Microsoft MVP성태의 닷넷 이야기
Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#) [링크 복사], [링크+제목 복사],
조회: 28197
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

"유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)


유클리드 호제법 (Euclidean algorithm)
; http://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%ED%98%B8%EC%A0%9C%EB%B2%95

위에도 소스 코드가 공개되어 있지만, 워낙에 호제법이 명쾌해서 C# 코드로도 쉽게 옮길 수가 있습니다.

static void Main(string[] args)
{
    Console.WriteLine(GetResult(247, 962));
    Console.WriteLine(GetResult(963, 247));
}

private static string GetResult(int num1, int num2)
{
    int gcd = GetGreatestCommonDivisor(num1, num2);
    string numFormatter = "{{{0}, {1}}} == ";

    if (gcd == 1)
    {
        return string.Format(numFormatter + "Relatively Prime", num1, num2);
    }

    int lcm = num1 * num2 / gcd;

    return string.Format(numFormatter + "Greatest Common Divisor = {2}, Least Common Multiple = {3}",
        num1, num2, gcd, lcm);
}

static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num1 > num2)
    {
        return GetGreatestCommonDivisor(num2, num1);
    }

    int remainder = 0;

    do
    {
        remainder = num2 % num1;

        num2 = num1;
        num1 = remainder;
    } while (remainder != 0); // 호제법 구현 do/while 코드

    return num2;
}

/* 재귀 호출을 이용한 호제법
static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num2 == 0)
    {
        return num1;
    }

    return GetGreatestCommonDivisor(num2, num1 % num2)
}
*/

사실, 여기까지 할 거면 ^^ 이 글을 쓰지도 않았겠지요.

위의 위키피디아 글에 보면 "호제법의 확장"에 대해서도 이야기하고 있는데, 여기에 그대로 내용을 실어보면 다음과 같습니다.

"
정수 m, n의 최대공약수(Greatest Common Divisor)를 gcd(m,n)와 나타낼 때, 확장된 유클리드 호제법을 이용하여, am + bn = gcd(m,n)의 해가 되는 정수 a, b 짝을 찾아낼 수 있다.(a, b 중 한개는 보통 음수가 된다.) 이 식은 Bezout's identity 라고 한다. 위에서 든 예의 경우,

    1071 = 1 * 1029 + 42
    1029 = 24 * 42 + 21 
    42 = 2 * 21 
 
이므로

    21 = 1029 - 24 * 42 = 1029 - 24 * (1071 - 1 * 1029) = -24 * 1071 + 25 * 1029 
 
가 된다.
"

즉, 2개의 양수 a, b의 최대 공약수를 d라고 했을 때, d는 적절한 정수 r, s에 의해 "d = ar + bs"로 정리될 수 있다는 것인데요. 약간의 코딩을 추가하면 위의 최종 식을 구할 수도 있겠다는 생각이 들더군요.

이를 위해, 호제법을 구하는 코드에서 "a = bq + r"의 형태를 "r = a - bq"의 형태로 기억하는 구조체를 넣어두었습니다.

do
{
    remainder = num2 % num1;

    RemainderFormula form = new RemainderFormula();
    form.Remainder = remainder;
    form.SubtractOperand = num2;
    form.MultiplyOperand1 = num1;
    form.MultiplyOperand2 = (int)Math.Floor((double)num2 / num1);
    forms.Add(form);

    num2 = num1;
    num1 = remainder;

} while (remainder != 0);

forms.Remove(forms.Last());
forms.Reverse();

그다음, 아래와 같이 "Bezout's identity"를 구하는 코드를 추가했습니다.

Dictionary<int, int> counter = new Dictionary<int, int>();

int multiplier = 0;
foreach (var item in forms)
{
    if (counter.ContainsKey(item.SubtractOperand) == false)
    {
        counter[item.SubtractOperand] = 1 * ((multiplier == 0) ? 1 : multiplier);
    }
    else
    {
        counter[item.SubtractOperand]++;
    }

    if (counter.ContainsKey(item.MultiplyOperand1) == false)
    {
        counter[item.MultiplyOperand1] = -item.MultiplyOperand2;
    }
    else
    {
        counter[item.MultiplyOperand1] += (-item.MultiplyOperand2 * multiplier);
    }

    multiplier = counter[item.MultiplyOperand1];
}

sb.AppendLine(string.Format("\t\t{0} = {1}r + {2}s, when r == {3}, s == {4}",
    gcd, num1, num2, counter[num1], counter[num2]));

몇 가지 수를 가지고 테스트 해보니 ^^ 아래와 같이 결과가 잘 나오는 군요.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, when r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, when r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, when r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, when r == 20, s == -9


{963, 247} == Relatively Prime

참고로, 위키피디아에 "Extended Euclidean algorithm"라고 해서 알고리즘 설명이 나오기는 하는데... 음... 제가 한 방식과는 다르군요.

function extended_gcd(a, b)
    x := 0    lastx := 1
    y := 1    lasty := 0
    while b ≠ 0
        quotient := a div b
        (a, b) := (b, a mod b)
        (x, lastx) := (lastx - quotient*x, x)
        (y, lasty) := (lasty - quotient*y, y)       
    return (lastx, lasty)

