Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 6개 있습니다.)

C# 7.3 - 사용자 정의 타입에 fixed 적용 가능(Custom fixed)

C# 7.3 (1) - 개선된 문법 4개(Support == and != for tuples, Ref Reassignment, Constraints, Stackalloc initializers)
; https://www.sysnet.pe.kr/2/0/11552

C# 7.3 (2) - 개선된 메서드 선택 규칙 3가지(Improved overload candidates)
; https://www.sysnet.pe.kr/2/0/11553

C# 7.3 (3) - 자동 구현 속성에 특성 적용 가능(Attribute on backing field)
; https://www.sysnet.pe.kr/2/0/11554

C# 7.3 (4) - 사용자 정의 타입에 fixed 적용 가능(Custom fixed)
; https://www.sysnet.pe.kr/2/0/11555

C# 7.3 (5) - 구조체의 고정 크기를 갖는 fixed 배열 필드에 대한 직접 접근 가능(Indexing movable fixed buffers)
; https://www.sysnet.pe.kr/2/0/11556

C# 7.3 (6) - blittable 제네릭 제약(blittable)
; https://www.sysnet.pe.kr/2/0/11558

C# 7.3 (7) - 초기화 식에서 변수 사용 가능(expression variables in initializers)
; https://www.sysnet.pe.kr/2/0/11560





관리 힙에 있는 데이터를 GC 수행 시 메모리 이동이 되지 않도록 고정시키는 문법이 fixed입니다. 그럼, fixed가 어떻게 동작하는지 한번 살펴볼까요? ^^ 이를 위해 다음의 코드를,

static int[] data = new int[100];

private unsafe static void FixedInt()
{
    fixed (int *ptr = data)
    {
        Console.WriteLine(*ptr);
    }
}

IL로 변경하면 이렇게 됩니다.

.method private hidebysig static void FixedInt() cil managed
{
    .maxstack 2
    .locals init (
        [0] int32* numPtr,
        [1] int32[] pinned numArray)
    L_0000: ldsfld int32[] ConsoleApp1.Program::data
    L_0005: dup 
    L_0006: stloc.1 
    L_0007: brfalse.s L_000e
    L_0009: ldloc.1 
    L_000a: ldlen 
    L_000b: conv.i4 
    L_000c: brtrue.s L_0013
    L_000e: ldc.i4.0 
    L_000f: conv.u 
    L_0010: stloc.0 
    L_0011: br.s L_001c
    L_0013: ldloc.1 
    L_0014: ldc.i4.0 
    L_0015: ldelema int32
    L_001a: conv.u 
    L_001b: stloc.0 
    L_001c: ldloc.0 
    L_001d: ldind.i4 
    L_001e: call void [mscorlib]System.Console::WriteLine(int32)
    L_0023: ldnull 
    L_0024: stloc.1 
    L_0025: ret 
}

보는 바와 같이, fixed는 어떤 메서드를 호출하는 형식이 아닙니다. 단지 fixed 블록이 시작하는 시점에 pinned 특성을 가진 로컬 변수에 GC 수행 시 고정시킬 변수의 주소를 넣어두고, 블록이 끝나는 시점에 그 로컬 변수의 값을 null로 초기화하면서 해제하는 역할을 합니다. (아마도 CLR은 GC 수행 시 루트 객체들 중 pinned 로컬 변수가 가리키는 객체는 메모리를 이동시키지 않을 것입니다.)

결국, 위에서 본 코드는 관리 힙에 할당된 int [] 배열에 대한 주소를 pinned 특성을 가진 로컬 변수에 보관함으로써 메모리를 고정시킨 것입니다.

