Microsoft MVP성태의 닷넷 이야기
VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [링크 복사], [링크+제목 복사],
조회: 21940
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 4개 있습니다.)
(시리즈 글이 4개 있습니다.)
VC++: 125. CUDA로 작성한 RGB2RGBA 성능
; https://www.sysnet.pe.kr/2/0/11471

개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
; https://www.sysnet.pe.kr/2/0/11472

개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
; https://www.sysnet.pe.kr/2/0/11481

VC++: 126. CUDA Core 수를 알아내는 방법
; https://www.sysnet.pe.kr/2/0/11482




CUDA로 작성한 RGB2RGBA 성능

지난 글에서,

C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)
; https://www.sysnet.pe.kr/2/0/11422

OpenCV의 CvtColor(ColorConversionCodes.BGR2BGRA) 호출에 대해 C++/parallel_for로 성능을 유사하게 구현한 적이 있습니다. 마찬가지로, SIMD를 이용해 OpenCV의 erode 연산을 해보기도 했습니다.

내가 만든 코드보다 OpenCV의 속도가 월등히 빠른 이유
; https://www.sysnet.pe.kr/2/0/11423

아쉽게도 SIMD 연산의 경우 RGB2RGBA 연산에는 적용할 수 없었는데요. CUDA의 경우 kernel 함수가 SIMD보다는 더 유연하기 때문에 RGB2RGBA 같은 연산을 구현하는 것이 가능한데, 아래의 코드가 바로 그것입니다.

__global__ void rgb2rgba(int n, BYTE *srcPtr, BYTE *dstPtr)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    while (tid < n)
    {
        int srcPos = tid * 3;
        int dstPos = tid * 4;

        dstPtr[dstPos + 0] = srcPtr[srcPos + 0];
        dstPtr[dstPos + 1] = srcPtr[srcPos + 1];
        dstPtr[dstPos + 2] = srcPtr[srcPos + 2];
        dstPtr[dstPos + 3] = 0xff;

        tid += (blockDim.x * gridDim.x);
    }
}

위의 kernel 함수를 C#에서 호출할 수 있도록 다음과 같이 export 함수를 하나 만들어 주고,

__declspec(dllexport) BOOL RGB2RGBA_Cuda(BYTE *srcPtr, BYTE *dstPtr, int width, int height)
{
    BYTE *cudaSrc = nullptr;
    BYTE *cudaDst = nullptr;

    int srcSize = width * height * 3; // RGB 3bytes
    int dstSize = width * height * 4; // RGBA 4bytes

    BOOL ret = FALSE;

    do
    {
        cudaError_t cudaStatus = cudaMalloc((void **)&cudaSrc, srcSize);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaMalloc((void **)&cudaDst, dstSize);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaMemcpy(cudaSrc, srcPtr, srcSize, cudaMemcpyHostToDevice);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        rgb2rgba<<<64, 64>>>(width * height, cudaSrc, cudaDst);

        cudaStatus = cudaGetLastError();
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaDeviceSynchronize();
        if (cudaStatus != cudaSuccess) 
        {
            break;
        }

        cudaStatus = cudaMemcpy(dstPtr, cudaDst, dstSize, cudaMemcpyDeviceToHost);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        ret = TRUE;
    } while (false);

    if (cudaSrc != nullptr)
    {
        cudaFree(cudaSrc);
    }

    if (cudaDst != nullptr)
    {
        cudaFree(cudaDst);
    }

    return ret;
}

테스트해 보면, 100회 연산에 2초 넘는 시간이 걸립니다. 즉, "C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)" 글에서 성능 테스트한 것 중에 (C# 제외하고) 가장 안 좋은 기록이 나온 것입니다. (아직 제가 CUDA 초보자라 더 빠르게 할 수 있는 방법이 있는지는 모르겠습니다.)

성능이 낮은 이유는, RAM에 있는 데이터를 GPU의 메모리로 복사하고 그 결과를 다시 RAM으로 복사하는 오버헤드가 있기 때문입니다.

따라서, CUDA를 이용해 성능 향상을 이루고 싶다면 메모리 복사에 따른 오버헤드를 극복할 정도의 복잡한 kernel 연산이거나, 아니면 CPU를 쉬게 하면서 GPU에 다중으로 작업을 맡기는 경우에만 쓰는 것이 좋겠습니다.

