Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13704정성태8/2/20249573닷넷: 2290. C# - 간이 dotnet-dump 프로그램 만들기파일 다운로드1
13703정성태8/1/20248141닷넷: 2289. "dotnet-dump ps" 명령어가 닷넷 프로세스를 찾는 방법
13702정성태7/31/20249127닷넷: 2288. Collection 식을 지원하는 사용자 정의 타입을 CollectionBuilder 특성으로 성능 보완파일 다운로드1
13701정성태7/30/20249500닷넷: 2287. C# 13 - (4) Indexer를 이용한 개체 초기화 구문에서 System.Index 연산자 허용파일 다운로드1
13700정성태7/29/20249429디버깅 기술: 200. DLL Export/Import의 Hint 의미
13699정성태7/27/20249467닷넷: 2286. C# 13 - (3) Monitor를 대체할 Lock 타입파일 다운로드1
13698정성태7/27/20249288닷넷: 2285. C# - async 메서드에서의 System.Threading.Lock 잠금 처리파일 다운로드1
13697정성태7/26/20248603닷넷: 2284. C# - async 메서드에서의 lock/Monitor.Enter/Exit 잠금 처리파일 다운로드1
13696정성태7/26/20248315오류 유형: 920. dotnet publish - error NETSDK1047: Assets file '...\obj\project.assets.json' doesn't have a target for '...'
13695정성태7/25/20248619닷넷: 2283. C# - Lock / Wait 상태에서도 STA COM 메서드 호출 처리파일 다운로드1
13694정성태7/25/20248789닷넷: 2282. C# - ASP.NET Core Web App의 Request 용량 상한값 (Kestrel, IIS)
13693정성태7/24/20247998개발 환경 구성: 717. Visual Studio - C# 프로젝트에서 레지스트리에 등록하지 않은 COM 개체 참조 및 사용 방법파일 다운로드1
13692정성태7/24/20249184디버깅 기술: 199. Windbg - 리눅스에서 뜬 닷넷 응용 프로그램 덤프 파일에 포함된 DLL의 Export Directory 탐색
13691정성태7/23/20248170디버깅 기술: 198. Windbg - 스레드의 Win32 Message Queue 정보 조회
13690정성태7/23/20247660오류 유형: 919. Visual C++ 리눅스 프로젝트 - error : ‘u8’ was not declared in this scope
13689정성태7/22/20249885디버깅 기술: 197. Windbg - PE 포맷의 Export Directory 탐색
13688정성태7/21/20248384닷넷: 2281. C# - Lock / Wait 상태에서도 일부 Win32 메시지 처리파일 다운로드1
13687정성태7/19/20249205닷넷: 2280. C# - PostThreadMessage로 보낸 메시지를 Windows Forms에서 수신하는 방법파일 다운로드1
13686정성태7/19/20248863오류 유형: 918. Visual Studio - ATL Simple Object 추가 시 error C2065: 'IDR_...': undeclared identifier
13685정성태7/19/20248718스크립트: 66. Windows 디렉터리 경로를 WSL의 /mnt 포맷으로 구하는 방법 - 두 번째 이야기
13684정성태7/19/20249338닷넷: 2279. C# - 문자열 보간식 사례 (예: 조건 연산자 사용)
13683정성태7/18/20248434오류 유형: 917. ClrMD - Linux 환경의 .NET 5 덤프 분석 시 hang 현상
13682정성태7/18/20248785닷넷: 2278. WPF - 스레드에 종속되는 DependencyObject파일 다운로드1
13681정성태7/17/20248163닷넷: 2277. C# 13 - (2) 메서드 그룹의 자연 타입 개선 (메서드 추론 개선)파일 다운로드1
13680정성태7/16/20249169닷넷: 2276. C# - Method Group, Natural Type, function_type파일 다운로드1
13679정성태7/16/20247555Linux: 76. Linux - C++ (getaddrinfo 등을 담고 있는) libnss 정적 링크
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...