Microsoft MVP성태의 닷넷 이야기
VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [링크 복사], [링크+제목 복사],
조회: 21901
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 4개 있습니다.)
(시리즈 글이 4개 있습니다.)
VC++: 125. CUDA로 작성한 RGB2RGBA 성능
; https://www.sysnet.pe.kr/2/0/11471

개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
; https://www.sysnet.pe.kr/2/0/11472

개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
; https://www.sysnet.pe.kr/2/0/11481

VC++: 126. CUDA Core 수를 알아내는 방법
; https://www.sysnet.pe.kr/2/0/11482




CUDA로 작성한 RGB2RGBA 성능

지난 글에서,

C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)
; https://www.sysnet.pe.kr/2/0/11422

OpenCV의 CvtColor(ColorConversionCodes.BGR2BGRA) 호출에 대해 C++/parallel_for로 성능을 유사하게 구현한 적이 있습니다. 마찬가지로, SIMD를 이용해 OpenCV의 erode 연산을 해보기도 했습니다.

내가 만든 코드보다 OpenCV의 속도가 월등히 빠른 이유
; https://www.sysnet.pe.kr/2/0/11423

아쉽게도 SIMD 연산의 경우 RGB2RGBA 연산에는 적용할 수 없었는데요. CUDA의 경우 kernel 함수가 SIMD보다는 더 유연하기 때문에 RGB2RGBA 같은 연산을 구현하는 것이 가능한데, 아래의 코드가 바로 그것입니다.

__global__ void rgb2rgba(int n, BYTE *srcPtr, BYTE *dstPtr)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    while (tid < n)
    {
        int srcPos = tid * 3;
        int dstPos = tid * 4;

        dstPtr[dstPos + 0] = srcPtr[srcPos + 0];
        dstPtr[dstPos + 1] = srcPtr[srcPos + 1];
        dstPtr[dstPos + 2] = srcPtr[srcPos + 2];
        dstPtr[dstPos + 3] = 0xff;

        tid += (blockDim.x * gridDim.x);
    }
}

위의 kernel 함수를 C#에서 호출할 수 있도록 다음과 같이 export 함수를 하나 만들어 주고,

__declspec(dllexport) BOOL RGB2RGBA_Cuda(BYTE *srcPtr, BYTE *dstPtr, int width, int height)
{
    BYTE *cudaSrc = nullptr;
    BYTE *cudaDst = nullptr;

    int srcSize = width * height * 3; // RGB 3bytes
    int dstSize = width * height * 4; // RGBA 4bytes

    BOOL ret = FALSE;

    do
    {
        cudaError_t cudaStatus = cudaMalloc((void **)&cudaSrc, srcSize);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaMalloc((void **)&cudaDst, dstSize);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaMemcpy(cudaSrc, srcPtr, srcSize, cudaMemcpyHostToDevice);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        rgb2rgba<<<64, 64>>>(width * height, cudaSrc, cudaDst);

        cudaStatus = cudaGetLastError();
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        cudaStatus = cudaDeviceSynchronize();
        if (cudaStatus != cudaSuccess) 
        {
            break;
        }

        cudaStatus = cudaMemcpy(dstPtr, cudaDst, dstSize, cudaMemcpyDeviceToHost);
        if (cudaStatus != cudaSuccess)
        {
            break;
        }

        ret = TRUE;
    } while (false);

    if (cudaSrc != nullptr)
    {
        cudaFree(cudaSrc);
    }

    if (cudaDst != nullptr)
    {
        cudaFree(cudaDst);
    }

    return ret;
}

테스트해 보면, 100회 연산에 2초 넘는 시간이 걸립니다. 즉, "C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)" 글에서 성능 테스트한 것 중에 (C# 제외하고) 가장 안 좋은 기록이 나온 것입니다. (아직 제가 CUDA 초보자라 더 빠르게 할 수 있는 방법이 있는지는 모르겠습니다.)

성능이 낮은 이유는, RAM에 있는 데이터를 GPU의 메모리로 복사하고 그 결과를 다시 RAM으로 복사하는 오버헤드가 있기 때문입니다.

따라서, CUDA를 이용해 성능 향상을 이루고 싶다면 메모리 복사에 따른 오버헤드를 극복할 정도의 복잡한 kernel 연산이거나, 아니면 CPU를 쉬게 하면서 GPU에 다중으로 작업을 맡기는 경우에만 쓰는 것이 좋겠습니다.

