Microsoft MVP성태의 닷넷 이야기
Graphics: 30. .NET으로 구현하는 OpenGL (4), (5) - Shader [링크 복사], [링크+제목 복사],
조회: 23388
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 8개 있습니다.)
Graphics: 27. .NET으로 구현하는 OpenGL (1) - OpenGL.Net 라이브러리
; https://www.sysnet.pe.kr/2/0/11770

Graphics: 28. .NET으로 구현하는 OpenGL (2) - VAO, VBO
; https://www.sysnet.pe.kr/2/0/11772

Graphics: 29. .NET으로 구현하는 OpenGL (3) - Index Buffer
; https://www.sysnet.pe.kr/2/0/11773

Graphics: 30. .NET으로 구현하는 OpenGL (4), (5) - Shader
; https://www.sysnet.pe.kr/2/0/11774

Graphics: 31. .NET으로 구현하는 OpenGL (6) - Texturing
; https://www.sysnet.pe.kr/2/0/11775

Graphics: 32. .NET으로 구현하는 OpenGL (7), (8) - Matrices and Uniform Variables, Model, View & Projection Matrices
; https://www.sysnet.pe.kr/2/0/11784

Graphics: 33. .NET으로 구현하는 OpenGL (9), (10) - OBJ File Format, Loading 3D Models
; https://www.sysnet.pe.kr/2/0/11787

Graphics: 34. .NET으로 구현하는 OpenGL (11) - Per-Pixel Lighting
; https://www.sysnet.pe.kr/2/0/11792




.NET으로 구현하는 OpenGL (4), (5) - Shader

아래의 글에 이어,

.NET으로 구현하는 OpenGL (3) - Index Buffer
; https://www.sysnet.pe.kr/2/0/11773

4회 강좌는,

OpenGL 3D Game Tutorial 4: Introduction to Shaders
; https://www.youtube.com/watch?v=AyNZG_mqGVE

Shader에 대한 설명을 할 뿐, 딱히 코드의 변경은 없습니다. Shader를 도입한 코드의 변경은 5회 강좌에서 설명합니다.

OpenGL 3D Game Tutorial 5: Coloring using Shaders
; https://youtu.be/4w7lNF8dnYw

소스 코드
; https://www.dropbox.com/sh/qtfhwru70y9sg8b/AAAweVar09wgu9DmmSO8yAf8a?dl=0

Shader를 도입하기 위해, 우선 (ShaderProgram 클래스를 상속한) StaticShader 인스턴스 생성 및 해제 코드와 Shader를 적용할 Model의 렌더링 시 전/후처리를 합니다.

// MainForm.cs

StaticShader _shader;

private void glControl_ContextCreated(object sender, OpenGL.GlControlEventArgs e)
{
    GlControl glControl = (GlControl)sender;
    _displayManager.createDisplay(glControl);

    _loader = new Loader();
    _renderer = new Renderer();
    _shader = new StaticShader();
    _model = _loader.loadToVAO(_vertices, _indices);
}

private void glControl_ContextDestroying(object sender, GlControlEventArgs e)
{
    _loader.CleanUp();
    _shader.CleanUp();
}

private void glControl_Render(object sender, OpenGL.GlControlEventArgs e)
{
    Control senderControl = (Control)sender;
    Gl.Viewport(0, 0, senderControl.ClientSize.Width, senderControl.ClientSize.Height);

    _renderer.Prepare();
    _shader.Start();
    _renderer.Render(_model);
    _shader.Stop();

    _displayManager.updateDisplay();
}

자, 그럼 StaticShader에는 무슨 일을 하느냐? 하면 GLSL 문법의 vertex shader와 fragment shader 파일을,

#version 400 core

in vec3 _position;

out vec3 _colour;

void main(void)
{
    gl_Position  = vec4(_position, 1.0);
    _colour = vec3(_position.x + 0.5, 1.0, _position.y + 0.5);
}

#version 400 core

in vec3 _colour;

out vec4 _out_Color;

void main(void)
{
    _out_Color = vec4(_colour, 1.0);
}

로드해서 런타임 시에 컴파일해 보관하고 있어야 합니다. (아래의 코드는 정형화된 코드 절차이므로 거의 그대로 재사용할 수 있습니다.)

