Microsoft MVP성태의 닷넷 이야기
기타: 61. algospot.com - 양자화(Quantization) 문제 [링크 복사], [링크+제목 복사],
조회: 18022
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

algospot.com - 양자화(Quantization) 문제

요즘 회사 내에서 몇 명이 모여 다음의 책을 주제로,

프로그래밍 대회에서 배우는 알고리즘 문제 해결 전략 세트 전2권 
; http://www.yes24.com/24/goods/8006522

스터디를 하고 있습니다. 진행 방식이, 답을 안 보고 우선 문제를 어떻게든 풀어오는 것인데 그러다 보니 다양한 의견들이 모입니다. ^^

오늘은 그중에서, algospot.com의 Quantization 문제를 잠깐 소개하겠습니다.

Quantization 
; https://algospot.com/judge/problem/read/QUANTIZE

위의 문제를 푸는 2가지 포인트가 있는데, 하나는 제곱의 오차를 빠르게 구하는 것이고, 다른 하나는 구간을 잡는 것입니다.

여기서 제곱의 오차를 구하는 것은, 지정된 구간 내에 양자화된 숫자 하나를 골라야 하는 문제가 있습니다. 예를 들어 다음의 수열에서,

1 9 9 9 9

1개의 양자화된 숫자를 골라야 한다면 7이어야 하고 그래서 최소 오차 제곱이 36 + 4 + 4 + 4 + 4 = 52가 됩니다.

재미있는 것은, 이 7이라는 숫자를 고르는데 1명은 그 값을 직접 구하는 것을 몰라 1 ~ 9 범주 내의 모든 수를 대입해서 7을 구하도록 하는 반면 나머지 3명은 그것이 숫자 5개의 평균값이라는 것을 알았습니다. 문제는? ^^ 그 한 명이 나머지 3명에게 왜 평균값이 양자화된 숫자의 최적 값인지를 아느냐... 라고 질문했을 때 아무도 제대로 된 답변을 하지 못 했습니다. 그냥 약간의 숫자 테스트를 통한 경험으로 알고 있을 뿐! (책에, 그 이유가 나오는데 구간 수열에 대해 미분을 하면 최소 오차 제곱의 합은 평균 값이라고.)

제가 바로 그 3명 중의 하나였는데 그래서 다음과 같이 지정한 구간 내의 평균값으로 최소 오차 제곱을 구하는 함수를 만들어 두었습니다.

int g_squareSumCache[MAX_N][MAX_N];

int calcSquareSum(int start, int end)
{
	int &sum = g_squareSumCache[start][end];

	if (sum == -1)
	{
		int partialSum = 0;

		for (int i = start; i <= end; i++)
		{
			partialSum += g_seq[i];
		}

		int quantizeNumber = round(partialSum / (end - start + 1.0));

		int squareSum = 0;

		for (int i = start; i <= end; i++)
		{
			int diff = (g_seq[i] - quantizeNumber);
			squareSum += (diff * diff);
		}

		sum = squareSum;
	}

	return sum;
}

그다음, 구간을 잡는 문제인데요. 책의 해답이 예술입니다. ^^

int calc(int start, int quantizeCount)
{
	if (start == g_seqCount)
	{
		return 0;
	}

	if (quantizeCount == 0)
	{
		return g_INFINITE;
	}

	int &minSum = g_cache[start][quantizeCount];
	if (minSum != -1)
	{
		return minSum;
	}

	minSum = g_INFINITE;

	for (int partitionSize = 1; start + partitionSize <= g_seqCount; partitionSize++)
	{
		minSum = min(minSum, 
			calcSquareSum(start, start + partitionSize - 1) + calc(start + partitionSize, quantizeCount - 1));
	}

	return minSum;
}

위와 같이 재귀적으로 for 문을 돌면 정말 모든 구간을 열람하게 됩니다. 예를 들어, "1 2 3 4 5 6 7 8 9 10" 수열에서 3개의 양자화된 숫자를 사용하는 상황이라면, 첫 번째 재귀에서 다음과 같이 시도하고,

[0~0] + [1...10]
        [1...10] == [1~1], [1~2], [1~3], [1~4], [1~5], [1~6], [1~7], [1~8], [1~9], [1~10]

두 번째 재귀의 [1~1]로 다시 들어가면 이렇게 구간 열람이 됩니다.

