Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  [81]  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11942정성태6/13/201925793개발 환경 구성: 444. 로컬의 Visual Studio Code로 원격 리눅스 머신에 접속해 개발하는 방법 [1]
11941정성태6/13/201918238오류 유형: 546. "message NETSDK1057: You are using a preview version of .NET Core" 빌드 경고 없애는 방법
11940정성태6/13/201918618개발 환경 구성: 443. Visual Studio의 Connection Manager 기능(Remote SSH 관리)을 위한 명령행 도구파일 다운로드1
11939정성태6/13/201917249오류 유형: 545. Managed Debugging Assistant 'FatalExecutionEngineError'
11938정성태6/12/201920340Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류파일 다운로드1
11937정성태6/11/201926689개발 환경 구성: 442. .NET Core 3.0 preview 5를 이용해 Windows Forms/WPF 응용 프로그램 개발 [1]
11936정성태6/10/201919349Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인 [2]파일 다운로드1
11935정성태6/9/201921493.NET Framework: 843. C# - PLplot 출력을 파일이 아닌 Window 화면으로 변경
11934정성태6/7/201922778VC++: 133. typedef struct와 타입 전방 선언으로 인한 C2371 오류파일 다운로드1
11933정성태6/7/201920289VC++: 132. enum 정의를 C++11의 enum class로 바꿀 때 유의할 사항파일 다운로드1
11932정성태6/7/201919890오류 유형: 544. C++ - fatal error C1017: invalid integer constant expression파일 다운로드1
11931정성태6/6/201920491개발 환경 구성: 441. C# - CairoSharp/GtkSharp 사용을 위한 프로젝트 구성 방법
11930정성태6/5/201921021.NET Framework: 842. .NET Reflection을 대체할 System.Reflection.Metadata 소개 [1]
11929정성태6/5/201920364.NET Framework: 841. Windows Forms/C# - 클립보드에 RTF 텍스트를 복사 및 확인하는 방법 [1]
11928정성태6/5/201919725오류 유형: 543. PowerShell 확장 설치 시 "Catalog file '[...].cat' is not found in the contents of the module" 오류 발생
11927정성태6/5/201920928스크립트: 15. PowerShell ISE의 스크립트를 복사 후 PPT/Word에 붙여 넣으면 한글이 깨지는 문제 [1]
11926정성태6/4/201920830오류 유형: 542. Visual Studio - pointer to incomplete class type is not allowed
11925정성태6/4/201921247VC++: 131. Visual C++ - uuid 확장 속성과 __uuidof 확장 연산자파일 다운로드1
11924정성태5/30/201922939Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [1]파일 다운로드1
11923정성태5/30/201922527Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기파일 다운로드1
11922정성태5/29/201919840.NET Framework: 840. ML.NET 데이터 정규화파일 다운로드1
11921정성태5/28/201925950Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)파일 다운로드1
11920정성태5/28/201916626.NET Framework: 839. C# - PLplot 색상 제어
11919정성태5/27/201921903Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법 [1]파일 다운로드1
11918정성태5/25/201921861Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)파일 다운로드1
11917정성태5/24/201923298Math: 52. MathNet을 이용한 간단한 통계 정보 처리 - 분산/표준편차파일 다운로드1
... 76  77  78  79  80  [81]  82  83  84  85  86  87  88  89  90  ...