Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 6개 있습니다.)
Graphics: 15. Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11633

Graphics: 17. Unity - World matrix(unity_ObjectToWorld)로부터 TRS(이동/회전/크기) 행렬로 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11637

Graphics: 18. Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11640

Graphics: 22. Unity - shader의 Camera matrix(UNITY_MATRIX_V)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11692

Graphics: 23. Unity - shader의 원근 투영(Perspective projection) 행렬(UNITY_MATRIX_P)을 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11695

Graphics: 25. Unity - shader의 직교 투영(Orthographic projection) 행렬(UNITY_MATRIX_P)을 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11700




Unity - shader의 Camera matrix(UNITY_MATRIX_V)를 수작업으로 구성

지난 글에서 월드 행렬을 수작업으로 구성해 봤으니,

Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성
; https://www.sysnet.pe.kr/2/0/11633

이번에는 View Matrix(Camera Matrix)를 수작업으로 구성해 보겠습니다. 다음의 책을 보면,

유니티로 배우는 게임 수학  기초 개념부터 모바일까지, 게임 개발에 필요한 수학 원리 설명서 
; http://www.yes24.com/24/goods/30119802

View Matrix에 대한 구성 공식을 다음과 같이 소개하고 있습니다.

${
V = RT = \begin{bmatrix} X_x & X_y & X_z & 0 \\ Y_x & Y_y & Y_z & 0 \\ Z_x & Z_y & Z_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}
}$


위의 공식에서 X, Y, Z는 카메라의 회전 값이고 C는 카메라의 위치입니다. (View 행렬의 특성상 Scale 값은 무시합니다. 실제로 Unity의 Inspector 창에서 카메라의 Scale 값을 입력해도 아무런 변화가 없는 것을 볼 수 있습니다.)

예를 들어, 유니티 초기 카메라 좌표가 (0, 1, -10)입니다. 따라서 이대로 월드 좌표계 기준으로 보면 다음과 같은 Position을 갖도록 T(이동) 행렬을 구성할 수 있습니다.

float4x4 posView;

posView[0] = float4(1, 0, 0, -0);
posView[1] = float4(0, 1, 0, -1);
posView[2] = float4(0, 0, 1, -(-10));
posView[3] = float4(0, 0, 0, 1);

이것을 일반화하려면 Unity Shader에서 카메라의 위치를 나타내는 내장 변수인 _WorldSpaceCameraPos를 사용하면 됩니다.

float4x4 posView;

posView[0] = float4(1, 0, 0, -_WorldSpaceCameraPos.x);
posView[1] = float4(0, 1, 0, -_WorldSpaceCameraPos.y);
posView[2] = float4(0, 0, 1, -_WorldSpaceCameraPos.z);
posView[3] = float4(0, 0, 0, 1);

그다음, 카메라의 회전을 다뤄야 하는데요. 이게 좀 복잡합니다. 자세하게 들어가기 전 위의 posView가 정상적인 데이터를 가지고 있는지 다음과 같이 확인해 볼 수 있습니다.

float4x4 rotView;
float4x4 posView;
float4x4 viewMatrix;

posView[0] = float4(1, 0, 0, -_WorldSpaceCameraPos.x);
posView[1] = float4(0, 1, 0, -_WorldSpaceCameraPos.y);
posView[2] = float4(0, 0, 1, -_WorldSpaceCameraPos.z);
posView[3] = float4(0, 0, 0, 1);

float4x4 m = UNITY_MATRIX_V;

rotView[0] = float4(m[0].xyz, 0);
rotView[1] = float4(m[1].xyz, 0);
rotView[2] = float4(m[2].xyz, 0);
rotView[3] = float4(0, 0, 0, 1);

viewMatrix = mul(rotView, posView);

pos = mul(unity_ObjectToWorld, v.vertex);
pos = mul(viewMatrix, pos);
pos = mul(UNITY_MATRIX_P, pos);

V=RT 공식에서 보면 뷰 행렬의 경우 X, Y, Z의 회전 값이 V 행렬에 그대로 반영되기 때문에 위와 같이 UNITY_MATRIX_V로부터 회전 행렬 요소들을 구해올 수 있는 것입니다.




