Microsoft MVP성태의 닷넷 이야기
Graphics: 26. 임의 축을 기반으로 3D 벡터 회전 [링크 복사], [링크+제목 복사],
조회: 24121
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

임의 축을 기반으로 3D 벡터 회전

아래의 질문을,

벡터에 대한 질문입니다.
; http://lab.gamecodi.com/board/zboard.php?id=GAMECODILAB_QnA_etc&no=5615&z=

정리해 보면 다음과 같은 식으로 정점 3개가 있을 때 나머지 하나의 정점 위치를 정하는 것입니다.

vertex3_add1_0.png

A = [2 0 2]
B = [4 -2 1]
C = [0 2 2]

D = ?

그냥 생각해 보면 대략 3가지 정도의 정점 위치를 정할 수 있을 것 같습니다.

  • 폴리곤 ABC와 대칭인 BCD를 정하는 위치
  • 선분 BC의 길이를 이등분한 연장선 위에 선분 AB 또는 선분 AC의 길이만큼 떨어진 위치
  • 각 CAB를 이등분한 연장선 위에 선분 AB 또는 선분 AC의 길이만큼 떨어진 위치

하나씩 해볼까요? ^^ 우선 대칭인 위치를 잡는 것은 2D 기준일 때 다음과 같은 식이 됩니다.

vertex3_add1_1.png

그리고 이 위치는 코딩하기도 편합니다. 단순히 벡터 AB와 벡터 AC를 더하면 되기 때문입니다.

v1 = B - A
v2 = C - A
v3 = v1 + v2
D = A + v3

위의 계산은 2D, 3D 공간에 상관없이 적용할 수 있습니다.




첫 번째 것은 해결했으니 이제 그다음 방법으로 넘어가겠습니다. 작도로 풀어보면 다음과 같이 선분 BC의 길이를 이등분한 후 선분 AB 또는 선분 AC의 길이 중 긴 것을 기준으로 위치를 잡으면 됩니다. (짧은 것을 기준으로 하면 선분 AE의 안쪽에 D가 위치할 경우가 나옵니다.)

vertex3_add1_2.png

이것을 벡터 계산으로 Octave에서 계산해 보면 다음과 같습니다.

# Octave script

A = [2 0 2];
B = [4 -2 1];
C = [0 2 2];

half_bc = (B - C) / 2
midPt = C + half_bc

aDirection = midPt - A

u = aDirection / norm(aDirection)

if (norm(A - C) > norm(A - B))
  lt = norm(A - C)
else
  lt = norm(A - B)
endif

ut = u * lt

A + ut

시각화를 위해 GeoGebra 프로그램으로 보면 이렇게 폴리곤 구성이 됩니다.

# Geogebra equation

A= (2,0,2)
B= (4,-2,1)
C= (0,2,2)
half= (B-C)/(2)
MIDPT=C+half
adirect=MIDPT-A

u=(adirect)/(abs(adirect))
LT=If(abs(A-C)>abs(A-B),abs(A-C),abs(A-B))
ut=u*LT
D=A+ut

Polygon(A, B, C)
Polygon(C, D, B)

vertex3_add1_3.png




자, 이제 마지막 방법인 "각 CAB를 이등분한 연장선 위에 선분 AB 또는 선분 AC의 길이만큼 떨어진 위치"를 잡아보겠습니다. 이번에는 좀 쉽지 않습니다. 우선, 각 CAB를 이등분한 값을 얻어야 하는데요. 이것은 두 벡터의 각을 구하는 공식을 사용해 해결할 수 있습니다.

두 직선, 벡터의 관계(사이각,회전각) 구하기
; http://darkpgmr.tistory.com/121

따라서 Octave 스크립트 상으로는 다음과 같이 코딩할 수 있습니다.