[0~0] [1~1] + [2...10]
              [2...10] == [2~2], [2~3], [2~4], [2~5], [2~6], [2~7], [2~8], [2~9], [2~10]

즉, 다음과 같이 나열되는 것입니다.

[0~0] [1~1] [2~2]
[0~0] [1~1] [2~3]
[0~0] [1~1] [2~4]
[0~0] [1~1] [2~5]
[0~0] [1~1] [2~6]
[0~0] [1~1] [2~7]
[0~0] [1~1] [2~8]
[0~0] [1~1] [2~9]
[0~0] [1~1] [2~10]

물론 위의 열람 중에서 [0~0] [1~1] [2~2] 경우에는 수열에서 "1, 2, 3"만을 양자화하려는 시도이기 때문에 필요 없는 호출이긴 합니다. 그래서 얼핏 보면 비효율적인 열람 방법인 것처럼 보이는데 memoization 역할을 하는 g_cache 덕분에 O(N * N)의 시간 복잡도로 마무리가 됩니다.




마침, 이 문제를 스터디하는 동안 algospot의 채점 시스템에 오류가 발생해서 우리 4명의 스터디 인원은 각자의 답으로 모이게 되었습니다. 그리고 제 경우에는 아쉽게도 책에 적힌 구간별 점화식을 생각해 내지 못하고 Quick Sort처럼 분할 정복하는 식으로 답을 냈는데, .... 오답이었습니다. ^^;

책의 내용을 보고 나서야, 그렇게 구간별로 모든 시도를 해보는 것에 감탄을 했었는데요. 그러다 문득 이런 생각이 드는 것입니다. 과연, algospot의 채점 시스템이 살아 있어서 오답인 것을 스터디 전에 알았다면 다음의 시도로 나는 무엇을 해볼 수 있었을까??? 하는 것입니다.

그런 맥락으로 다시 문제를 풀었습니다.

개인적으로, 그다음 후보로 아마 "조합"을 생각해 냈을 것입니다. 사실, 조합은 다음의 글에서도 썼지만 여러 더미로 파티션하는 데에도 사용할 수 있는 성질이 있습니다.

동전을 여러 더미로 나누는 경우의 수 세기(Partition Number) - 두 번째 이야기
; https://www.sysnet.pe.kr/2/0/1719

그래서 조합으로 양자화 문제를 풀면 다음과 같이 코드를 낼 수 있습니다.

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <set>
#include <cmath>
#include <limits>
#include <cstring>
using namespace std;

#define MAX_N 100
#define QUANTIZE_MAX_N 10

int g_seq[MAX_N];
int g_seqCount;
int g_quantizeCount;
int g_INFINITE = numeric_limits<int>::max() / 2;

class Partition
{
	int _n;
	int _k;
	vector<int> _indexList;
	vector<int> _elements;

	int _cache[QUANTIZE_MAX_N][MAX_N];

	int _minSum = g_INFINITE;
	int _squareSumCache[MAX_N][MAX_N];

public:
	Partition(int elems[], int elemSize, int partitionCount)
	{
		_elements.insert(_elements.begin(), &elems[0], &elems[elemSize]);
		_n = elemSize;
		_k = partitionCount - 1;

		memset(_cache, -1, sizeof(int) * QUANTIZE_MAX_N * MAX_N);
		memset(_squareSumCache, -1, sizeof(int) * MAX_N * MAX_N);

		if (_k == 0)
		{
			_minSum = calcSquareSum(0, elemSize);
		}
		else
		{
			_indexList.resize(_k);

			int i = 0;
			for (i = 0; i < _k; i++)
			{
				_indexList[i] = i;
			}

			_indexList[i - 1] --;