자, 그럼 이제 카메라의 회전 행렬 R을 구성하는 기저 벡터 X, Y, Z를 구해 보겠습니다. 이 방법에 대해서도 "유니티로 배우는 게임 수학 기초 개념부터 모바일까지, 게임 개발에 필요한 수학 원리 설명서" 책에서 잘 설명해 주고 있습니다. 우선 Z 요소의 경우 다음과 같이 공식을 제시하고 있는데,

${
Z = { C - P \over |C - P| }
}$


여기서 C는 카메라의 위치이고 P는 카메라가 바라보는 시선의 끝점이라고 합니다. 그런데, C - P는 점과 점을 뺀 연산이기 때문에 vector입니다. 그리고 그 vector의 의미는 결국 View Direction이 되는 것입니다. 그러고 보니, view direction을 보관하고 있는 unity shader의 내장 변수를 지난 글에서 소개했습니다.

UNITY_MATRIX_IT_MV - Inverse transpose of model * view matrix.

vector viewDir = UNITY_MATRIX_IT_MV[2];

따라서 Z 값은 다음과 같이 구할 수 있습니다.

vector rorZ = normalize(viewDir);

그다음 기저 벡터 X는 위에서 구한 Z 벡터와 카메라의 상단을 향한 "up vector"를 외적해 구할 수 있습니다.

${
X = { U \times Z \over |U \times Z| }
}$


"up vector" 역시 UNITY_MATRIX_IT_MV[1]을 통해 구할 수 있으므로 다음과 같이 계산할 수 있습니다.

vector rorXpt = vector(cross(upvec, rorZ), 0);
float lenghX = length(rorXpt);

vector rorX = (rorXpt / lenghX);

// 또는,

vector rorX = normalize(vector(cross(upvec, rorZ), 0));

외적한 결과는 오른손 좌표계(RHS)인 경우에 해당하므로 왼손 좌표계(LHS)를 따르는 Unity를 위해 결괏값을 음수로 바꿔야 합니다.

vector rorX = -normalize(vector(cross(upvec, rorZ), 0));

X, Z에 대한 기저 벡터를 구했으니 나머지 Y에 대한 기저 벡터는 X, Z를 외적해서 구할 수 있습니다.

${
Y = { Z \times X \over |Z \times X| }
}$


따라서 shader에서는 다음과 같이 구할 수 있습니다. (마찬가지로 왼손 좌표계를 따르므로 외적의 결과에 음수 처리합니다.)

vector rorY = -normalize(vector(cross(rorZ, rorX), 0));

지금까지의 모든 결과를 취합하면 다음과 같이 수작업으로 구성한 View 행렬을 shader에서 사용할 수 있습니다.

Shader "Unlit/NewUnlitShader"
{
    Properties
    {
    }
    SubShader
    {
        Tags { "RenderType" = "Opaque" }

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
            };

            float4x4 _viewMatrix;
            float4x4 _projectionMatrix;

            v2f vert(appdata v)
            {
                float4 pos;

                v2f o;

                float4x4 rotView;
                float4x4 posView;
                float4x4 viewMatrix;

                posView[0] = float4(1, 0, 0, -_WorldSpaceCameraPos.x);
                posView[1] = float4(0, 1, 0, -_WorldSpaceCameraPos.y);
                posView[2] = float4(0, 0, 1, -_WorldSpaceCameraPos.z);
                posView[3] = float4(0, 0, 0, 1);

                vector upvec = UNITY_MATRIX_IT_MV[1];
                vector viewDir = UNITY_MATRIX_IT_MV[2];

                vector rorZ = normalize(viewDir);
                vector rorX = -normalize(vector(cross(upvec, rorZ), 0));
                vector rorY = -normalize(vector(cross(rorZ, rorX), 0));

                rotView[0] = rorX;
                rotView[1] = rorY;
                rotView[2] = rorZ;
                rotView[3] = float4(0, 0, 0, 1);

                viewMatrix = mul(rotView, posView);

                pos = mul(unity_ObjectToWorld, v.vertex);
                pos = mul(viewMatrix, pos);
                pos = mul(UNITY_MATRIX_P, pos);

                o.vertex = pos;

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                 return fixed4(1, 0, 0, 1);
            }

            ENDCG
        }
    }
}

위에서 어렵게 X, Y, Z 기저 벡터를 계산해서 구했지만 결국 처음으로 돌아가서 다음의 코드와 다를 바가 없습니다.

vector rorX = vector(UNITY_MATRIX_V._m00_m01_m02, 0);
vector rorY = vector(UNITY_MATRIX_V._m10_m11_m12, 0);
vector rorZ = vector(UNITY_MATRIX_V._m20_m21_m22, 0);




다음의 글에도 나오지만,

Advanced info on Unity3D's camera matrix
; https://stackoverflow.com/questions/24165915/advanced-info-on-unity3ds-camera-matrix

Model matrix. In scripts: Transform.localToWorldMatrix. In vertex shaders: _Object2World.
View matrix. In scripts: Camera.worldToCameraMatrix. In vertex shaders: UNITY_MATRIX_V.
Projection matrix. In scripts: Camera.projectionMatrix. In vertex shaders: UNITY_MATRIX_P.


