Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 3개 있습니다.)
(시리즈 글이 6개 있습니다.)
Graphics: 15. Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11633

Graphics: 17. Unity - World matrix(unity_ObjectToWorld)로부터 TRS(이동/회전/크기) 행렬로 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11637

Graphics: 18. Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11640

Graphics: 22. Unity - shader의 Camera matrix(UNITY_MATRIX_V)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11692

Graphics: 23. Unity - shader의 원근 투영(Perspective projection) 행렬(UNITY_MATRIX_P)을 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11695

Graphics: 25. Unity - shader의 직교 투영(Orthographic projection) 행렬(UNITY_MATRIX_P)을 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11700




Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법

지난 글에서,

Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11633

Unity - World matrix(unity_ObjectToWorld)로부터 TRS(이동/회전/크기) 행렬로 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11637

unity_ObjectToWorld 행렬로부터 TRS 행렬까지 복원하는 작업을 해봤습니다. 이번에는 TRS 행렬이 아니라 Unity 에디터의 Transform에 입력한 Position, Rotation, Scale 값을 구해 보겠습니다. 우선, Position의 x, y, z 값은 지난 글에서도 설명했듯이 다음과 같이 구할 수 있습니다.

float x = unity_ObjectToWorld._m03;
float y = unity_ObjectToWorld._m13;
float z = unity_ObjectToWorld._m23;

Scale의 x, y, z도 역시 아래와 같이 unity_ObjectToWorld 행렬로부터 구했었고,

vector sx = vector(unity_ObjectToWorld._m00, unity_ObjectToWorld._m10, unity_ObjectToWorld._m20, 0);
vector sy = vector(unity_ObjectToWorld._m01, unity_ObjectToWorld._m11, unity_ObjectToWorld._m21, 0);
vector sz = vector(unity_ObjectToWorld._m02, unity_ObjectToWorld._m12, unity_ObjectToWorld._m22, 0);

float scaleX = length(sx);
float scaleY = length(sy);
float scaleZ = length(sz);

하지만, Rotation의 경우에는 개별 값으로는 구하지 못하고 행렬로만 복원했었습니다.

float4x4 rotationMatrix;

rotationMatrix[0] = float4(unity_ObjectToWorld._m00 / scaleX, unity_ObjectToWorld._m01 / scaleY, unity_ObjectToWorld._m02 / scaleZ, 0);
rotationMatrix[1] = float4(unity_ObjectToWorld._m10 / scaleX, unity_ObjectToWorld._m11 / scaleY, unity_ObjectToWorld._m12 / scaleZ, 0);
rotationMatrix[2] = float4(unity_ObjectToWorld._m20 / scaleX, unity_ObjectToWorld._m21 / scaleY, unity_ObjectToWorld._m22 / scaleZ, 0);
rotationMatrix[3] = float4(0, 0, 0, 1);

즉, Inspector 창에 입력한 Rotation의 x, y, z 회전 값을 구했던 것은 아닙니다. 그럼, 위의 행렬에서 한번 구해볼까요? ^^

이전 글에서 설명했지만, Unity의 경우 축에 대한 Rotation을 다음과 같은 순서로 곱한다고 했습니다.

RY * RX * RZ 

그리고 각각의 축에 대한 회전인 Rx, Ry, Rz 직교 행렬들은 다음과 같았고.

${
Rx = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos \theta & -sin \theta & 0 \\ 0 & sin \theta & cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
}$

${
Ry = \begin{bmatrix} cos \theta & 0 & sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -sin \theta & 0 & cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
}$

${
Rz = \begin{bmatrix} cos \theta & -sin \theta & 0 & 0 \\ sin \theta & cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
}$


그렇다면, 저 행렬들을 곱하는 와중에 어딘가는 θ 값 하나가 보존된 곳이 있을지 모릅니다. 실제로 저 값들을 곱한 결과를 정리해 볼까요? ^^ 값을 다음과 같이 대입했을 때,

xcos = cos(θx)
xsin = sin(θx)

ycos = cos(θy)
ysin = sin(θy)

zcos = cos(θz)
zsin = sin(θz)

Ry * Rx 행렬 곱부터 하면 다음과 같이 나옵니다.