			Enumerate();
		}
	}

	bool Enumerate()
	{
		int sum = 0;
		int startIndex = 0;
		int endIndex = _elements.size() - 1;

		int i;

		if (_indexList.size() == 0 || _indexList[0] == _n - _k)
		{
			return false;
		}

		for (i = _k - 1; i > 0 && _indexList[i] == _n - _k + i; i--)
		{
		}

		_indexList[i] ++;

		for (int j = i; j < _k - 1; j++)
		{
			_indexList[j + 1] = _indexList[j] + 1;
		}

		for (int calcIndex = 0; calcIndex <= i; calcIndex++)
		{
			sum += calcSquareSum(startIndex, _indexList[calcIndex]);
			startIndex = _indexList[calcIndex];
		}

		int partialSum = 0;
		int squareSum = 0;

		for (int calcIndex = i + 1; calcIndex < _indexList.size(); calcIndex++)
		{
			squareSum = calcSquareSum(startIndex, _indexList[calcIndex]);

			partialSum += squareSum;
			sum += squareSum;

			startIndex = _indexList[calcIndex];
		}

		squareSum = calcSquareSum(startIndex, endIndex + 1);
		partialSum += squareSum;
		sum += squareSum;

		_minSum = min(_minSum, sum);

		return true;
	}

	int GetResult()
	{
		return _minSum;
	}

	int calcSquareSum(int start, int end)
	{
		if (start == end - 1 && end == _elements.size())
		{
			return 0;
		}

		int &sum = _squareSumCache[start][end];

		if (sum == -1)
		{
			int partialSum = 0;

			for (int i = start; i < end; i++)
			{
				partialSum += _elements[i];
			}

			int quantizeNumber = round(partialSum / ((double)end - start));

			int squareSum = 0;

			for (int i = start; i < end; i++)
			{
				int diff = (_elements[i] - quantizeNumber);
				squareSum += (diff * diff);
			}

			sum = squareSum;
		}

		return sum;
	}
};

// https://algospot.com/judge/problem/read/QUANTIZE
int main()
{
    int cases;
    cin >> cases;

    for (int i = 0; i < cases; i++)
    {
		int productSequare = 0;

		cin >> g_seqCount;
		cin >> g_quantizeCount;

		set<int> numbers;

		memset(g_seq, 0, sizeof(int) * MAX_N);

		for (int j = 0; j < g_seqCount; j++)
		{
			cin >> g_seq[j];
			numbers.insert(g_seq[j]);
		}

		if (numbers.size() <= g_quantizeCount)
		{
			cout << productSequare << endl;
			continue;
		}

		sort(g_seq, g_seq + g_seqCount);

		{
			Partition c(g_seq, g_seqCount, g_quantizeCount);

			while (c.Enumerate() == true);
			cout << c.GetResult() << endl;
		}
    }

    return 0;
}

하지만, 조합만으로 이 문제를 풀면 경우의 수가 너무 많은데 일례로 100개의 수열이 있고 10개의 양자화 수를 내야 한다면 "C(n,r) = 99C9"가 되어 무려 1,731,030,945,644라는 어마어마한 수가 나옵니다.

그래도 잘 생각해 보면 조합도 값의 일부를 cache할 수 있는 여지가 있습니다. 가령 4C3인 경우를 보면,

0, 1, 2,
0, 1, 3,
0, 1, 4,

0, 2, 3,
0, 2, 4,

0, 3, 4,

1, 2, 3,
1, 2, 4,

1, 3, 4,
2, 3, 4,

라고 나오는데, 마지막 3번째의 [x, x, 2], [x, x, 3], [x, x, 4]는 모두 반복적으로 나와서 그 구간의 파티션 값은 cache하는 경우 나중에 그대로 쓸 수 있습니다. 또한, 2번째 구간을 포함하는 "x, 2, 3", "x, 2, 4"에서도 "[2, 3], [2, 4]" 구간은 나중에도 "1, 2, 3", "1, 2, 4" 등에서 나오기 때문에 재사용이 가능합니다.

