Microsoft MVP성태의 닷넷 이야기
VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [링크 복사], [링크+제목 복사],
조회: 22626
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 4개 있습니다.)
(시리즈 글이 4개 있습니다.)
VC++: 125. CUDA로 작성한 RGB2RGBA 성능
; https://www.sysnet.pe.kr/2/0/11471

개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
; https://www.sysnet.pe.kr/2/0/11472

개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
; https://www.sysnet.pe.kr/2/0/11481

VC++: 126. CUDA Core 수를 알아내는 방법
; https://www.sysnet.pe.kr/2/0/11482




CUDA로 작성한 RGB2RGBA 성능

지난 글에서,

C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)
; https://www.sysnet.pe.kr/2/0/11422

OpenCV의 CvtColor(ColorConversionCodes.BGR2BGRA) 호출에 대해 C++/parallel_for로 성능을 유사하게 구현한 적이 있습니다. 마찬가지로, SIMD를 이용해 OpenCV의 erode 연산을 해보기도 했습니다.

내가 만든 코드보다 OpenCV의 속도가 월등히 빠른 이유
; https://www.sysnet.pe.kr/2/0/11423

아쉽게도 SIMD 연산의 경우 RGB2RGBA 연산에는 적용할 수 없었는데요. CUDA의 경우 kernel 함수가 SIMD보다는 더 유연하기 때문에 RGB2RGBA 같은 연산을 구현하는 것이 가능한데, 아래의 코드가 바로 그것입니다.

__global__ void rgb2rgba(int n, BYTE *srcPtr, BYTE *dstPtr)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    while (tid < n)
    {
        int srcPos = tid * 3;
        int dstPos = tid * 4;

        dstPtr[dstPos + 0] = srcPtr[srcPos + 0];
        dstPtr[dstPos + 1] = srcPtr[srcPos + 1];
        dstPtr[dstPos + 2] = srcPtr[srcPos + 2];
        dstPtr[dstPos + 3] = 0xff;

        tid += (blockDim.x * gridDim.x);
    }
}

위의 kernel 함수를 C#에서 호출할 수 있도록 다음과 같이 export 함수를 하나 만들어 주고,

__declspec(dllexport) BOOL RGB2RGBA_Cuda(BYTE *srcPtr, BYTE *dstPtr, int width, int height)
{
    BYTE *cudaSrc = nullptr;
    BYTE *cudaDst = nullptr;

    int srcSize = width * height * 3; // RGB 3bytes
    int dstSize = width * height * 4; // RGBA 4bytes

    BOOL ret = FALSE;

    do
    {
        cudaError_t cudaStatus = cudaMalloc((void **)&cudaSrc, srcSize);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaMalloc((void **)&cudaDst, dstSize);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaMemcpy(cudaSrc, srcPtr, srcSize, cudaMemcpyHostToDevice);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        rgb2rgba<<<64, 64>>>(width * height, cudaSrc, cudaDst);

        cudaStatus = cudaGetLastError();
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaDeviceSynchronize();
        if (cudaStatus != cudaSuccess) 
        {
            break;
        }

        cudaStatus = cudaMemcpy(dstPtr, cudaDst, dstSize, cudaMemcpyDeviceToHost);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        ret = TRUE;
    } while (false);

    if (cudaSrc != nullptr)
    {
        cudaFree(cudaSrc);
    }

    if (cudaDst != nullptr)
    {
        cudaFree(cudaDst);
    }

    return ret;
}

테스트해 보면, 100회 연산에 2초 넘는 시간이 걸립니다. 즉, "C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)" 글에서 성능 테스트한 것 중에 (C# 제외하고) 가장 안 좋은 기록이 나온 것입니다. (아직 제가 CUDA 초보자라 더 빠르게 할 수 있는 방법이 있는지는 모르겠습니다.)

성능이 낮은 이유는, RAM에 있는 데이터를 GPU의 메모리로 복사하고 그 결과를 다시 RAM으로 복사하는 오버헤드가 있기 때문입니다.

따라서, CUDA를 이용해 성능 향상을 이루고 싶다면 메모리 복사에 따른 오버헤드를 극복할 정도의 복잡한 kernel 연산이거나, 아니면 CPU를 쉬게 하면서 GPU에 다중으로 작업을 맡기는 경우에만 쓰는 것이 좋겠습니다.