using OpenGL;
using System;
using System.Collections.Generic;
using System.IO;

namespace GameApp
{
    public abstract class ShaderProgram
    {
        uint _programID;
        uint _vertexShaderID;
        uint _fragmentShaderID;

        public ShaderProgram(string vertexFile, string fragmentFile)
        {
            _vertexShaderID = loadShader(vertexFile, ShaderType.VertexShader);
            _fragmentShaderID = loadShader(fragmentFile, ShaderType.FragmentShader);

            _programID = Gl.CreateProgram();
            Gl.AttachShader(_programID, _vertexShaderID);
            Gl.AttachShader(_programID, _fragmentShaderID);

            bindAttributes();

            Gl.LinkProgram(_programID);
            Gl.ValidateProgram(_programID);
        }

        protected abstract void bindAttributes();

        public void Start()
        {
            Gl.UseProgram(_programID);
        }

        public void Stop()
        {
            Gl.UseProgram(0);
        }

        public void CleanUp()
        {
            Stop();
            Gl.DetachShader(_programID, _vertexShaderID);
            Gl.DetachShader(_programID, _fragmentShaderID);
            Gl.DeleteShader(_vertexShaderID);
            Gl.DeleteShader(_fragmentShaderID);
            Gl.DeleteProgram(_programID);
        }

        protected void bindAttribute(uint attribute, string variableName)
        {
            Gl.BindAttribLocation(_programID, attribute, variableName);
        }

        static uint loadShader(string file, ShaderType type)
        {
            string[] codeText = ReadShaderCode(file);
            uint shaderID = Gl.CreateShader(type);

            Gl.ShaderSource(shaderID, codeText);
            Gl.CompileShader(shaderID);

            int compileResult = Gl.FALSE;
            Gl.GetShader(shaderID, ShaderParameterName.CompileStatus, out compileResult);

            if (compileResult == Gl.FALSE)
            {
                throw new InvalidDataException(OpenGLExtension.GetShaderInfoLog(shaderID));
            }

            return shaderID;
        }

        private static string[] ReadShaderCode(string file)
        {
            // ...[생략: 파일 텍스트 로드]... 
        }
    }
}

ShaderProgram 타입에서 bindAttributes 메서드를 abstract로 해놓았으니, 당연히 ShaderProgram 타입을 상속받은 타입을 정의해야 하고 그것이 MainForm.cs에서 사용한 StaticShader입니다.

namespace GameApp
{
    public class StaticShader : ShaderProgram
    {
        const string VERTEX_FILE = "./shaders/vertexShader.txt";
        const string FRAGMENT_FILE = "./shaders/fragmentShader.txt";

        public StaticShader() : base(VERTEX_FILE, FRAGMENT_FILE)
        {
        }

        protected override void bindAttributes()
        {
            base.bindAttribute(0, "position");
        }
    }
}

바인딩은 0번 위치에 "position"이라는 이름으로 하고 있습니다. 이것은 vertexShader의 소스 코드를 보면 이해할 수 있습니다.

#version 400 core

in vec3 _position;

out vec3 _colour;

void main(void)
{
    gl_Position  = vec4(_position, 1.0);
    _colour = vec3(_position.x + 0.5, 1.0, _position.y + 0.5);
}

위의 소스 코드에 보면 "_position" 이름이 나오는데 원래 저 변수는 다음과 같이 선언한 것을 줄인 것입니다.

layout(location = 0) in vec3 _position;

다시 말해, 이름은 달라도 되지만 location으로 바인딩한 숫자는 틀리면 안 됩니다. 그렇긴 해도 이름 역시 맞춰주는 것이 일관성을 위해 좋을 것입니다. 만약 이름을 기준으로 location 위치를 동적으로 구하고 싶다면 다음과 같은 식으로 Gl.GetAttribLocation 메서드를 이용할 수 있습니다.

protected void bindAttribute(...)
{
    uint id = (uint)Gl.GetAttribLocation(_programID, "_position"); // vertex shader 코드의 변수 중 "_position"에 대한 location 값을 반환
    Gl.BindAttribLocation(_programID, id, "_position");
}




그런데, 사실 Gl.BindAttribLocation 메서드에서는 이름과 ID만을 바인딩할 뿐 값이 없습니다. 실질적인 값은, VBO가 로드된 VAO의 슬롯 번호를 통해서 전달하기 때문입니다.