물론, 재사용하는 것에만 그치면 안 됩니다. 그렇게 되면 마찬가지로 모든 경우의 수를 열람하는 것이기 때문입니다.

따라서, 반복적으로 나오는 구간에 대해 건너뛰는 것도 필요합니다. 가령 위의 4C3에서 다음의 계산을 마쳤으면,

0, 1, 2,
0, 1, 3,
0, 1, 4,

0, 2, 3,
0, 2, 4,

이후, "1, 2, 3" 조합으로 나아갔을 때 이전의 "0, [2,3]", "0, [2,4]"에서 최소 제곱 오차가 있었던 값이 미리 cache되어 있다면 "1, 2, 3", "1, 2, 4"의 조합을 일일이 해보지 않고서도 "1, 2, 3"에서 "1, 3, 4"로 넘어가는 것이 가능합니다.

첫 번째 조합 코드에서 그런 처리를 추가한 것이 다음의 코드입니다. (굵은 파란색 코드가 추가된 부분)

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <set>
#include <cmath>
#include <limits>
#include <cstring>
using namespace std;

#define MAX_N 100
#define QUANTIZE_MAX_N 10

int g_seq[MAX_N];
int g_seqCount;
int g_quantizeCount;
int g_INFINITE = numeric_limits<int>::max() / 2;

class Partition
{
	int _n;
	int _k;
	vector<int> _indexList;
	vector<int> _elements;

	int _cache[QUANTIZE_MAX_N][MAX_N];

	int _minSum = g_INFINITE;
	int _squareSumCache[MAX_N][MAX_N];

public:
	Partition(int elems[], int elemSize, int partitionCount)
	{
		_elements.insert(_elements.begin(), &elems[0], &elems[elemSize]);
		_n = elemSize;
		_k = partitionCount - 1;

		memset(_cache, -1, sizeof(int) * QUANTIZE_MAX_N * MAX_N);
		memset(_squareSumCache, -1, sizeof(int) * MAX_N * MAX_N);

		if (_k == 0)
		{
			_minSum = calcSquareSum(0, elemSize);
		}
		else
		{
			_indexList.resize(_k);

			int i = 0;
			for (i = 0; i < _k; i++)
			{
				_indexList[i] = i;
			}

			_indexList[i - 1] --;

			Enumerate();
		}
	}

	bool Enumerate()
	{
		int sum = 0;
		int startIndex = 0;
		int endIndex = _elements.size() - 1;

		int i;

		if (_indexList.size() == 0 || _indexList[0] == _n - _k)
		{
			return false;
		}

		for (i = _k - 1; i > 0 && _indexList[i] == _n - _k + i; i--)
		{
		}

		_indexList[i] ++;

		for (int j = i; j < _k - 1; j++)
		{
			_indexList[j + 1] = _indexList[j] + 1;
		}

		int cacheValue = GetCachePartialSum(i);
		
		for (int calcIndex = 0; calcIndex <= i; calcIndex++)
		{
			sum += calcSquareSum(startIndex, _indexList[calcIndex]);
			startIndex = _indexList[calcIndex];
		}

		int partialSum = 0;
		int squareSum = 0;

		if (cacheValue != -1)
		{
			squareSum = calcSquareSum(startIndex, _indexList[i + 1]);
			sum += squareSum;

			partialSum = cacheValue;
			sum += partialSum;
		}
		else
		{
			for (int calcIndex = i + 1; calcIndex < _indexList.size(); calcIndex++)
			{
				squareSum = calcSquareSum(startIndex, _indexList[calcIndex]);

				partialSum += squareSum;
				sum += squareSum;

				startIndex = _indexList[calcIndex];
			}

			squareSum = calcSquareSum(startIndex, endIndex + 1);
			partialSum += squareSum;
			sum += squareSum;
		}

		_minSum = min(_minSum, sum);
		
