Microsoft MVP성태의 닷넷 이야기
Math: 22. 행렬로 바라보는 피보나치 수열 [링크 복사], [링크+제목 복사],
조회: 19704
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

행렬로 바라보는 피보나치 수열

다음의 책을 보니 재미있는 내용이 있습니다. ^^

프로그래머를 위한 선형대수
; http://www.yes24.com/24/goods/39446808

(평을 보시면 아시겠지만, 저 역시 추천하고 싶은 책입니다. ^^)

249페이지에 보면 "자기회귀모델(AR: AutoRegressive)"의 이산시간에 대한 예로,

오늘의 ζ(t)는 어제의 ζ(t - 1), 이틀 전의 ζ(t - 2), 사흘 전의 ζ(t - 3)과 오늘의 u(t)에 따라 다음과 같이 정해진다.

ζ(t) = -0.5ζ(t - 1) + 0.34ζ(t - 2) + 0.08ζ(t - 3) + 2u(t)

초기 조건 ζ(0) = 0.78, ζ(-1) = 0.8, ζ(-2) = 1.5

소개가 되면서 다음과 같이 행렬 표현을 합니다.




저걸 보니, 피보나치 수열이 생각났습니다.

황금비율 증명 - 피보나치 수와 연분수의 관계
; https://www.sysnet.pe.kr/2/0/1312

역시 초깃값이 주어지고 x(t)는 x(t - 1)에 의해 결정되니까요. 따라서 위와 같은 기준으로 피보나치 수열을 바라보면 다음과 같이 정리가 됩니다.

ζ(t) = 1ζ(t - 1) + 1ζ(t - 2)

초기 조건 ζ(0) = 1, ζ(-1) = 0

간단하게 t = 1 ~ 4까지 테스트하면 이렇게 되고,

t = 1일 때, ζ(1) = ζ(1 - 1) + ζ(1 - 2) = ζ(0) + ζ(-1) = 1 + 0 = 1
t = 2일 때, ζ(2) = ζ(2 - 1) + ζ(2 - 2) = ζ(1) + ζ(0) = 1 + 1 = 2
t = 3일 때, ζ(3) = ζ(3 - 1) + ζ(3 - 2) = ζ(2) + ζ(1) = 2 + 1 = 3
t = 4일 때, ζ(4) = ζ(4 - 1) + ζ(4 - 2) = ζ(3) + ζ(2) = 3 + 2 = 5

이를 행렬로 표현하면 다음과 같습니다.




마찬가지로 t = 1 ~ 4까지에 대해 행렬로 계산하면 이렇게 됩니다.







따라서 (초깃값 2개를 넘어) n 번째 피보나치 수열은,




보는 바와 같이 행렬 [1 1; 1 0]에 대해 n 승을 하고 그 값을 [1 0] 행렬에 곱하면 n 번째 피보나치 수열이 구해지는 것입니다. 실제로 octave 같은 도구를 이용해 다음과 같이 행렬 계산을 바로 해볼 수 있습니다.

function fib_1()
  
a = [1 1; 1 0]
b = [1;0]
a ^ 1 * b
a ^ 2 * b
a ^ 3 * b
a ^ 4 * b
a ^ 5 * b

endfunction

위의 함수를 실행하면 2*1 행렬이 5개가 출력되는 데 그것의 첫 번째 원소들을 보면 1, 2, 3, 5, 8로 피보나치 수열이 나옵니다.




행렬로 표현된 피보나치 계산에서 고윳값/고유벡터를 이용해 풀어보면 재미있는 결과가 나옵니다.

[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)
; http://darkpgmr.tistory.com/105

행렬 [1 1; 1 0]에 대한 고윳값, 고유벡터를 계산해 보면,




위의 행렬식을 구하면,

= (1 - λ)(0 - λ) - 1
= λ2 - λ -1


위와 같이 구한 특성 다항식을 특성 방정식에 따라 0 값이 나오는 해를 구하면,

det(A - λ E) = 0

λ2 - λ -1 = 0

근의 공식에 따라,






와 같이 계산됩니다. 고윳값을 구했으니 고유벡터까지 구해볼까요? ^^



연립 방정식으로 풀으면,

(1 - λ)vx + vy = 0
vx - λvy = 0
vx = λvy

따라서, vx가 vy의 λ배로 이뤄진 무수히 많은 벡터 = [λt, t]


그럼 고유 벡터를 아무거나 다음과 같이 선정할 수 있습니다.



따라서 고윳값 λ의 2가지 값에 대해,






이 중에서 고유 벡터를 [(1 + sqrt(5)) / 2, 1]인 쌍으로 골라 보겠습니다. 이를 다시 Gram-Schmidt 정규 직교로 바꾸면,

Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법
; https://www.sysnet.pe.kr/2/0/11235

(0.52573, -0.85065), (-0.85065, -0.52573)로 구할 수 있습니다. 즉, 이 2개의 벡터 각각에 대응하는 λ배의 모든 벡터들이 고유 벡터들이 됩니다.




실제로 위의 과정들을 간단하게 octave로 구할 수 있습니다.

a = [1 1; 1 0]
[ev, ei] = eig(a)

ev = 
    0.52573 -0.85065
   -0.85065 -0.52573

ei =

Diagonal Matrix

   -0.61803   0
   0          1.61803

또한, Av = λv인 것도 다음과 같이 쉽게 계산해볼 수 있습니다.

a * [0.52573, -0.85065]'
ans =

  -0.32492
   0.52573

-0.61803 * [0.52573 -0.85065]'
ans =

  -0.32492
   0.52573




피보나치 수열의 고윳값과 고유벡터를 구했으니 n 번째 값을 구하는 방법에 대해 행렬의 성질로 다시 살펴보겠습니다.