(첨부 파일은 "C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)" 글의 예제에 CUDA 테스트를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/21/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-01-22 08시13분
ILGPU로 시작하는 GPGPU 프로그래밍
; https://www.youtube.com/watch?v=TUs_Jsy7_Sg

How to Move from CUDA Math Library Calls to oneMKL
; https://www.codeproject.com/Articles/5363447/How-to-Move-from-CUDA-Math-Library-Calls-to-oneMKL
정성태

[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13953정성태6/16/202552스크립트: 78. 파이썬 - 소스 코드의 파일 경로를 지정한 모듈 로드
13952정성태6/15/2025370닷넷: 2336. C# - IValueTaskSource로 인해 주의가 필요한 ValueTask 호출파일 다운로드1
13951정성태6/15/2025339오류 유형: 964. Outlook - 일정이 "You cannot make changes to contents of this read-only folder." 오류 메시지로 삭제가 안 되는 경우
13950정성태6/12/20251196닷넷: 2335. C# - 간단하게 구현해 보는 IValueTaskSource 예제파일 다운로드1
13949정성태6/11/20251010오류 유형: 963. SignTool - "Error: SignerSign() failed." (-2146869243/0x80096005)
13948정성태6/10/2025649오류 유형: 962. 파이썬 - Linux 환경 + TCP 서버 소켓을 사용하는 프로세스 종료 후 재실행하는 경우 "OSError: [Errno 98] Address already in use" 오류 발생
13947정성태6/9/20251397개발 환경 구성: 750. 파이썬 - Azure App Service에 응용 프로그램 배포 후의 환경
13946정성태6/9/20251617개발 환경 구성: 749. 파이썬 - Azure App Service에 응용 프로그램 배포하기 전의 환경
13945정성태6/7/20251531오류 유형: 961. 파이썬 + conda - mysqlclient 사용 시 "NameError: name '_mysql' is not defined" 에러
13944정성태6/7/20255277오류 유형: 960. The trust relationship between this workstation and the primary domain failed. - 네 번째 이야기
13943정성태6/6/20251765개발 환경 구성: 748. Windows + Foundry Local - 로컬에서 AI 모델 활용
13942정성태6/5/20251425오류 유형: 959. winget 설치 시 "0x80d02002 : unknown error"
13941정성태6/2/20251352닷넷: 2334. C# - cpuid 명령어를 이용한 CPU 제조사 문자열 가져오기파일 다운로드1
13940정성태6/1/20251747C/C++: 188. C++의 32비트 + Release 어셈블리 코드를 .NET으로 포팅할 때 주의할 점파일 다운로드1
13939정성태5/29/20252112오류 유형: 958. NVIDIA Triton Inference Server - version `GLIBCXX_3.4.32' not found (required by /opt/tritonserver/backends/python/triton_python_backend_stub)
13938정성태5/29/20251638개발 환경 구성: 747. 파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
13937정성태5/24/20251528개발 환경 구성: 746. Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식
13936정성태5/23/20251389개발 환경 구성: 745. Linux / WSL 환경에 Miniconda 설치하기
13935정성태5/20/20251330오류 유형: 957. 파이썬 - pip 사용 시 "ImportError: cannot import name 'html5lib' from 'pip._vendor'" 오류
13934정성태5/20/20251843스크립트: 77. 파이썬 - 'urllib.request' 모듈의 명시적/암시적 로딩 차이
13933정성태5/19/20251462오류 유형: 956. Visual Studio 2022가 17.12 버전부터 업데이트 되지 않는다면?
13932정성태5/18/20251704스크립트: 76. 파이썬 - Version 문자열 다루기(semver 패키지)
13931정성태5/17/20252006스크립트: 75. 파이썬 - Cython 기본 예제 및 컴파일
13930정성태5/17/20251699개발 환경 구성: 744. 파이썬 - Windows embeddable package 환경에서 외부 패키지 사용하는 방법(ex: UFO² 환경 구성)
13929정성태5/16/20251788오류 유형: 955. 파이썬 - "Windows embeddable package" REPL 환경에서 "NameError: name 'exit' is not defined"
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...