UNITY_MATRIX_V나 UNITY_MATRIX_P 행렬은 C# 스크립트에서 Camera.worldToCameraMatrix, Camera.projectionMatrix로 각각 대응한다고 합니다. 따라서 이 값을 shader에 전달해 연산하면 이전의 결과와 동일한 동작을 얻게 됩니다.

실제로 해볼까요? ^^ 다음과 같이 C# 스크립트를 구성하고,

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[ExecuteInEditMode]
public class SetMatrix : MonoBehaviour {

    void Start () {
    }

    void Update () {
        Camera camera = Camera.main;
        Shader.SetGlobalMatrix("_viewMatrix", camera.worldToCameraMatrix);
    }
}

전달한 _viewMatrix를 이용해 vertex shader를 구성하면,

Shader "Unlit/NewUnlitShader"
{
    Properties
    {
    }
    SubShader
    {
        Tags { "RenderType" = "Opaque" }

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
            };

            float4x4 _viewMatrix;

            v2f vert(appdata v)
            {
                float4 pos;
                v2f o;

                pos = mul(unity_ObjectToWorld, v.vertex);
                pos = mul(_viewMatrix, pos);
                pos = mul(UNITY_MATRIX_P, pos);

                o.vertex = pos;
                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                 return fixed4(1, 0, 0, 1);
            }

            ENDCG
        }
    }
}

Scene 편집 화면에 다음과 같이 출력됩니다.

camera_matrix_1.png

보는 바와 같이 물체의 그려진 위치가 원래 있던 곳에서 (높은 확률로) 벗어나 있습니다. 게다가 Scene 편집 모드 상태에서는 카메라를 돌려도 언제나 같은 자리에 위치하게 됩니다. 이로 인해 자칫 잘못되었다고 생각할 수 있는데요, 아닙니다. ^^ 정상적으로 동작하고 있는 것입니다. 실제로 실행해 Game 뷰로 보면 잘 나오는 것을 확인할 수 있습니다.

Scene 편집 화면에서의 저런 동작은 C# 스크립트가 편집 모드에서 실행될 때 Update 메서드 내에서의 camera.worldToCameraMatrix 값이 순수하게 "Inspector"에 지정된 카메라의 위치로 고정되어 전달하기 때문입니다. 즉, Scene 편집 화면에서도 마우스를 이용해 카메라의 위치와는 전혀 다르게 바라보도록 움직일 수 있는데 그 카메라의 정보를 C# 스크립트에서 사용하지 않고 편집 화면에 떠 있는 카메라 객체의 위치 값만을 고정적으로 사용하기 때문에 저런 현상이 발생하는 것입니다.

그러니까, C# 스크립트에서 shader에 값을 넘겨주는 경우에는 편집 화면을 너무 믿어서는 안 됩니다.

참고로, 다음은 Unity 스크립트에서 main camera에 대한 속성의 출력 예를 보여줍니다.

Main camera
    Transform
        Position (0, 1, -10)
        Rotation (0, 0, 0)
        Scale    (1, 1, 1)

    .aspect 1.353497
    .fieldOfView 60
    .focalLength 50
    .lensShift (0,0)
    .nearClipPlane 0.3
    .pixelRect (x:0, y:0, width: 716.00, height: 529.00)
    .sensorSize (36.0, 24.0)
    .cameraToWorldMatrix ( == worldToCameraMatrix.inverse)
        1  0  0   0
        0  1  0   1
        0  0 -1 -10
        0  0  0   1
        .transpose
            1  0   0  0
            0  1   0  0
            0  0  -1  0
            0  1 -10  1          
        .rotation 
            (0, 0, 0, 1);
    .cullingMatrix
        1.279686 0        0         0
        0        1.732051 0        -1.732051 
        0        0        1.0006    9.405821
        0        0        1         10
        .transpose
            1.279686 0        0         0
            0        1.732051 0         0
            0        0        1.0006    1
            0       -1.732051 9.405821  10
        .rotation 
            (0, 0, 0, 1);
    .projectionMatrix
        1.279686 0              0         0
        0        1.732051       0         0
        0        0        -1.0006  -0.60018
        0        0             -1         0

        .transpose
            1.279686 0              0         0
            0        1.732051       0         0
            0        0        -1.0006        -1
            0        0        -0.60018        0
        .rotation 
            (0, 0, 0, 1);
    .worldToCameraMatrix ( == cameraToWorldMatrix.inverse)
        1  0  0   0
        0  1  0  -1
        0  0 -1 -10
        0  0  0   1