${
Ry * Rx = \begin{bmatrix} ycos & xsin * ysin & xcos * ysin & 0
\\ 0 & xcos & -xsin & 0
\\ -ysin & xsin * ycos & xcos * ycos & 0
\\ 0 & 0 & 0 & 1 \end{bmatrix}
}$


다시 이 결과를 Rz 행렬에 곱하겠습니다.

${
R = Ry * Rx * Rz = \begin{bmatrix} ycos * zcos + xsin * ysin * zsin & ycos * -zsin + xsin * ysin * zcos & xcos * ysin & 0
\\ xcos * zsin & xcos * zcos & -xsin & 0
\\ -ysin * zcos + xsin * ycos * zsin & -ysin * -zsin + xsin * ycos * zcos & xcos * ycos & 0
\\ 0 & 0 & 0 & 1 \end{bmatrix}
}$


오호~~~ 정말 R[1,2] = -xsin 값이 단독으로 나왔습니다. 따라서 이 값을 역함수에 대입하면,

θ = asin(-R[1,2])
x = rad2deg(θ);


x의 회전 값을 구할 수 있습니다. 이 값을 알게 되었으니 이제 나머지 단서를 이용해 y, z의 회전 값을 구할 수 있습니다. 가령 "R[0,2] = xcos * ysin"의 공식에서 x의 값을 이미 구했으니 xcos는 상수가 되고 이로부터 아크사인을 이용해 역시 y의 회전 값을 구할 수 있습니다. z의 회전 값 역시 "R[1,0] = xcos * zsin"를 이용해 구할 수 있고.

실제로 octave를 이용해 한번 실습해 볼까요? ^^ x, y, z의 회전 값을 각각 70, 50, 45도로 잡고,

x = deg2rad(70)
y = deg2rad(50)
z = deg2rad(45)

xcos = cos(x)
xsin = sin(x)
ycos = cos(y)
ysin = sin(y)
zcos = cos(z)
zsin = sin(z)

Rx = [1 0 0 0; 0 xcos -xsin 0; 0 xsin xcos 0; 0 0 0 1]
Ry = [ycos 0 ysin 0; 0 1 0 0; -ysin 0 ycos 0; 0 0 0 1]
Rz = [zcos -zsin 0 0; zsin zcos 0 0; 0 0 1 0; 0 0 0 1]

R = Ry * Rx * Rz

xrad = asin(-R(2,3))    # octave에서는 0-based 인덱스가 아니고 1-based 인덱스를 사용
rad2deg(xrad)

xcos = cos(xrad)

yrad = asin(R(1,3) / xcos)
rad2deg(yrad)

zrad = asin(R(2,1) / xcos)
rad2deg(zrad)

다음과 같은 결과를 얻을 수 있습니다.

R =

   0.96353   0.05449   0.26200   0.00000
   0.24184   0.24184  -0.93969   0.00000
  -0.11457   0.96878   0.21985   0.00000
   0.00000   0.00000   0.00000   1.00000

xrad =  1.2217
ans =  70

yrad =  0.87266
ans =  50

zrad =  0.78540
ans =  45.000

원하는 데로, 70, 50, 45로 복원을 했습니다. 그런데, z 값을 구하는 공식이 좀 문제입니다. 행렬 구성을 보면 z 값은 다음의 2가지 공식을 사용할 수 있는데,

R[2,1] = xcos * zsin
R[2,2] = xcos * zcos

위의 octave 스크립트에서는 첫 번째만을 사용한 것입니다. 두 번째 공식도 나오도록 스크립트를 조정하고,

zrad = asin(R(2,1) / xcos)
rad2deg(zrad)

zrad = acos(R(2,2) / xcos)
rad2deg(zrad)

x = 30, y = 50, z = -50일 때로 구해 보면, 각각의 z 값은 다음과 같이 반대가 나옵니다.

zrad = -0.87266
ans = -50

zrad =  0.87266
ans =  50

실제로 Unity에 적용해 보면 -50이 맞습니다. 반면 x = -20, y = -20, z = 100일 때로 구해 보면,

zrad =  1.3963
ans =  80.000

zrad =  1.7453
ans =  100

이번엔 100이 맞는 결과입니다. 따라서 z 각을 구하기 위해 R(2,1)을 이용하든, R(2,2)의 값을 이용하든 특정한 상황에서 틀린 값을 반환해 줍니다.