(첨부 파일은 "C# - OpenCvSharp 사용 시 C/C++을 이용한 속도 향상 (for 루프 연산)" 글의 예제에 CUDA 테스트를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/21/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-01-22 08시13분
ILGPU로 시작하는 GPGPU 프로그래밍
; https://www.youtube.com/watch?v=TUs_Jsy7_Sg

How to Move from CUDA Math Library Calls to oneMKL
; https://www.codeproject.com/Articles/5363447/How-to-Move-from-CUDA-Math-Library-Calls-to-oneMKL
정성태

... [91]  92  93  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11660정성태8/19/201818633사물인터넷: 33. 세라믹 커패시터의 동작 방식파일 다운로드1
11659정성태8/19/201818477사물인터넷: 32. 9V 전압에서 테스트하는 PN2222A 트랜지스터파일 다운로드1
11658정성태8/18/201821955사물인터넷: 31. 커패시터와 RC 회로파일 다운로드3
11657정성태8/18/201819958사물인터넷: 30. 릴레이(Relay) 제어파일 다운로드3
11656정성태8/16/201815714사물인터넷: 29. 트랜지스터와 병렬로 연결한 LED파일 다운로드1
11655정성태8/16/201817971사물인터넷: 28. 저항과 병렬로 연결한 LED파일 다운로드1
11654정성태8/15/201819233사물인터넷: 27. 병렬 회로의 저항, 전압 및 전류파일 다운로드1
11653정성태8/14/201820074사물인터넷: 26. 입력 전압에 따른 LED의 전압/저항 변화 [1]파일 다운로드1
11652정성태8/14/201817498사물인터넷: 25. 컬렉터 9V, 베이스에 5V와 3.3V 전압으로 테스트하는 C1815 트랜지스터파일 다운로드1
11651정성태8/14/201822630사물인터넷: 24. 9V 전압에서 테스트하는 C1815 트랜지스터 [1]파일 다운로드3
11650정성태8/14/201817040사물인터넷: 23. 가변저항으로 분압파일 다운로드1
11649정성태8/12/201819374사물인터넷: 22. 저항에 따른 전류 테스트파일 다운로드1
11648정성태8/12/201820788사물인터넷: 21. 퓨즈를 이용한 회로 보호파일 다운로드3
11647정성태8/8/201820931오류 유형: 476. 음수의 음수는 여전히 음수가 되는 수(절대값이 음수인 수)
11646정성태8/8/201816949오류 유형: 475. gacutil.exe 실행 시 "Failure initializing gacutil" 오류 발생
11645정성태8/8/201819168오류 유형: 474. 닷넷 COM+ - Failed to load the runtime. [1]
11644정성태8/6/201822060디버깅 기술: 118. windbg - 닷넷 개발자를 위한 MEX Debugging Extension 소개
11643정성태8/6/201821667사물인터넷: 20. 아두이노 레오나르도 R3 호환 보드의 3.3v 핀의 LED 전압/전류 테스트 [1]파일 다운로드1
11642정성태8/3/201820484Graphics: 20. Unity - LightMode의 ForwardBase에 따른 _WorldSpaceLightPos0 값 변화
11641정성태8/3/201826000Graphics: 19. Unity로 실습하는 Shader (10) - 빌보드 구현 [1]파일 다운로드1
11640정성태8/3/201822185Graphics: 18. Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법파일 다운로드1
11639정성태8/2/201819751디버깅 기술: 117. windbg - 덤프 파일로부터 추출한 DLL을 참조하는 방법
11638정성태8/2/201818147오류 유형: 473. windbg - 덤프 파일로부터 추출한 DLL 참조 시 "Resolved file has a bad image, no metadata, or is otherwise inaccessible." 빌드 오류
11637정성태8/1/201822555Graphics: 17. Unity - World matrix(unity_ObjectToWorld)로부터 TRS(이동/회전/크기) 행렬로 복원하는 방법파일 다운로드1
11636정성태8/1/201829960Graphics: 16. 3D 공간에서 두 점이 이루는 각도 구하기파일 다운로드1
11635정성태8/1/201818673오류 유형: 472. C# 컴파일 오류 - Your project is not referencing the ".NETFramework,Version=v3.5" framework.
... [91]  92  93  94  95  96  97  98  99  100  101  102  103  104  105  ...