이 때문에, 관리 힙에 할당한 것이 아니라면 - 가령 스택에 할당된 메모리의 경우 GC 수행 시 이동하지 않으므로 굳이 fixed시킬 필요가 없습니다. 실제로 C#은 이런 경우 컴파일 오류를 냅니다.

private unsafe static void FixedLocalAlloc()
{
    int n = 5;

    // 컴파일 에러 - Error CS0213 You cannot use the fixed statement to take the address of an already fixed expression
    fixed (int *ptrOfN = &n)
    {
    }
}

따라서 이미 고정된 메모리라면 fixed 없이, 즉 "pinned 특성을 가진 로컬 변수"를 사용하지 않고 그냥 주소를 가져오면 됩니다.

private unsafe static void FixedLocalAlloc()
{
    int n = 5;

    int* ptrOfN = &n;
}




C# 7.2까지, fixed의 대상은 primitive 타입이거나 그것의 배열, 또는 string으로 제한됩니다. 즉, 사용자가 만든 타입은 fixed의 대상이 될 수 없습니다.

public class Point
{
    public int X;
    public int Y;
}

private unsafe static void FixedUserClassType()
{
    Point pt = new Point();

    // 컴파일 에러 - Error CS8385 The given expression cannot be used in a fixed statement
    fixed (int *pPoint = pt)
    {
    }
}

대신 그것의 멤버가 fixed로 사용 가능한 경우라면 다음과 같이 우회할 수는 있습니다.

private unsafe static void FixedUserClassType()
{
    Point pt = new Point();

    fixed (int *pX = &pt.X)
    {
    }

    fixed (int* pY = &pt.Y)
    {
    }
}

이에 대한 제약을, C# 7.3부터 사용자 정의 타입이 관리 포인터(managed pointer)를 반환하는 GetPinnableReference 메서드를 구현한다면 fixed 구문에 자연스럽게 연계할 수 있도록 확장했습니다. 따라서 위에서 정의한 Point 타입은 다음과 같은 식으로 구현할 수 있습니다.

public class Point
{
    public int X;
    public int Y;

    public ref int GetPinnableReference()
    {
        return ref X;
    }
}

private unsafe static void FixedUserClassType()
{
    Point pt = new Point();

    // C# 7.3부터 컴파일 가능
    fixed (int* pPoint = pt)
    {
    }
}




그런데, 자세히 보면 사용자 정의 타입을 fixed 시킨다는 것이 개념상으로 봤을 때는 왠지 어색한 감이 있습니다.

Point pt = new Point();

fixed (int* pPoint = pt)
{
}

구문만 봤을 때는 해당 타입이 가진 필드 중 어떤 것이 fixed될 거라는 예상을 할 수 없습니다. 따라서, 직관적인 면을 고려했을 때 GetPinnableReference를 구현할 수 있는 가장 좋은 대상은 단일 필드를 가지고 있거나, 단일 타입의 배열을 감싼 타입이 됩니다.

public class IntArrayHelper
{
    int[] _elem = null;

    public IntArrayHelper(int len)
    {
        _elem = new int[len];

        for (int i = 0; i < len; i ++)
        {
            _elem[i] = i;
        }
    }

    public int Sum()
    {
        return _elem.Sum();
    }

    public ref int GetPinnableReference()
    {
        return ref _elem[0];
    }
}

private unsafe static void FixedCustom()
{
    CustomPinnable cp = new CustomPinnable();

    fixed (int *p = cp)
    {
    }

    IntArrayHelper iah = new IntArrayHelper(100);
    fixed (int *elem = iah)
    {
        Console.WriteLine(*(elem + 50));
    }
}

그런데, 이렇게 보니 저 용도로 부각된 C# 7.2의 기능이 하나 있었습니다.

C# 7.2 - Span<T>
; https://www.sysnet.pe.kr/2/0/11534

Span은 연속적인 메모리에 대한 일관성 있는 접근 방식을 제공하는 타입으로 GetPinnableReference 메서드가 구현될 수 있는 요건을 잘 갖추고 있습니다. 실제로 Span 타입은 GetPinnableReference 메서드를 제공해 다음과 같은 표현이 가능합니다.

private unsafe static void FixedSpan()
{
    {
        // (fixed될 필요가 없는) 스택을 기반으로 하든,
        Span<int> span = stackalloc int[500];

        fixed (int *pSpan = span)
        {
            Console.WriteLine(*(pSpan + 1));
        }
    }

    {
        // 관리 힙을 기반으로 하든,
        Span<int> span = new int[500];

        fixed (int* pSpan = span)
        {
            Console.WriteLine(*(pSpan + 1));
        }
    }

