Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  52  53  [54]  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12651정성태5/31/202119199오류 유형: 720. PostgreSQL - ERROR: 22P02: malformed array literal: "..."
12650정성태5/17/202118708기타: 82. OpenTabletDriver의 버튼에 더블 클릭을 매핑 및 게임에서의 지원 방법
12649정성태5/16/202120586.NET Framework: 1059. 세대 별 GC(Garbage Collection) 방식에서 Card table의 사용 의미 [1]
12648정성태5/16/202120323사물인터넷: 66. PC -> FTDI -> NodeMCU v1 ESP8266 기기를 UART 핀을 연결해 직렬 통신하는 방법파일 다운로드1
12647정성태5/15/202118382.NET Framework: 1058. C# - C++과의 연동을 위한 구조체의 fixed 배열 필드 사용파일 다운로드1
12646정성태5/15/202117407사물인터넷: 65. C# - Arduino IDE의 Serial Monitor 기능 구현파일 다운로드1
12645정성태5/14/202117654사물인터넷: 64. NodeMCU v1 ESP8266 - LittleFS를 이용한 와이파이 접속 정보 업데이트파일 다운로드1
12644정성태5/14/202119766오류 유형: 719. 윈도우 - 제어판의 "프로그램 및 기능" / "Windows 기능 켜기/끄기" 오류 0x800736B3
12643정성태5/14/202120314오류 유형: 718. 서버 유형의 COM+ 사용 시 0x80080005(Server execution failed) 오류 발생
12642정성태5/14/202121191오류 유형: 717. The 'Microsoft.ACE.OLEDB.12.0' provider is not registered on the local machine.
12641정성태5/13/202119908디버깅 기술: 179. 윈도우용 .NET Core 3 이상에서 Windbg의 sos 사용법
12640정성태5/13/202124482오류 유형: 716. RDP 연결 - Because of a protocol error (code: 0x112f), the remote session will be disconnected. [1]
12639정성태5/12/202120735오류 유형: 715. Arduino: Open Serial Monitor - The module '...\detection.node' was compiled against a different Node.js version using NODE_MODULE_VERSION
12638정성태5/12/202119464사물인터넷: 63. NodeMCU v1 ESP8266 - 펌웨어 내 파일 시스템(SPIFFS, LittleFS) 및 EEPROM 활용
12637정성태5/10/202121098사물인터넷: 62. NodeMCU v1 ESP8266 보드의 A0 핀에 다중 아날로그 센서 연결 [1]
12636정성태5/10/202121639사물인터넷: 61. NodeMCU v1 ESP8266 보드의 A0 핀 사용법 - FSR-402 아날로그 압력 센서 연동파일 다운로드1
12635정성태5/9/202118079기타: 81. OpenTabletDriver를 (관리자 권한으로 실행하지 않고도) 관리자 권한의 프로그램에서 동작하게 만드는 방법
12634정성태5/9/202116144개발 환경 구성: 572. .NET에서의 필수 무결성 제어 - 외부 Manifest 파일을 두는 방법파일 다운로드1
12633정성태5/7/202120929개발 환경 구성: 571. UAC - 관리자 권한 없이 UIPI 제약을 없애는 방법
12632정성태5/7/202121871기타: 80. (WACOM도 지원하는) Tablet 공통 디바이스 드라이버 - OpenTabletDriver
12631정성태5/5/202120621사물인터넷: 60. ThingSpeak 사물인터넷 플랫폼에 ESP8266 NodeMCU v1 + 조도 센서 장비 연동파일 다운로드1
12630정성태5/5/202121566사물인터넷: 59. NodeMCU v1 ESP8266 보드의 A0 핀 사용법 - CdS Cell(GL3526) 조도 센서 연동파일 다운로드1
12629정성태5/5/202123813.NET Framework: 1057. C# - CoAP 서버 및 클라이언트 제작 (UDP 소켓 통신) [1]파일 다운로드1
12628정성태5/4/202121511Linux: 39. Eclipse 원격 디버깅 - Cannot run program "gdb": Launching failed
12627정성태5/4/202120976Linux: 38. 라즈베리 파이 제로 용 프로그램 개발을 위한 Eclipse C/C++ 윈도우 환경 설정
12626정성태5/3/202121585.NET Framework: 1056. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상 (2)파일 다운로드1
... 46  47  48  49  50  51  52  53  [54]  55  56  57  58  59  60  ...