A = [2 0 2];
B = [4 -2 1];
C = [0 2 2];

v1 = B - A
v2 = C - A

THETA = acos(dot(v1, v2) / (norm(v1) * norm(v2))) / 2
# rad2deg(THETA)

각을 구했으니, 이제 벡터 v1이나 벡터 v2 중에 길이가 긴 선분을 그 각도만큼 회전시키면 점 D의 위치를 결정할 수 있습니다. 문제는, 이때의 회전은 지난 글에서 알아본 x-y 평면, y-z 평면, x-z 평면의 회전 방정식과는,

Unity - World matrix(unity_ObjectToWorld)로부터 Position, Rotation, Scale 값을 복원하는 방법
; https://www.sysnet.pe.kr/2/0/11640

${ Rx = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos \theta & -sin \theta & 0 \\ 0 & sin \theta & cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }$ ${ Ry = \begin{bmatrix} cos \theta & 0 & sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -sin \theta & 0 & cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }$ ${ Rz = \begin{bmatrix} cos \theta & -sin \theta & 0 & 0 \\ sin \theta & cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }$

무관하다는 점입니다. 즉, 위의 회전 행렬식들은 각각의 평면에 대해 x, y, z 축을 기준으로 삼는데, 이 글에서 설명한 폴리곤 ABC는 별도의 평면을 이루기 때문입니다.

vertex3_add1_4.png

따라서 저 평면을 기준으로 수직인 축을 정해 그것을 기반으로 회전을 해야 하는데, 다행히 이에 대해서는 ^^ 멋있는 수학자들이 이미 잘 풀어서 설명해 놓았습니다.

임의의 축 회전 (Axis Angle Rotation)
; http://nobilitycat.tistory.com/entry/%EC%9E%84%EC%9D%98%EC%9D%98-%EC%B6%95-%ED%9A%8C%EC%A0%84-Axis-Angle-Rotation

임의 방향의 회전에 대한 회전 행렬 공식의 유도 
; http://spacebug.blog.me/130187075488

${ \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} }$ ${ = \begin{bmatrix} w_x^2 (1 - cos \alpha) + cos \alpha & w_x w_y (1 - cos \alpha) + w_z sin \alpha & w_x w_z (1 - cos \alpha) - w_y sin \alpha \\ w_y w_x (1 - cos \alpha) - w_z sin \alpha & w_y^2 (1 - cos \alpha) + cos \alpha & w_y w_z (1 - cos \alpha) + w_x sin \alpha \\ w_z w_x (1 - cos \alpha) + w_y sin \alpha & w_z w_y (1 - cos \alpha) - w_x sin \alpha & w_z^2 (1 - cos \alpha) + cos \alpha \end{bmatrix} }$ ${ \begin{bmatrix} x \\ y \\ z \end{bmatrix} }$

따라서, octave 스크립트 코드를 다음과 같이 마저 완성할 수 있습니다.

# test

A = [2 0 2];
B = [4 -2 1];
C = [0 2 2];

v1 = B - A
v2 = C - A

THETA = acos(dot(v1, v2) / (norm(v1) * norm(v2))) / 2
# rad2deg(THETA)

rotAxis = cross(v1, v2)

uRotAxis = rotAxis / norm(rotAxis)

WX = uRotAxis(1);
WY = uRotAxis(2);
WZ = uRotAxis(3);

MCOS = 1 - cos(THETA);
COSA = cos(THETA);
SINA = sin(THETA);

M11 = WX * WX * MCOS + COSA;
M12 = WX * WY * MCOS + WZ * SINA;
M13 = WX * WZ * MCOS - WY * SINA;

M21 = WY * WX * MCOS - WZ * SINA;
M22 = WY * WY * MCOS + COSA;
M23 = WY * WZ * MCOS + WX * SINA;

M31 = WZ * WX * MCOS + WY * SINA;
M32 = WZ * WY * MCOS - WX * SINA;
M33 = WZ * WZ * MCOS + COSA;

rotMatrix = [M11 M12 M13; M21 M22 M23; M31 M32 M33]'
aDirect = rotMatrix * v1'

u = aDirect / norm(aDirect)

if (norm(C - A) > norm(B - A))
  LT = norm(C - A)
else
  LT = norm(B - A)
endif

ut = u' * LT
D = A + ut

# D 좌표 == [1.64128 0.35872 -0.95680]

그리고 GeoGebra에서 위의 공식을 적용해 그려 보면 다음과 같은 결과를 얻을 수 있습니다.