또한, 이렇게 asin/acos의 인자로 나눗셈 연산의 식을 전달할 때는 cosθ가 0이 나오는 것을 주의해야 합니다. 0으로 나누면 NaN이 출력되기 때문에 shader 코드에서 다음과 같은 조치를 취해야 합니다.

// shader

float yAngle = asin(rotationMatrix[0].z / xcos);
if (isnan(yAngle) == true)
{
    yAngle = 0.0;
}

float zAngle = asin(rotationMatrix[1].x / xcos);
if (isnan(zAngle) == true)
{
    zAngle = 0.0;
}

정확하지도 않은 값을 반환하는데, if 문까지 있는 코드라니... 달갑지 않은 상황입니다.




이렇게 고생하고 있을 무렵, 다음의 책에서 해답을 찾을 수 있었습니다.

수학으로 시작하는 3D 게임 개발
; http://www.yes24.co.kr/24/goods/15291048

140 페이지에 보면, 다음의 공식이 나옵니다.

θx = -asin(M2,3)
θy = atan2(M1,3, M3,3)
θz = atan2(M2,1, M2,2)

이 공식이 재미있는 것은 θx는 그렇다 치고, θy와 θz의 경우 R 행렬에 나왔던 2개의 공식을 모두 활용한다는 점입니다.

θy
    R[1,3] = xcos * ysin
    R[3,3] = xcos * ycos

    R[1,3] / R[3,3] = (xcos * ysin) / (xcos * ycos) = ysin / ycos = tan(θy)
    
θz
    R[2,1] = xcos * zsin
    R[2,2] = xcos * zcos

    R[2,1] / R[3,3] = (xcos 8 zsin) / (xcos * zcos) = zsin / zcos = tan(θz)

아니, 단순히 연립방정식으로 공식 하나에만 대입하면 될 것이라고 생각했는데... 저렇게 2개의 공식을 나눠야 할 거라고 저 같은 민간인이 어떻게 알 수 있겠습니까? ^^;

암튼 이 공식을 shader에서는 다음과 같이 코딩할 수 있습니다.

yAngle = atan2(rotationMatrix[0].z, rotationMatrix[2].z);
zAngle = atan2(rotationMatrix[1].x, rotationMatrix[1].y);

자, 그럼 모든 것이 끝났습니다. 이렇게 shader를 구성하고 Unity 에디터의 Transform 영역에서 Position, Rotation, Scale 값을 변경하면 그대로 값이 반영되는 것을 확인할 수 있습니다. (물론, 부동 소수점 연산의 특성상 미세한 오차는 있습니다.)

아래는 이 글의 모든 내용을 반영한 shader 소스 코드입니다.

Shader "My/worldMatrixShader"
{
    Properties
    {
        _MainTex ("Texture", 2D) = "white" {}
    }
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 100

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            
            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertex : SV_POSITION;
            };

            sampler2D _MainTex;
            float4 _MainTex_ST;

            float4x4 GetRotationMatrix(float xRadian, float yRadian, float zRadian)
            {
                float sina, cosa;
                sincos(xRadian, sina, cosa);

                float4x4 xMatrix;

                xMatrix[0] = float4(1, 0, 0, 0);
                xMatrix[1] = float4(0, cosa, -sina, 0);
                xMatrix[2] = float4(0, sina, cosa, 0);
                xMatrix[3] = float4(0, 0, 0, 1);

                sincos(yRadian, sina, cosa);

                float4x4 yMatrix;

