Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 106  107  108  109  110  111  112  113  114  115  [116]  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11025정성태8/12/201622351개발 환경 구성: 294. .NET Core 프로젝트에서 "Copy to Output Directory" 처리 [1]
11024정성태8/12/201621658오류 유형: 350. "nProtect GameMon" 실행 중에는 Visual Studio 디버깅이 안됩니다! [1]
11023정성태8/10/201623182개발 환경 구성: 293. Azure 구독 후 PaaS 서비스 만들어 보기
11022정성태8/10/201623836개발 환경 구성: 292. Azure Cloud Service 배포시 사용자 정의 작업을 추가하는 방법
11021정성태8/10/201620882오류 유형: 349. System.Runtime.Remoting.RemotingException - Type '..., ..., Version=..., Culture=neutral, PublicKeyToken=null' is not registered for activation [2]
11020정성태8/10/201623613VC++: 98. 원본과 대상 버퍼가 같은 경우 memcpy, wmemcpy 주의점
11019정성태8/10/201640289기타: 60. 도서: 시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지 (2쇄 정오표)
11018정성태8/9/201624751.NET Framework: 600. 단일 메서드 내에서의 할당으로 알아보는 자바와 닷넷의 GC 차이점 [1]
11017정성태8/9/201626811웹: 33. HTTP 쿠키에 한글 값을 설정하는 방법
11016정성태8/7/201624016개발 환경 구성: 291. Windows Server Containers 소개
11015정성태8/7/201622271오류 유형: 348. Windows Server 2016 TP5에서 Windows Containers의 docker run 실행 시 encountered an error during Start failed in Win32
11014정성태8/6/201623058오류 유형: 347. Hyper-V Virtual Machine Management service Account does not have permission to open attachment
11013정성태8/6/201633839개발 환경 구성: 290. Windows 10에서 경험해 보는 Windows Containers와 docker [4]
11012정성태8/6/201623896오류 유형: 346. Windows 10에서 Windows Containers의 docker run 실행 시 encountered an error during CreateContainer failed in Win32 발생
11011정성태8/6/201625518기타: 59. outlook.live.com 메일 서비스의 아웃룩 POP3 설정하는 방법
11010정성태8/6/201622883기타: 58. Outlook에 설정한 SMTP/POP3(예:천리안 메일) 계정 암호를 잊어버린 경우
11009정성태8/3/201628076개발 환경 구성: 289. 2016-08-02부터 시작된 윈도우 10 1주년 업데이트에서 Bash Shell 사용 [8]
11008정성태8/1/201621896오류 유형: 345. 2의 30승 이상의 원소를 갖는 경우 버그가 발생하는 이진 검색(Binary Search) 코드
11007정성태8/1/201623604오류 유형: 344. RDP ActiveX 컨트롤로 특정 PC에 연결할 수 없을 때, 오류 상황을 해결하기 위한 팁파일 다운로드1
11006정성태7/22/201626591개발 환경 구성: 288. SSL 인증서를 Azure Cloud Service에 적용하는 방법
11005정성태7/22/201625232개발 환경 구성: 287. Let's Encrypt 인증서 업데이트 주기: 90일
11004정성태7/22/201620085오류 유형: 343. Invalid service definition or service configuration. Please see the Error List for more details.
11003정성태7/20/201627365VS.NET IDE: 110. Visual Studio 2015에서 .NET Core 응용 프로그램 개발 [1]
11002정성태7/20/201620839개발 환경 구성: 286. Microsoft Azure 서비스의 구독은 반드시 IE로!
11001정성태7/19/201631910.NET Framework: 599. .NET Core/SDK 설치 및 기본 사용법 [6]
11000정성태7/16/201620617오류 유형: 342. Microsoft Visual Studio 2010 Tools for Office Runtime (x86 and x64) 설치 시 오류
... 106  107  108  109  110  111  112  113  114  115  [116]  117  118  119  120  ...