"[선형대수학 #3] 고유값과 고유벡터 (eigenvalue & eigenvector)" 글에 보면 다음과 같은 공식이 나옵니다.

A = 행렬
P = 행렬 A의 고유벡터들을 열벡터로 하는 행렬
Λ = 교윳값들을 대각 원소로 하는 대각 행렬

AP = PΛ
A = PΛP-1

이를 기반으로 A의 n 승을 다음과 같이 쉽게 구할 수 있는 방법을 포함하고 있습니다.

Ak = (PΛP-1)k
   = (PΛP-1)(PΛP-1)......(PΛP-1)
   = PΛkP-1
   = Pdiag(λk1,......,λkn)P-1

따라서, 가령 5번째 피보나치 수를 구하고 싶다면 고유 벡터와 그것의 역행렬만 구한 후 고윳값 2개를 대각 행렬로 갖는 것만 5 승을 해주면 되는 것입니다. 이것을 octave로 다음과 같이 테스트할 수 있습니다.

ev * ei ^ 5 * inverse(ev)
ans =

    8.0000  5.0000
    5.0000  3.0000

즉, 고윳값을 알기 전에는 다음과 같은 행렬 계산이었지만,




고윳값을 알게 된 이상, 그것은 대각행렬의 n 승으로 바뀌었기 때문에 단순히 스칼라 값인 고윳값 2개만 n 승을 해주면 되는 문제로 바뀐 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/11/2017]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  [122]  123  124  125  126  127  128  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
10873정성태11/25/201525484.NET Framework: 540. C# - 부동 소수 계산 왜 이렇게 나오죠? (2) [3]파일 다운로드1
10872정성태11/24/201532454.NET Framework: 539. C# - 부동 소수 계산 왜 이렇게 나오죠? (1) [1]
10871정성태11/23/201528073오류 유형: 313. SignTool Error: No certificates were found that met all the given criteria.
10870정성태11/23/201528931오류 유형: 312. 윈도우 10 TH2 (버전 1511) 업데이트가 안되는 경우 [1]
10869정성태11/23/201524703오류 유형: 311. certutil 실행 오류 - 0x80070057 [1]
10868정성태11/20/201524577제니퍼 .NET: 25. 제니퍼 닷넷 적용 사례 (5) - RestSharp 라이브러리의 CPU High 현상파일 다운로드1
10867정성태10/18/201527146.NET Framework: 538. Thread.Abort로 인해 프로세스가 종료되는 현상
10866정성태10/14/201523348.NET Framework: 537. C# - Reflection의 박싱 없이 값 형식을 다루는 방법파일 다운로드1
10865정성태10/13/201523130.NET Framework: 536. Thread.Abort의 스레드 종료 지연파일 다운로드1
10864정성태10/12/201521336.NET Framework: 535. aspnet.config 파일의 설정을 읽는 방법
10863정성태10/9/201526147.NET Framework: 534. ASP.NET 응용 프로그램이 예외로 프로세스가 종료된다면?
10862정성태10/9/201524496오류 유형: 310. 비주얼 스튜디오 - Unspecified error (Exception from HRESULT: 0x80004005 (E_FAIL))
10861정성태10/9/201529149기타: 54. 도서: 시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지 (2)
10860정성태10/5/201526600개발 환경 구성: 277. IIS AppPool의 시작/중단에 대한 이벤트 로그 확인 방법
10859정성태10/5/201527800.NET Framework: 533. C#에서 string 형식이 primitive일까요? [6]
10858정성태10/2/201524301VS.NET IDE: 105. Visual Studio의 단위 테스트 작성 시 Fakes를 이용한 메서드 재정의 방법 [1]파일 다운로드1
10857정성태10/1/201520332VS.NET IDE: 104. Visual C++ 프로젝트의 빌드 이벤트에서 환경 변수 사용하는 방법
10856정성태9/30/201531602.NET Framework: 532. WPF DataGrid의 데이터 바인딩 시 리플렉션의 부하는 어느 정도일까요?파일 다운로드1
10855정성태9/30/201521306.NET Framework: 531. C# - XSLT 내의 javascript에 전달한 XML 노드의 타입은?
10854정성태9/30/201521820오류 유형: 309. C# - 포인터를 쓰는 경우 VerificationException이 발생한다면?
10853정성태9/21/201519502오류 유형: 308. 공백 문자를 포함한 계정명의 권한으로 Visual Studio 확장을 설치할 때 오류 발생
10852정성태9/17/201524541VC++: 92. C++ 생성자를 DLL로부터 동적 로드해 객체를 생성한다면? [2]파일 다운로드1
10851정성태9/15/201524280.NET Framework: 530. C# - 중위식을 후위식으로 변환하는 예제파일 다운로드1
10850정성태9/14/201522950.NET Framework: 529. C# - volatile 키워드로 인한 차이점을 발생시키는 예제 [1]파일 다운로드1
10849정성태9/14/201557069오류 유형: 307. CLR20r3 오류 해결을 위해 mscorlib.dll을 덮어쓸때 주의할 점 [12]
10848정성태9/8/201527443VS.NET IDE: 103. Visual Studio의 Ctrl + F5 실행 동작파일 다운로드1
... 121  [122]  123  124  125  126  127  128  129  130  131  132  133  134  135  ...