이를 C# 코드로 옮겨 보면 다음과 같습니다.

var tuple = GetExtendedGcd(num1, num2);
sb.AppendLine(string.Format("Extended Euclidean algorithm: r == {0}, s == {1}",
    tuple.Item2, tuple.Item1));

private static Tuple<int, int> GetExtendedGcd(int num1, int num2)
{
    if (num2 > num1)
    {
        return GetExtendedGcd(num2, num1);
    }

    int x = 0;
    int lastx = 1;
    int y = 1;
    int lasty = 0;

    int quotient = 0;

    int tempNum2, tempx, tempy;

    while (num2 != 0)
    {
        quotient = (int)Math.Floor((double)num1 / num2);

        tempNum2 = num2;
        num2 = num1 % num2;
        num1 = tempNum2;

        tempx = lastx - quotient * x;
        lastx = x;
        x = tempx;

        tempy = lasty - quotient * y;
        lasty = y;
        y = tempy;
    }

    return new Tuple<int,int>(lastx, lasty);
}

역시 머리 좋은 사람들은 다르군요. 동일한 결과를 내면서도 ^^ 제 것보다 더 간결합니다.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, Extended Euclidean algorithm: r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, Extended Euclidean algorithm: r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, Extended Euclidean algorithm: r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, Extended Euclidean algorithm: r == 20, s == -9

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/15/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  [144]  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1454정성태5/31/201326209Java: 15. Java 7 Control Panel 실행시키는 방법
1453정성태5/22/201325233기타: 32. Microsoft FTP 사이트에 접속하는 방법
1452정성태5/21/201332939Windows: 73. TabProcGrowth 값 삭제 후 IE를 실행시키면 다시 복원되는 경우 [3]
1451정성태5/17/201331871Windows: 72. 윈도우 서버 2012 기초 사용법
1450정성태5/16/201322698오류 유형: 176. SQL10007N Message "0" could not be retrieved. Reason code: "3"
1449정성태5/15/201329810오류 유형: 175. SpeechRecognitionEngine 사용 시 오류 유형 2가지
1448정성태5/14/201324785VC++: 68. #pragma warning(disable: ...)로 오류 제어가 안된다면?
1447정성태5/3/201326456개발 환경 구성: 191. Debugging Tools for Windows 독립 설치 버전 [1]
1446정성태4/30/201327224.NET Framework: 368. Encoding 타입의 대체(fallback) 메카니즘 [1]
1445정성태4/26/201325448디버깅 기술: 54. NT 서비스의 Main 메서드 안에서 Process.GetProcessesByName 호출 시 멈춤 현상 [1]
1444정성태4/26/201329479기타: 31. Internet Explorer: 자바스크립트로 숨겨진 파일 다운로드 경로를 알아내는 방법 [1]
1443정성태4/24/201325140개발 환경 구성: 190. Azure PaaS 웹 응용 프로그램 배포 후 SMTP 서버 구성 [2]
1442정성태4/21/201328723기타: 30. 마이크로소프트 워드의 CPU 점유 현상으로 글자 입력이 느려졌다면? [1]
1441정성태4/21/201335324.NET Framework: 367. LargeAddressAware 옵션이 적용된 닷넷 32비트 프로세스의 가용 메모리 [14]
1440정성태4/19/201324054오류 유형: 174. dumpbin.exe 실행시 mspdb110.dll 로드 오류
1439정성태4/18/201327915VS.NET IDE: 76. Visual Studio 2012와 Itanium 빌드 옵션 [2]
1438정성태4/17/201327303.NET Framework: 366. 다른 프로세스에 환경 변수 설정하는 방법 - 두 번째 이야기 [1]파일 다운로드1
1437정성태4/17/201327528VC++: 67. CRT(C Runtime DLL: msvcr...dll)에 대한 의존성 제거
1436정성태4/17/201332951.NET Framework: 365. Local SYSTEM 권한으로 코드를 실행하는 방법파일 다운로드1
1435정성태4/15/201341839Windows: 71. ad-hoc 보다 더 편리한 "가상 Wifi" 를 이용한 인터넷 공유 [2]
1434정성태4/9/201323112오류 유형: 173. TFS 서버의 이벤트 로그 오류 - WebHost failed to process a request. Parameter name: certificate
1433정성태4/9/201323395개발 환경 구성: 189. TFS에 설치된 SharePoint 의 PowerShell 콘솔 띄우는 방법
1432정성태4/5/201324404오류 유형: 172. System.Web.PipelineModuleStepContainer.GetEventCount 에서 NullReferenceException 이 발생한다면?
1431정성태4/5/201325055기타: 29. 부팅 가능한 (외장) HDD를 기존 부팅 메뉴에 추가하는 방법
1430정성태4/4/201326893제니퍼 .NET: 23. 모바일용 웹 사이트에서 발생하는 응답 시간 지연 현상 [5]파일 다운로드1
1429정성태3/29/201323262개발 환경 구성: 188. SCOM 2012 - ASP.NET 모니터링 방법
... 136  137  138  139  140  141  142  143  [144]  145  146  147  148  149  150  ...