                yMatrix[0] = float4(cosa, 0, sina, 0);
                yMatrix[1] = float4(0, 1, 0, 0);
                yMatrix[2] = float4(-sina, 0, cosa, 0);
                yMatrix[3] = float4(0, 0, 0, 1);

                sincos(zRadian, sina, cosa);

                float4x4 zMatrix;

                zMatrix[0] = float4(cosa, -sina, 0, 0);
                zMatrix[1] = float4(sina, cosa, 0, 0);
                zMatrix[2] = float4(0, 0, 1, 0);
                zMatrix[3] = float4(0, 0, 0, 1);

                return mul(mul(yMatrix, xMatrix), zMatrix);
            }

            v2f vert (appdata v)
            {
                v2f o;

                float4 pos = v.vertex;

                float4x4 scaleMatrix;

                vector sx = vector(unity_ObjectToWorld._m00, unity_ObjectToWorld._m10, unity_ObjectToWorld._m20, 0);
                vector sy = vector(unity_ObjectToWorld._m01, unity_ObjectToWorld._m11, unity_ObjectToWorld._m21, 0);
                vector sz = vector(unity_ObjectToWorld._m02, unity_ObjectToWorld._m12, unity_ObjectToWorld._m22, 0);

                float scaleX = length(sx);
                float scaleY = length(sy);
                float scaleZ = length(sz);

                scaleMatrix[0] = float4(scaleX, 0, 0, 0);
                scaleMatrix[1] = float4(0, scaleY, 0, 0);
                scaleMatrix[2] = float4(0, 0, scaleZ, 0);
                scaleMatrix[3] = float4(0, 0, 0, 1);

                float4x4 rotationMatrix;

                rotationMatrix[0] = float4(unity_ObjectToWorld._m00 / scaleX, unity_ObjectToWorld._m01 / scaleY, unity_ObjectToWorld._m02 / scaleZ, 0);
                rotationMatrix[1] = float4(unity_ObjectToWorld._m10 / scaleX, unity_ObjectToWorld._m11 / scaleY, unity_ObjectToWorld._m12 / scaleZ, 0);
                rotationMatrix[2] = float4(unity_ObjectToWorld._m20 / scaleX, unity_ObjectToWorld._m21 / scaleY, unity_ObjectToWorld._m22 / scaleZ, 0);
                rotationMatrix[3] = float4(0, 0, 0, 1);

                float xAngle = asin(-rotationMatrix[1].z);
                float yAngle = atan2(rotationMatrix[0].z, rotationMatrix[2].z);
                float zAngle = atan2(rotationMatrix[1].x, rotationMatrix[1].y);

                rotationMatrix = GetRotationMatrix(xAngle, yAngle, zAngle);
                
                float4x4 moveMatrix;

                float xPos = unity_ObjectToWorld._m03;
                float yPos = unity_ObjectToWorld._m13;
                float zPos = unity_ObjectToWorld._m23;

                moveMatrix[0] = float4(1, 0, 0, xPos);
                moveMatrix[1] = float4(0, 1, 0, yPos);
                moveMatrix[2] = float4(0, 0, 1, zPos);
                moveMatrix[3] = float4(0, 0, 0, unity_ObjectToWorld._m33);

                float4x4 transformMatrix = mul(mul(moveMatrix, rotationMatrix), scaleMatrix);
                pos = mul(transformMatrix, pos);

                pos = mul(UNITY_MATRIX_V, pos);
                pos = mul(UNITY_MATRIX_P, pos);
                o.vertex = pos;

                o.uv = TRANSFORM_TEX(v.uv, _MainTex);
                return o;
            }
            
            fixed4 frag (v2f i) : SV_Target
            {
                fixed4 col = tex2D(_MainTex, i.uv);
                return col;
            }
            ENDCG
        }
    }
}

첨부 파일은 "수학으로 시작하는 3D 게임 개발" 책에서 주석으로 남긴 링크가,

Extracting Euler Angles from a Rotation Matrix 
; http://www.insomniacgames.com/mike-day-extracting-euler-angles-from-a-rotation-matrix/