    {
        // (fixed될 필요가 없는) 비관리 힙을 기반으로 하든지에 상관없이 일관성 있는 fixed 구문을 제공
        int elemLen = 500;
        int allocLen = sizeof(int) * elemLen;
        Span<int> span = new Span<int>((void *)Marshal.AllocCoTaskMem(allocLen), elemLen);

        fixed (int* pSpan = span)
        {
            Console.WriteLine(*(pSpan + 1));
        }
    }
}

달리 말하면, C# 1부터 제공하던 fixed 구문을 기본 문법 그대로 그동안 잘 사용해 오다가 C# 7.2의 Span이 나오면서 fixed로 변환하는 코드가 자주 나오다 보니 불편함을 느껴 GetPinnableReference를 이용한 확장을 C# 7.3에 와서 추가한 것입니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 6/25/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13601정성태4/19/2024196닷넷: 2243. C# - PCM 사운드 재생(NAudio)파일 다운로드1
13600정성태4/18/2024276닷넷: 2242. C# - 관리 스레드와 비관리 스레드
13599정성태4/17/2024296닷넷: 2241. C# - WAV 파일의 PCM 사운드 재생(Windows Multimedia)파일 다운로드1
13598정성태4/16/2024333닷넷: 2240. C# - WAV 파일 포맷 + LIST 헤더파일 다운로드1
13597정성태4/15/2024393닷넷: 2239. C# - WAV 파일의 PCM 데이터 생성 및 출력파일 다운로드1
13596정성태4/14/2024773닷넷: 2238. C# - WAV 기본 파일 포맷파일 다운로드1
13595정성태4/13/2024895닷넷: 2237. C# - Audio 장치 열기 (Windows Multimedia, NAudio)파일 다운로드1
13594정성태4/12/20241015닷넷: 2236. C# - Audio 장치 열람 (Windows Multimedia, NAudio)파일 다운로드1
13593정성태4/8/20241050닷넷: 2235. MSBuild - AccelerateBuildsInVisualStudio 옵션
13592정성태4/2/20241207C/C++: 165. CLion으로 만든 Rust Win32 DLL을 C#과 연동
13591정성태4/2/20241168닷넷: 2234. C# - WPF 응용 프로그램에 Blazor App 통합파일 다운로드1
13590정성태3/31/20241073Linux: 70. Python - uwsgi 응용 프로그램이 k8s 환경에서 OOM 발생하는 문제
13589정성태3/29/20241143닷넷: 2233. C# - 프로세스 CPU 사용량을 나타내는 성능 카운터와 Win32 API파일 다운로드1
13588정성태3/28/20241197닷넷: 2232. C# - Unity + 닷넷 App(WinForms/WPF) 간의 Named Pipe 통신파일 다운로드1
13587정성태3/27/20241156오류 유형: 900. Windows Update 오류 - 8024402C, 80070643
13586정성태3/27/20241297Windows: 263. Windows - 복구 파티션(Recovery Partition) 용량을 늘리는 방법
13585정성태3/26/20241096Windows: 262. PerformanceCounter의 InstanceName에 pid를 추가한 "Process V2"
13584정성태3/26/20241048개발 환경 구성: 708. Unity3D - C# Windows Forms / WPF Application에 통합하는 방법파일 다운로드1
13583정성태3/25/20241158Windows: 261. CPU Utilization이 100% 넘는 경우를 성능 카운터로 확인하는 방법
13582정성태3/19/20241420Windows: 260. CPU 사용률을 나타내는 2가지 수치 - 사용량(Usage)과 활용률(Utilization)파일 다운로드1
13581정성태3/18/20241587개발 환경 구성: 707. 빌드한 Unity3D 프로그램을 C++ Windows Application에 통합하는 방법
13580정성태3/15/20241137닷넷: 2231. C# - ReceiveTimeout, SendTimeout이 적용되지 않는 Socket await 비동기 호출파일 다운로드1
13579정성태3/13/20241494오류 유형: 899. HTTP Error 500.32 - ANCM Failed to Load dll
13578정성태3/11/20241629닷넷: 2230. C# - 덮어쓰기 가능한 환형 큐 (Circular queue)파일 다운로드1
13577정성태3/9/20241875닷넷: 2229. C# - 닷넷을 위한 난독화 도구 소개 (예: ConfuserEx)
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...