public RawModel loadToVAO(float [] positions, int[] indices)
{
    uint vaoID = createVAO();

    bindIndicesBuffer(indices);
    storeDataInAttributeList(0, positions);

    unbindVAO();

    return new RawModel(vaoID, positions.Length);
}

unsafe void storeDataInAttributeList(uint attributeNumber, float [] data)
{
    uint vboID = Gl.GenBuffer();
    vbos.Add(vboID);
    Gl.BindBuffer(BufferTarget.ArrayBuffer, vboID);

    Gl.BufferData(BufferTarget.ArrayBuffer, (uint)(data.Length * sizeof(float)), data, BufferUsage.StaticDraw);

    Gl.VertexAttribPointer(attributeNumber, 3, VertexAttribType.Float, false, 0, IntPtr.Zero);
    Gl.BindBuffer(BufferTarget.ArrayBuffer, 0);
}

Gl.VertexAttribPointer의 호출로 Vertex 위치를 가리키는 VBO 데이터가 attributeNumber (== 0)에 해당하는 슬롯으로 지정되었기 때문에 Shader의 Gl.GetAttribLocation에서 이 값과 연결된 것입니다. 그런데 솔직히 Gl.BindAttribLocation이 왜 필요한지 잘 모르겠습니다. 어차피 Gl.VertexAttribPointer에 의해 0번으로 지정되었는데, 그 값을 shader 처리 클래스에서 Gl.BindAttribLocation을 이용해 슬롯 번호를 다른 것으로 할당하는 것이 크게 의미가 없어 보이기 때문입니다. (혹시, 나중에 POSITION 관련 값들이 다중으로 전달될 때 이를 명시하기 위한 걸로 사용되는 걸까요?)

암튼, 실제로 현재 예제에서는 ShaderProgram 타입의 bindAttribute를 주석 처리해도 shader가 잘 동작합니다.

protected void bindAttribute(uint attribute, string variableName)
{
    // Gl.BindAttribLocation(_programID, attribute, variableName);
}

다음은 이번 글의 예제가 동작했을 때 보이는 화면입니다.

opengl_tutorial_5_1.png

(첨부 파일은 이 글의 예제 프로젝트를 포함합니다.)




문서에 보면 아래의 예제에서,

#version 400 core

/* layout(location = 0) */ in vec3 position;

out vec3 colour;

void main(void)
{
    gl_Position  = vec4(position, 1.0);
    colour = vec3(position.x + 0.5, 1.0, position.y + 0.5);
}

VertexAttribPointer에 전달한 attributeNumber 슬롯 번호는 위의 shader에 할당한 location의 값과 맞춰주기만 하면 된다고 합니다. 그런데 실제로 테스트해 보면 현재 단계에서는 오직 양쪽 모두 0번으로 설정했을 때만 정상적으로 그려지는 것을 확인할 수 있습니다. 만약 VertexAttribPointer의 값이 크고 shader 측의 location 값이 낮다면 비정상 종료하고, 그 반대의 경우라면 (당연히) 데이터가 안 들어왔을 테니 vertex shader의 출력이 비어 있게 됩니다.

아마도, VAO에 더 많은 VBO를 슬롯에 할당한 경우에는 번호를 맞춰주는 식으로 동작을 할 것 같습니다.

참고로, VAO에 무작정 많은 VBO 슬롯을 할당할 수 있는 것은 아닙니다. 이것은 버전마다 틀린데 근래의 GPU에서는 대부분 16개를 지원한다고 합니다. 이 슬롯의 최대 개수를 코드로 얻고 싶다면 다음과 같은 메서드를 만들 수 있습니다.

int GetMaxVertexAttribs()
{
    ulong[] values = new ulong[1];
    Gl.GetIntegerNV(Gl.MAX_VERTEX_ATTRIBS, values);

    return (int)values[0];
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 11/13/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024464.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021454.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024086.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024206.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021098.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025792디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202021072디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022291.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023886.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024090.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018510.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022467.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021437.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022753.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022447.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028651.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020321오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021999Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027786개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202025061.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022814디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025914.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024536개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022090VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029096.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023270오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...