Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [151]  152  153  154  155  156  157  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1277정성태5/8/201231260오류 유형: 152. cmd.exe - The system cannot write to the specified device. [2]
1276정성태4/28/201223117Phone: 5. 모든 Marketplace에 윈폰 앱을 등록하는 방법 [1]
1275정성태4/28/201226990개발 환경 구성: 150. 프로세스 실행으로 잠긴 파일이지만, 이름은 변경가능하다는 사실! 아셨나요? [7]
1274정성태4/17/201221508Phone: 4. "Holiday Calendar" 윈폰 응용 프로그램 등록
1273정성태4/6/201224707Phone: 3. 윈도우 폰을 위한 Holiyday Calendar 앱 개발파일 다운로드1
1272정성태4/5/201226289오류 유형: 151. ASP.NET - EcbGetUnicodeServerVariables 코드에서 System.AccessViolationException 예외 발생
1271정성태4/3/201228968Math: 6. 동전을 여러 더미로 나누는 경우의 수 세기 [1]
1270정성태3/29/201222935오류 유형: 150. Visual Studio 2010 원격 디버깅 오류 - Kerberos authentication failed
1269정성태3/27/201236747오류 유형: 149. ODP.NET 오류 - The provider is not compatible with the version of Oracle client
1268정성태3/27/201233225오류 유형: 148. WCF svc 호출 시 HTTP Error 404.17 - Not Found [1]
1267정성태3/16/201231191.NET Framework: 314. C++의 inline asm 사용을 .NET으로 포팅하는 방법 [1]파일 다운로드1
1266정성태3/14/201234412개발 환경 구성: 149. RAID 1 구성 시 하드 디스크 장애 발생 해결에 대한 경험담
1265정성태3/13/201224705VC++: 61. 아이태니엄(IA64: Itanium) 에서 겪은 C++ 포인터 연산 문제 [2]
1264정성태3/10/201244116.NET Framework: 313. WELL512 난수 발생 알고리즘 - C# [5]파일 다운로드1
1263정성태3/9/201222918개발 환경 구성: 148. tinyget 사용법
1262정성태3/8/201243787개발 환경 구성: 147. .keystore 파일에 저장된 개인키 추출 방법과 인증기관으로부터 온 공개키를 합친 pfx 파일 만드는 방법 [1]
1261정성태3/7/201224497Phone: 2. 개발자용 윈도우 폰 7 기기 등록하는 방법
1260정성태3/6/201224360Phone: 1. 윈도폰 7 개발자 (회사) 등록하는 방법 [3]
1259정성태3/4/201235844Windows: 57. 새로 추가된 네트워크 커널 디버깅 및 PowerShell 3.0 [1]
1258정성태3/3/201237473개발 환경 구성: 146. SQL Server 2012에 포함된 LocalDB 기능 소개 [3]파일 다운로드1
1257정성태3/3/201225658.NET Framework: 312. Native 스레드와 Managed 스레드 개체의 상태 관계 [1]파일 다운로드1
1256정성태3/3/201229210Math: 5. Euler's totient function - C#파일 다운로드1
1255정성태3/3/201231590Math: 4. 소수 판정 및 소인수 분해 소스 코드 - C# [1]파일 다운로드1
1254정성태3/1/201226556Windows: 56. Windows 8 Consumer Preview를 사용해 보고... [1]
1253정성태3/1/201228032VS.NET IDE: 71. Visual Studio 11 Ultimate 베타 설치 [3]
1252정성태3/1/201225378Windows: 55. 윈도우 8 베타 설치 과정 [1]
... [151]  152  153  154  155  156  157  158  159  160  161  162  163  164  165  ...