Microsoft MVP성태의 닷넷 이야기
Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#) [링크 복사], [링크+제목 복사],
조회: 29550
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

"유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)


유클리드 호제법 (Euclidean algorithm)
; http://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%ED%98%B8%EC%A0%9C%EB%B2%95

위에도 소스 코드가 공개되어 있지만, 워낙에 호제법이 명쾌해서 C# 코드로도 쉽게 옮길 수가 있습니다.

static void Main(string[] args)
{
    Console.WriteLine(GetResult(247, 962));
    Console.WriteLine(GetResult(963, 247));
}

private static string GetResult(int num1, int num2)
{
    int gcd = GetGreatestCommonDivisor(num1, num2);
    string numFormatter = "{{{0}, {1}}} == ";

    if (gcd == 1)
    {
        return string.Format(numFormatter + "Relatively Prime", num1, num2);
    }

    int lcm = num1 * num2 / gcd;

    return string.Format(numFormatter + "Greatest Common Divisor = {2}, Least Common Multiple = {3}",
        num1, num2, gcd, lcm);
}

static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num1 > num2)
    {
        return GetGreatestCommonDivisor(num2, num1);
    }

    int remainder = 0;

    do
    {
        remainder = num2 % num1;

        num2 = num1;
        num1 = remainder;
    } while (remainder != 0); // 호제법 구현 do/while 코드

    return num2;
}

/* 재귀 호출을 이용한 호제법
static int GetGreatestCommonDivisor(int num1, int num2)
{
    if (num2 == 0)
    {
        return num1;
    }

    return GetGreatestCommonDivisor(num2, num1 % num2)
}
*/

사실, 여기까지 할 거면 ^^ 이 글을 쓰지도 않았겠지요.

위의 위키피디아 글에 보면 "호제법의 확장"에 대해서도 이야기하고 있는데, 여기에 그대로 내용을 실어보면 다음과 같습니다.

"
정수 m, n의 최대공약수(Greatest Common Divisor)를 gcd(m,n)와 나타낼 때, 확장된 유클리드 호제법을 이용하여, am + bn = gcd(m,n)의 해가 되는 정수 a, b 짝을 찾아낼 수 있다.(a, b 중 한개는 보통 음수가 된다.) 이 식은 Bezout's identity 라고 한다. 위에서 든 예의 경우,

    1071 = 1 * 1029 + 42
    1029 = 24 * 42 + 21 
    42 = 2 * 21 
 
이므로

    21 = 1029 - 24 * 42 = 1029 - 24 * (1071 - 1 * 1029) = -24 * 1071 + 25 * 1029 
 
가 된다.
"

즉, 2개의 양수 a, b의 최대 공약수를 d라고 했을 때, d는 적절한 정수 r, s에 의해 "d = ar + bs"로 정리될 수 있다는 것인데요. 약간의 코딩을 추가하면 위의 최종 식을 구할 수도 있겠다는 생각이 들더군요.

이를 위해, 호제법을 구하는 코드에서 "a = bq + r"의 형태를 "r = a - bq"의 형태로 기억하는 구조체를 넣어두었습니다.

do
{
    remainder = num2 % num1;

    RemainderFormula form = new RemainderFormula();
    form.Remainder = remainder;
    form.SubtractOperand = num2;
    form.MultiplyOperand1 = num1;
    form.MultiplyOperand2 = (int)Math.Floor((double)num2 / num1);
    forms.Add(form);

    num2 = num1;
    num1 = remainder;

} while (remainder != 0);

forms.Remove(forms.Last());
forms.Reverse();

그다음, 아래와 같이 "Bezout's identity"를 구하는 코드를 추가했습니다.

Dictionary<int, int> counter = new Dictionary<int, int>();

int multiplier = 0;
foreach (var item in forms)
{
    if (counter.ContainsKey(item.SubtractOperand) == false)
    {
        counter[item.SubtractOperand] = 1 * ((multiplier == 0) ? 1 : multiplier);
    }
    else
    {
        counter[item.SubtractOperand]++;
    }

    if (counter.ContainsKey(item.MultiplyOperand1) == false)
    {
        counter[item.MultiplyOperand1] = -item.MultiplyOperand2;
    }
    else
    {
        counter[item.MultiplyOperand1] += (-item.MultiplyOperand2 * multiplier);
    }

    multiplier = counter[item.MultiplyOperand1];
}

sb.AppendLine(string.Format("\t\t{0} = {1}r + {2}s, when r == {3}, s == {4}",
    gcd, num1, num2, counter[num1], counter[num2]));

몇 가지 수를 가지고 테스트 해보니 ^^ 아래와 같이 결과가 잘 나오는 군요.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, when r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, when r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, when r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, when r == 20, s == -9


{963, 247} == Relatively Prime

참고로, 위키피디아에 "Extended Euclidean algorithm"라고 해서 알고리즘 설명이 나오기는 하는데... 음... 제가 한 방식과는 다르군요.

function extended_gcd(a, b)
    x := 0    lastx := 1
    y := 1    lasty := 0
    while b ≠ 0
        quotient := a div b
        (a, b) := (b, a mod b)
        (x, lastx) := (lastx - quotient*x, x)
        (y, lasty) := (lasty - quotient*y, y)       
    return (lastx, lasty)

이를 C# 코드로 옮겨 보면 다음과 같습니다.

var tuple = GetExtendedGcd(num1, num2);
sb.AppendLine(string.Format("Extended Euclidean algorithm: r == {0}, s == {1}",
    tuple.Item2, tuple.Item1));

private static Tuple<int, int> GetExtendedGcd(int num1, int num2)
{
    if (num2 > num1)
    {
        return GetExtendedGcd(num2, num1);
    }

    int x = 0;
    int lastx = 1;
    int y = 1;
    int lasty = 0;

    int quotient = 0;

    int tempNum2, tempx, tempy;

    while (num2 != 0)
    {
        quotient = (int)Math.Floor((double)num1 / num2);

        tempNum2 = num2;
        num2 = num1 % num2;
        num1 = tempNum2;

        tempx = lastx - quotient * x;
        lastx = x;
        x = tempx;

        tempy = lasty - quotient * y;
        lasty = y;
        y = tempy;
    }

    return new Tuple<int,int>(lastx, lasty);
}

역시 머리 좋은 사람들은 다르군요. 동일한 결과를 내면서도 ^^ 제 것보다 더 간결합니다.

