + v(3,4) + v(4,2) +  } == s
{ v(0,0) + v(0,3) + v(0,4) + v(1,3) + v(2,1) + v(2,4) + v(4,1) + v(4,3) +  } == s
{ v(0,1) + v(1,3) + v(2,0) + v(2,3) + v(4,0) + v(4,4) +  } == s
{ v(0,2) + v(0,3) + v(1,0) + v(1,2) + v(1,3) + v(1,4) + v(2,1) + v(2,4) + v(3,0) + v(3,2) + v(3,4) + v(4,0) + v(4,1) + v(4,2) + v(4,3) + v(4,4) +  } == s

어디, 답이 맞는지 직접 테스트 해볼까요? ^^ 다음의 사이트에 가서,

A Lights Out Puzzle with Solver (JavaScript)
; http://www.ueda.info.waseda.ac.jp/~n-kato/lightsout/

직접 상태를 편집한 다음 위에서 나온 해답으로 좌표에 따른 버튼을 눌러봅니다.




첨부한 파일은 이 글의 예제 코드를 포함하는데요. FiniteField 클래스로 계산하는 것이 느려 XOR 연산으로 바꾼 소스 코드를 함께 첨부해 두었습니다. 참고로, XOR로 바꿨어도 225의 조합에 따른 상태 값 계산이 그다지 빠르지 않습니다. 제 컴퓨터 기준으로 약 1분 가량이 소모되었는데요, 재미있는 것은 "A Lights Out Puzzle with Solver (JavaScript)" 웹 페이지의 "Solve" 버튼의 계산 결과는 바로 나온다는 점입니다. ^^ 왜냐하면...




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/6/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2016-05-25 08시12분
[spowner] 네.. 감사합니다. 개인적인 호기심때문에 여럿 공부를 하시는 모습이 너무 보기 좋습니다. 또 다니시는 회사에 그런 여유를 어느정도 제공하지 않나 해서 부럽기도 하네요
[guest]
2016-05-25 04시39분
여러 가지 기웃거리다 보니, 전문성이 떨어지는 기분입니다. ^^ 그래도 어쨌든 직업이 그렇고, 공부 자체도 재미가 있으니 꾸준히 하게 되는 것 같습니다.
정성태

... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024343.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021372.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024021.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024097.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021005.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025651디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202020978디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022188.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023808.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024003.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018410.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022317.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021315.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022673.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022333.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028575.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020212오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021870Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027662개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202024932.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022695디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025723.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024438개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022027VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029015.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023147오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...