Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  124  125  126  127  128  129  130  131  [132]  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
1756정성태9/23/201427486기타: 48. NVidia 제품의 과다한 디스크 사용 [2]
1755정성태9/22/201434280오류 유형: 241. Unity Web Player를 설치해도 여전히 설치하라는 화면이 나오는 경우 [4]
1754정성태9/22/201424641VC++: 80. 내 컴퓨터에서 C++ AMP 코드가 실행이 될까요? [1]
1753정성태9/22/201420610오류 유형: 240. Lync로 세미나 참여 시 소리만 들리지 않는 경우 [1]
1752정성태9/21/201441071Windows: 100. 윈도우 8 - RDP 연결을 이용해 VNC처럼 사용자 로그온 화면을 공유하는 방법 [5]
1751정성태9/20/201438944.NET Framework: 464. 프로세스 간 통신 시 소켓 필요 없이 간단하게 Pipe를 열어 통신하는 방법 [1]파일 다운로드1
1750정성태9/20/201423832.NET Framework: 463. PInvoke 호출을 이용한 비동기 파일 작업파일 다운로드1
1749정성태9/20/201423732.NET Framework: 462. 커널 객체를 위한 null DACL 생성 방법파일 다운로드1
1748정성태9/19/201425384개발 환경 구성: 238. [Synergy] 여러 컴퓨터에서 키보드, 마우스 공유
1747정성태9/19/201428473오류 유형: 239. psexec 실행 오류 - The system cannot find the file specified.
1746정성태9/18/201426105.NET Framework: 461. .NET EXE 파일을 닷넷 프레임워크 버전에 상관없이 실행할 수 있을까요? - 두 번째 이야기 [6]파일 다운로드1
1745정성태9/17/201423035개발 환경 구성: 237. 리눅스 Integration Services 버전 업그레이드 하는 방법 [1]
1744정성태9/17/201431062.NET Framework: 460. GetTickCount / GetTickCount64와 0x7FFE0000 주솟값 [4]파일 다운로드1
1743정성태9/16/201420985오류 유형: 238. 설치 오류 - Failed to get size of pseudo bundle
1742정성태8/27/201426971개발 환경 구성: 236. Hyper-V에 설치한 리눅스 VM의 VHD 크기 늘리는 방법 [2]
1741정성태8/26/201421334.NET Framework: 459. GetModuleHandleEx로 알아보는 .NET 메서드의 DLL 모듈 관계파일 다운로드1
1740정성태8/25/201432508.NET Framework: 458. 닷넷 GC가 순환 참조를 해제할 수 있을까요? [2]파일 다운로드1
1739정성태8/24/201426538.NET Framework: 457. 교착상태(Dead-lock) 해결 방법 - Lock Leveling [2]파일 다운로드1
1738정성태8/23/201422047.NET Framework: 456. C# - CAS를 이용한 Lock 래퍼 클래스파일 다운로드1
1737정성태8/20/201419765VS.NET IDE: 93. Visual Studio 2013 동기화 문제
1736정성태8/19/201425576VC++: 79. [부연] CAS Lock 알고리즘은 과연 빠른가? [2]파일 다운로드1
1735정성태8/19/201418200.NET Framework: 455. 닷넷 사용자 정의 예외 클래스의 최소 구현 코드 - 두 번째 이야기
1734정성태8/13/201419861오류 유형: 237. Windows Media Player cannot access the file. The file might be in use, you might not have access to the computer where the file is stored, or your proxy settings might not be correct.
1733정성태8/13/201426362.NET Framework: 454. EmptyWorkingSet Win32 API를 사용하는 C# 예제파일 다운로드1
1732정성태8/13/201434476Windows: 99. INetCache 폴더가 다르게 보이는 이유
1731정성태8/11/201427081개발 환경 구성: 235. 점(.)으로 시작하는 파일명을 탐색기에서 만드는 방법
... 121  122  123  124  125  126  127  128  129  130  131  [132]  133  134  135  ...