깨져 있어서 웹 검색을 하다가 발견한 해당 글의 pdf 파일입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 8/3/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  131  [132]  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
1755정성태9/22/201434165오류 유형: 241. Unity Web Player를 설치해도 여전히 설치하라는 화면이 나오는 경우 [4]
1754정성태9/22/201424514VC++: 80. 내 컴퓨터에서 C++ AMP 코드가 실행이 될까요? [1]
1753정성태9/22/201420487오류 유형: 240. Lync로 세미나 참여 시 소리만 들리지 않는 경우 [1]
1752정성태9/21/201440960Windows: 100. 윈도우 8 - RDP 연결을 이용해 VNC처럼 사용자 로그온 화면을 공유하는 방법 [5]
1751정성태9/20/201438840.NET Framework: 464. 프로세스 간 통신 시 소켓 필요 없이 간단하게 Pipe를 열어 통신하는 방법 [1]파일 다운로드1
1750정성태9/20/201423742.NET Framework: 463. PInvoke 호출을 이용한 비동기 파일 작업파일 다운로드1
1749정성태9/20/201423679.NET Framework: 462. 커널 객체를 위한 null DACL 생성 방법파일 다운로드1
1748정성태9/19/201425296개발 환경 구성: 238. [Synergy] 여러 컴퓨터에서 키보드, 마우스 공유
1747정성태9/19/201428344오류 유형: 239. psexec 실행 오류 - The system cannot find the file specified.
1746정성태9/18/201425977.NET Framework: 461. .NET EXE 파일을 닷넷 프레임워크 버전에 상관없이 실행할 수 있을까요? - 두 번째 이야기 [6]파일 다운로드1
1745정성태9/17/201422920개발 환경 구성: 237. 리눅스 Integration Services 버전 업그레이드 하는 방법 [1]
1744정성태9/17/201430951.NET Framework: 460. GetTickCount / GetTickCount64와 0x7FFE0000 주솟값 [4]파일 다운로드1
1743정성태9/16/201420899오류 유형: 238. 설치 오류 - Failed to get size of pseudo bundle
1742정성태8/27/201426876개발 환경 구성: 236. Hyper-V에 설치한 리눅스 VM의 VHD 크기 늘리는 방법 [2]
1741정성태8/26/201421248.NET Framework: 459. GetModuleHandleEx로 알아보는 .NET 메서드의 DLL 모듈 관계파일 다운로드1
1740정성태8/25/201432405.NET Framework: 458. 닷넷 GC가 순환 참조를 해제할 수 있을까요? [2]파일 다운로드1
1739정성태8/24/201426444.NET Framework: 457. 교착상태(Dead-lock) 해결 방법 - Lock Leveling [2]파일 다운로드1
1738정성태8/23/201421964.NET Framework: 456. C# - CAS를 이용한 Lock 래퍼 클래스파일 다운로드1
1737정성태8/20/201419672VS.NET IDE: 93. Visual Studio 2013 동기화 문제
1736정성태8/19/201425526VC++: 79. [부연] CAS Lock 알고리즘은 과연 빠른가? [2]파일 다운로드1
1735정성태8/19/201418119.NET Framework: 455. 닷넷 사용자 정의 예외 클래스의 최소 구현 코드 - 두 번째 이야기
1734정성태8/13/201419772오류 유형: 237. Windows Media Player cannot access the file. The file might be in use, you might not have access to the computer where the file is stored, or your proxy settings might not be correct.
1733정성태8/13/201426223.NET Framework: 454. EmptyWorkingSet Win32 API를 사용하는 C# 예제파일 다운로드1
1732정성태8/13/201434362Windows: 99. INetCache 폴더가 다르게 보이는 이유
1731정성태8/11/201426929개발 환경 구성: 235. 점(.)으로 시작하는 파일명을 탐색기에서 만드는 방법
1730정성태8/11/201422035개발 환경 구성: 234. Royal TS의 터미널(Terminal) 연결에서 한글이 깨지는 현상 해결 방법
... 121  122  123  124  125  126  127  128  129  130  131  [132]  133  134  135  ...