vertex3_add1_5.png

(첨부 파일은 이 글의 Octave 스크립트 파일과 GeoGebra ggb 파일을 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 10/26/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  158  159  160  [161]  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1116정성태9/8/201161160Java: 2. 자바에서 "Microsoft SQL Server JDBC Driver" 사용하는 방법
1115정성태9/4/201134531Java: 1. 닷넷 개발자가 처음 실습해 본 서블릿
1114정성태9/4/201139171Math: 2. "Zhang Suen 알고리즘(세선화, Thinning/Skeletonization)"의 C# 버전 [4]파일 다운로드1
1113정성태9/2/201138700개발 환경 구성: 129. Hyper-V에 CentOS 설치하기
1112정성태9/2/201155255Linux: 1. 리눅스 <-> 윈도우 원격 접속 프로그램 사용 [3]
1111정성태8/29/201129075제니퍼 .NET: 16. 적용 사례 (1) - DB Connection Pooling을 사용하지 않았을 때의 성능 저하를 알려주다. [1]
1110정성태8/26/201131068오류 유형: 136. RDP 접속이 불연속적으로 끊기는 문제
1109정성태8/26/201133928오류 유형: 135. 어느 순간 Active Directory 접속이 안되는 문제
1108정성태8/22/201133889오류 유형: 134. OLE/COM Object Viewer - DllRegisterServer in IVIEWERS.DLL failed. [1]
1107정성태8/21/201133414디버깅 기술: 43. Windows Form의 Load 이벤트에서 발생하는 예외가 Visual Studio에서 잡히지 않는 문제
1106정성태8/20/201132102웹: 26. FailedRequestTracing 설정으로 인한 iisexpress.exe 비정상 종료 문제
1105정성태8/19/201131351.NET Framework: 238. Web Site Model 프로젝트에서 Trace.WriteLine 출력이 dbgview.exe에서 확인이 안 되는 문제파일 다운로드1
1104정성태8/19/201131985웹: 25. WebDev보다 IIS Express가 더 나은 점 - 다중 가상 디렉터리 매핑 [1]
1103정성태8/19/201138085오류 유형: 133. WCF 포트 바인딩 실패 오류 - TCP error(10013) [1]
1102정성태8/19/201134422Math: 1. 방탈출3 - Room 10의 '중복가능한 조합' 문제를 위한 C# 프로그래밍 [2]파일 다운로드1
1101정성태8/19/201134465.NET Framework: 237. WCF AJAX 서비스와 JavaScript 간의 DateTime 연동 [1]파일 다운로드1
1100정성태8/17/201133467.NET Framework: 236. SqlDbType - DateTime, DateTime2, DateTimeOffset의 차이점파일 다운로드1
1099정성태8/15/201132129오류 유형: 132. 어느 순간 갑자기 접속이 안 되는 TFS 서버
1098정성태8/15/201154596웹: 24. 네이버는 어떻게 로그인 처리를 할까요? [2]
1097정성태8/15/201125490.NET Framework: 235. 메서드의 메타 데이터 토큰 값으로 클래스를 찾아내는 방법
1096정성태8/15/201129594디버깅 기술: 42. Watson Bucket 정보를 이용한 CLR 응용 프로그램 예외 분석 - (2)
1095정성태8/14/201129974디버깅 기술: 41. Windbg - 비정상 종료된 닷넷 프로그램의 StackTrace에서 보이는 offset 값 의미
1094정성태8/14/201134709오류 유형: 131. Fiddler가 강제 종료된 경우, 웹 사이트 방문이 안되는 현상
1093정성태7/27/201128014오류 유형: 130. Unable to connect to the Microsoft Visual Studio Remote Debugging Monitor ... Access is denied.
1092정성태7/22/201130786Team Foundation Server: 46. 코드 이외의 파일에 대해 소스 제어에서 제외시키는 방법
1091정성태7/21/201129798개발 환경 구성: 128. WP7 Emulator 실행 시 audiodg.exe의 CPU 소모율 증가 [2]
... 151  152  153  154  155  156  157  158  159  160  [161]  162  163  164  165  ...