		CachePartialSum(partialSum);

		if (cacheValue != -1)
		{
			SkipIndex(i);
		}

		return true;
	}


	void SkipIndex(int cachePos)
	{
		int lastElem = _elements.size() - 1;
		for (int i = _indexList.size() - 1; i >= cachePos + 2; i --)
		{
			_indexList[i] = lastElem;
			lastElem--;
		}
	}

	int GetCachePartialSum(int &pos)
	{
		int cacheValue = -1;

		for (int i = _indexList.size() - 1; i >= 0; i--)
		{
			int value = _cache[i][_indexList[i]];

			if (value == -1)
			{
				break;
			}

			pos = i - 1;
			cacheValue = value;
		}

		return cacheValue;
	}

	void CachePartialSum(int partialSum)
	{
		int lastElem = _elements.size() - 1;
		bool firstLoop = true;
		for (int i = _indexList.size() - 1; i >= 0; i--)
		{
			if (firstLoop == true)
			{
				_cache[i][_indexList[i]] = partialSum;
				firstLoop = false;
			}

			if (_indexList[i] == lastElem)
			{
				if (i - 1 >= 0)
				{
					int parentIndex = _indexList[i - 1];
					int minPartial = g_INFINITE;

					for (int child = parentIndex + 1; child <= lastElem; child++)
					{
						int cacheValue = _cache[i][child];
						int squareSum = calcSquareSum(parentIndex, child);
						minPartial = min(minPartial, cacheValue + squareSum);
					}
					
					_cache[i - 1][_indexList[i - 1]] = minPartial;
				}
			}
			else
			{
				break;
			}

			lastElem--;
		}
	}


	int GetResult()
	{
		return _minSum;
	}

	int calcSquareSum(int start, int end)
	{
		if (start == end - 1 && end == _elements.size())
		{
			return 0;
		}

		int &sum = _squareSumCache[start][end];

		if (sum == -1)
		{
			int partialSum = 0;

			for (int i = start; i < end; i++)
			{
				partialSum += _elements[i];
			}

			int quantizeNumber = round(partialSum / ((double)end - start));

			int squareSum = 0;

			for (int i = start; i < end; i++)
			{
				int diff = (_elements[i] - quantizeNumber);
				squareSum += (diff * diff);
			}

			sum = squareSum;
		}

		return sum;
	}
};

// https://algospot.com/judge/problem/read/QUANTIZE
int main()
{
    int cases;
    cin >> cases;

    for (int i = 0; i < cases; i++)
    {
		int productSequare = 0;

		cin >> g_seqCount;
		cin >> g_quantizeCount;

		set<int> numbers;

		memset(g_seq, 0, sizeof(int) * MAX_N);

		for (int j = 0; j < g_seqCount; j++)
		{
			cin >> g_seq[j];
			numbers.insert(g_seq[j]);
		}

		if (numbers.size() <= g_quantizeCount)
		{
			cout << productSequare << endl;
			continue;
		}

		sort(g_seq, g_seq + g_seqCount);

		{
			Partition c(g_seq, g_seqCount, g_quantizeCount);

			while (c.Enumerate() == true);
			cout << c.GetResult() << endl;
		}
    }

    return 0;
}

실제로 위의 코드로 답을 제출하면 24ms 수행 시간으로 algospot 채점을 통과합니다.

물론, 책의 구간 분할로 풀면 8ms로 답이 더 빠르게 나옵니다. ^^ 바람직한 것은 책의 방법이지만 어쨌든 책을 공부하지 않았을 상황에서도 답을 낼 수 있었다는 사실과, 조합으로도 cache 적용을 통해 약간의 부분 문제화할 수 있었던 것에 만족할 수 있겠습니다.