{247, 962} == Greatest Common Divisor = 13, Least Common Multiple = 18278
                13 = 247r + 962s, Extended Euclidean algorithm: r == -35, s == 9


{45, 126} == Greatest Common Divisor = 9, Least Common Multiple = 630
                9 = 45r + 126s, Extended Euclidean algorithm: r == 3, s == -1


{255, 315} == Greatest Common Divisor = 15, Least Common Multiple = 5355
                15 = 255r + 315s, Extended Euclidean algorithm: r == 5, s == -4


{288, 639} == Greatest Common Divisor = 9, Least Common Multiple = 20448
                9 = 288r + 639s, Extended Euclidean algorithm: r == 20, s == -9

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/15/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  [52]  53  54  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12671정성태6/15/202128989오류 유형: 724. Tomcat 실행 시 Failed to initialize connector [Connector[HTTP/1.1-8080]] 오류
12670정성태6/13/202118845.NET Framework: 1071. DLL Surrogate를 이용한 Out-of-process COM 개체에서의 CoInitializeSecurity 문제파일 다운로드1
12669정성태6/11/202118799.NET Framework: 1070. 사용자 정의 GetHashCode 메서드 구현은 C# 9.0의 record 또는 리팩터링에 맡기세요.
12668정성태6/11/202121361.NET Framework: 1069. C# - DLL Surrogate를 이용한 Out-of-process COM 개체 제작파일 다운로드2
12667정성태6/10/202119270.NET Framework: 1068. COM+ 서버 응용 프로그램을 이용해 CoInitializeSecurity 제약 해결파일 다운로드1
12666정성태6/10/202116798.NET Framework: 1067. 별도 DLL에 포함된 타입을 STAThread Main 메서드에서 사용하는 경우 CoInitializeSecurity 자동 호출파일 다운로드1
12665정성태6/9/202119025.NET Framework: 1066. Wslhub.Sdk 사용으로 알아보는 CoInitializeSecurity 사용 제약파일 다운로드1
12664정성태6/9/202116672오류 유형: 723. COM+ PIA 참조 시 "This operation failed because the QueryInterface call on the COM component" 오류
12663정성태6/9/202119261.NET Framework: 1065. Windows Forms - 속성 창의 디자인 설정 지원: 문자열 목록 내에서 항목을 선택하는 TypeConverter 제작파일 다운로드1
12662정성태6/8/202116226.NET Framework: 1064. C# COM 개체를 PIA(Primary Interop Assembly)로써 "Embed Interop Types" 참조하는 방법파일 다운로드1
12661정성태6/4/202128488.NET Framework: 1063. C# - MQTT를 이용한 클라이언트/서버(Broker) 통신 예제 [4]파일 다운로드1
12660정성태6/3/202119391.NET Framework: 1062. Windows Forms - 폼 내에서 발생하는 마우스 이벤트를 자식 컨트롤 영역에 상관없이 수신하는 방법 [1]파일 다운로드1
12659정성태6/2/202119737Linux: 40. 우분투 설치 후 MBR 디스크 드라이브 여유 공간이 인식되지 않은 경우 - Logical Volume Management
12658정성태6/2/202118316Windows: 194. Microsoft Store에 있는 구글의 공식 Youtube App
12657정성태6/2/202118428Windows: 193. 윈도우 패키지 관리자 - winget 설치
12656정성태6/1/202117471.NET Framework: 1061. 서버 유형의 COM+에 적용할 수 없는 Server GC
12655정성태6/1/202115542오류 유형: 722. windbg/sos - savemodule - Fail to read memory
12654정성태5/31/202116717오류 유형: 721. Hyper-V - Saved 상태의 VM을 시작 시 오류 발생
12653정성태5/31/202119747.NET Framework: 1060. 닷넷 GC에 새롭게 구현되는 DPAD(Dynamic Promotion And Demotion for GC)
12652정성태5/31/202117255VS.NET IDE: 164. Visual Studio - Web Deploy로 Publish 시 암호창이 매번 뜨는 문제
12651정성태5/31/202117632오류 유형: 720. PostgreSQL - ERROR: 22P02: malformed array literal: "..."
12650정성태5/17/202117018기타: 82. OpenTabletDriver의 버튼에 더블 클릭을 매핑 및 게임에서의 지원 방법
12649정성태5/16/202119073.NET Framework: 1059. 세대 별 GC(Garbage Collection) 방식에서 Card table의 사용 의미 [1]
12648정성태5/16/202118163사물인터넷: 66. PC -> FTDI -> NodeMCU v1 ESP8266 기기를 UART 핀을 연결해 직렬 통신하는 방법파일 다운로드1
12647정성태5/15/202117530.NET Framework: 1058. C# - C++과의 연동을 위한 구조체의 fixed 배열 필드 사용파일 다운로드1
12646정성태5/15/202116426사물인터넷: 65. C# - Arduino IDE의 Serial Monitor 기능 구현파일 다운로드1
... 46  47  48  49  50  51  [52]  53  54  55  56  57  58  59  60  ...