(첨부 파일은 "C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)" 글의 예제에 CUDA 테스트를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/21/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-01-22 08시13분
ILGPU로 시작하는 GPGPU 프로그래밍
; https://www.youtube.com/watch?v=TUs_Jsy7_Sg

How to Move from CUDA Math Library Calls to oneMKL
; https://www.codeproject.com/Articles/5363447/How-to-Move-from-CUDA-Math-Library-Calls-to-oneMKL
정성태

... 121  122  123  124  125  [126]  127  128  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
2904정성태4/27/201527174DDK: 6. ZwTerminateProcess로 프로세스를 종료하는 Device Driver 프로그램 [2]파일 다운로드1
2903정성태4/20/201520562Windows: 110. (무료) 마이크로소프트 온라인 강좌 소개 - Azure에서 제공하는 계정 관리 서비스
2902정성태4/16/201526540Windows: 109. (무료) 마이크로소프트 온라인 강좌 소개 - Active Directory 이해
2901정성태4/15/201523135Windows: 108. (무료) 마이크로소프트 온라인 강좌 소개 - Windows Server 2012 R2 주요 기술 (Hyper-V 관점)
2900정성태3/24/201522211오류 유형: 279. robocopy 오류 - The file cannot be accessed by the system [4]
2899정성태3/24/201530382개발 환경 구성: 264. Visual Studio 2013 솔루션을 2015로 마이그레이션
2898정성태3/24/201520984개발 환경 구성: 263. SharePoint 2013을 Windows Server 2012 R2에 설치
2897정성태3/18/201519600오류 유형: 278. LoadLibrary("...") failed - Invalid access to memory location.
2896정성태3/18/201519760VC++: 90. Visual Studio 2013에서 Visual Basic 6용 ATL Control 제작
2895정성태3/18/201522812VC++: 89. Visual Studio 2015 - auto 반환 타입 및 thread_local 예약어 지원(C++ 11 표준) [2]
2894정성태3/18/201521061.NET Framework: 509. ELEMENT_TYPE_MODIFIER의 조합
2893정성태3/18/201521120오류 유형: 277. command line error MIDL1004: cannot execute C preprocessor cl.exe
2892정성태3/17/201526014오류 유형: 276. robocopy - Logon failure: unknown user name or bad password.
2891정성태3/17/201542160개발 환경 구성: 262. Visual Basic 6 (Enterprise Edition)을 Windows 7 x86에 설치하는 방법 [1]
2890정성태3/17/201524501오류 유형: 275. Internet Explorer - This page can't be displayed
2889정성태3/17/201525201Windows: 107. (2015-03-12) 업데이트 이후 작업 표시줄 또는 탐색기의 반응이 느려지는 문제 [1]
2888정성태3/17/201523173.NET Framework: 508. Visual Studio 빌드 - fatal error C1033: cannot open program database ''
2887정성태3/13/201520462.NET Framework: 507. CoreFx 빌드하는 방법
2886정성태3/13/201522195오류 유형: 274. CoreFx, CoreCLR 빌드 시 "error CS0518: Predefined type 'System.Object' is not defined or imported" 오류 해결 방법
2885정성태3/13/201533522VS.NET IDE: 99. Visual Studio는 2019는 32비트, 2022부터 64비트 버전입니다. [2]
2884정성태3/12/201526836.NET Framework: 506. .NETCore = CoreFX + CoreCLR [5]
2883정성태3/10/201524005.NET Framework: 505. OpenCover 소스 코드 분석을 Visual Studio 2013에서 하는 방법 [1]
2882정성태3/10/201522873.NET Framework: 504. OpenCover 코드 커버리지 도구의 동작 방식을 통해 살펴보는 Calli IL 코드 사용법
2881정성태3/9/201523323개발 환경 구성: 261. OpenCover 오픈 소스를 이용한 .NET 코드 커버리지(Code coverage)
2880정성태3/7/201521656개발 환경 구성: 260. C# Code Coverage 도구 - Semantic Designs 소개
2879정성태3/3/201526657개발 환경 구성: 259. Visual Studio 없이 Visual C++ 컴파일하는 방법
... 121  122  123  124  125  [126]  127  128  129  130  131  132  133  134  135  ...