(첨부 파일은 이 글의 마지막 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/26/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2016-09-23 06시30분
[ryujh] 안녕하세요.
제 생각으로는 동적프로그래밍인 것 같은데(아니면 정정부탁합니다), 동적프로그래밍이 왜 필요한지 느낄 수 있는 설명으로 만족합니다. 책 내용은 일반적이기도 하지만 추상적일 수 있어서 책보고 하기 힘들 수 있는데 설명보니 이해갑니다.
[guest]
2016-09-23 06시41분
맞습니다. ^^ 한창 그 부분을 하고 있습니다.
정성태

... 31  32  33  34  [35]  36  37  38  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
12764정성태8/9/202145036Java: 30. XML document from ServletContext resource [/WEB-INF/applicationContext.xml] is invalid
12763정성태8/9/20218065Java: 29. java.lang.NullPointerException - com.mysql.jdbc.ConnectionImpl.getServerCharset
12762정성태8/8/202111684Java: 28. IntelliJ - Unable to open debugger port 오류
12761정성태8/8/20218831Java: 27. IntelliJ - java: package javax.inject does not exist [2]
12760정성태8/8/20216180개발 환경 구성: 594. 전용 "Command Prompt for ..." 단축 아이콘 만들기
12759정성태8/8/20219374Java: 26. IntelliJ + Spring Framework + 새로운 Controller 추가 [2]파일 다운로드1
12758정성태8/7/20218702오류 유형: 751. Error assembling WAR: webxml attribute is required (or pre-existing WEB-INF/web.xml if executing in update mode)
12757정성태8/7/20219431Java: 25. IntelliJ + Spring Framework 프로젝트 생성
12756정성태8/6/20218139.NET Framework: 1084. C# - .NET Core Web API 단위 테스트 방법 [1]파일 다운로드1
12755정성태8/5/20217271개발 환경 구성: 593. MSTest - 단위 테스트에 static/instance 유형의 private 멤버 접근 방법파일 다운로드1
12754정성태8/5/20218155오류 유형: 750. manage.py - Your project may not work properly until you apply the migrations for app(s): admin, auth, contenttypes, sessions.
12753정성태8/5/20218423오류 유형: 749. PyCharm - Error: Django is not importable in this environment
12752정성태8/4/20216526개발 환경 구성: 592. JetBrains의 IDE(예를 들어, PyCharm)에서 Visual Studio 키보드 매핑 적용
12751정성태8/4/20219637개발 환경 구성: 591. Windows 10 WSL2 환경에서 docker-compose 빌드하는 방법
12750정성태8/3/20216387디버깅 기술: 181. windbg - 콜 스택의 "Call Site" 오프셋 값이 가리키는 위치
12749정성태8/2/20215810개발 환경 구성: 590. Visual Studio 2017부터 단위 테스트에 DataRow 특성 지원
12748정성태8/2/20216448개발 환경 구성: 589. Azure Active Directory - tenant의 관리자(admin) 계정 로그인 방법
12747정성태8/1/20217041오류 유형: 748. 오류 기록 - MICROSOFT GRAPH – HOW TO IMPLEMENT IAUTHENTICATIONPROVIDER파일 다운로드1
12746정성태7/31/20219078개발 환경 구성: 588. 네트워크 장비 환경을 시뮬레이션하는 Packet Tracer 프로그램 소개
12745정성태7/31/20216913개발 환경 구성: 587. Azure Active Directory - tenant의 관리자 계정 로그인 방법
12744정성태7/30/20217533개발 환경 구성: 586. Azure Active Directory에 연결된 App 목록을 확인하는 방법?
12743정성태7/30/20218193.NET Framework: 1083. Azure Active Directory - 외부 Token Cache 저장소를 사용하는 방법파일 다운로드1
12742정성태7/30/20217442개발 환경 구성: 585. Azure AD 인증을 위한 사용자 인증 유형
12741정성태7/29/20218653.NET Framework: 1082. Azure Active Directory - Microsoft Graph API 호출 방법파일 다운로드1
12740정성태7/29/20217328오류 유형: 747. SharePoint - InvalidOperationException 0x80131509
12739정성태7/28/20217308오류 유형: 746. Azure Active Directory - IDW10106: The 'ClientId' option must be provided.
... 31  32  33  34  [35]  36  37  38  39  40  41  42  43  44  45  ...