Scene 화면의 카메라 객체를 움직이지 않는 한 저 값은 C# 스크립트에서 편집 상태의 shader에 언제나 그대로 넘어가게 됩니다. 반면, _WorldSpaceCameraPos 내장 변숫값은 shader에 Scene 화면의 사용자 조작에 따른 카메라 값을 반영하고 있는 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/18/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  [153]  154  155  156  157  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1227정성태2/3/201229270.NET Framework: 299. 해당 어셈블리가 Debug 빌드인지, Release 빌드인지 알아내는 방법파일 다운로드1
1226정성태1/28/201270208.NET Framework: 298. 홀 펀칭(Hole Punching)을 이용한 Private IP 간 통신 - C# [15]파일 다운로드3
1225정성태1/24/201225876.NET Framework: 297. 특정 EXE 파일의 실행을 Internet Explorer처럼 "Protected Mode"로 실행하는 방법 [1]파일 다운로드1
1224정성태1/21/201237366개발 환경 구성: 139. 아마존 EC2에 새로 추가된 "1년 무료 Windows 서버 인스턴스"가 있다는데, 직접 만들어 볼까요? ^^ [11]
1223정성태1/20/201227328.NET Framework: 296. 괜찮은 문자열 해시함수? - 두 번째 이야기 [1]파일 다운로드1
1222정성태1/18/201235044.NET Framework: 295. 괜찮은 문자열 해시 함수? [4]파일 다운로드1
1221정성태1/17/201224057오류 유형: 147. System.Runtime.InteropServices.COMException (0x80005000)
1220정성태1/15/201224245.NET Framework: 294. Master web.config 파일을 수정하려면?파일 다운로드1
1219정성태1/15/201226600.NET Framework: 293. Microsoft PowerPoint 슬라이드를 HTML 파일로 ".files" 폴더 없이 저장하는 방법 (C# 코드)파일 다운로드1
1218정성태1/15/201239157.NET Framework: 292. RSACryptoServiceProvider의 공개키와 개인키 구분 [1]파일 다운로드2
1217정성태1/14/201241258.NET Framework: 291. .NET에서 WAV, MP3 파일 재생하는 방법 [1]파일 다운로드1
1216정성태1/14/201229957오류 유형: 146. Microsoft Visual C++ 재배포 패키지 - 설치 로그 남기는 방법 [1]
1215정성태1/9/201227514제니퍼 .NET: 20. 제니퍼 닷넷 적용 사례 (3) - '닷넷'이 문제일까? '닷넷 개발자'가 문제일까? [6]
1214정성태1/3/201224342제니퍼 .NET: 19. 제니퍼 닷넷 설치/제거 방법 - IIS
1213정성태12/31/201124310.NET Framework: 290. WCF - 접속된 클라이언트의 IP 주소 알아내는 방법 - 두 번째 이야기
1212정성태12/31/201124387오류 유형: 145. The trust relationship between this workstation and the primary domain failed.
1211정성태12/31/201129169.NET Framework: 289. WindowsFormsHost를 사용하는 XBAP 응용 프로그램파일 다운로드1
1210정성태12/30/201148147.NET Framework: 288. FFmpeg.exe를 이용한 C# 동영상 인코더 예제 [9]파일 다운로드1
1209정성태12/29/201122796개발 환경 구성: 138. BizTalk 2006 설치 방법
1208정성태12/28/201145813.NET Framework: 287. Excel Sheet를 WinForm에서 사용하는 방법 [8]파일 다운로드2
1207정성태12/26/201125062.NET Framework: 286. x86/x64로 구분된 코드를 포함하는 경우, 다중으로 어셈블리를 만들어야 할까요?파일 다운로드1
1206정성태12/25/201126087.NET Framework: 285. Shader 강좌와 함께 배워보는 XNA Framework (3) - 텍스처 매핑 예제파일 다운로드1
1205정성태12/25/201131708.NET Framework: 284. Thread 개체의 Interrupt와 Abort의 차이점파일 다운로드1
1204정성태12/22/201125205.NET Framework: 283. MEF를 ASP.NET에 성능 손실 없이 적용하려면? [7]
1203정성태12/21/201125576제니퍼 .NET: 18. MEF가 적용된 ASP.NET 웹 사이트를 제니퍼 닷넷으로 모니터링 해본 결과! [6]
1202정성태12/21/201126027오류 유형: 144. The database '...' cannot be opened because it is version 661.
... 151  152  [153]  154  155  156  157  158  159  160  161  162  163  164  165  ...