Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18560
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  [173]  174  175  176  177  178  179  180  ...
NoWriterDateCnt.TitleFile(s)
679정성태3/15/200920134오류 유형: 72. IE 8 멈춤 현상 - 두 번째 이야기
678정성태3/15/200925338개발 환경 구성: 37. Hyper-V에서 Vista의 Virtual Machine Bus 장치 인식 문제
677정성태3/15/200925820개발 환경 구성: 36. MSI P45 Neo3-FR V2 - RAID 1 구성
997정성태2/26/201121083    답변글 개발 환경 구성: 36.1. 개발 환경 구성: 34 - 1. RAID 1 구성 이후...
676정성태3/15/200922462오류 유형: 71. IE 8 RC1 - 멈춤 현상
675정성태3/14/200925332오류 유형: 70. Virtual Machine Additions 제거
673정성태3/11/200923940웹: 10. 금일 진행되었던 마이크로소프트 IE 8 행사의 ActiveX 세션 PPT [6]파일 다운로드1
672정성태3/1/200936943Windows: 43. Loopback network adapter 설치하기 [2]
670정성태2/22/200930114.NET Framework: 124. IIS 7에서 SVC 호스팅 [1]
669정성태2/21/200924488오류 유형: 69. The SQL Server Network Interface library could not register the Service Principal Name (SPN) for the SQL Server service.
668정성태2/21/200929601개발 환경 구성: 35. SQL Express 버전과 User Instance 옵션
667정성태2/14/200941572웹: 9. IE 7. IWebBrowser2 인터페이스 메서드의 Navigate / Navigate2 차이점 [3]파일 다운로드1
666정성태2/12/200927330웹: 8. IE 8: 프로세스와 윈도우의 관계 - LCIE [1]파일 다운로드1
665정성태2/7/200924298웹: 7. Internet Explorer 8 - XHR, XDR, XST, XSRF [1]
664정성태2/5/200920351Windows: 42. Concurrency Runtime
663정성태2/5/200925014.NET Framework: 123. WPF - Arial Narrow 폰트 문제
662정성태2/3/200920698VS.NET IDE: 59. HyperAddin 도구 사용 설명 [1]
661정성태2/3/200924385오류 유형: 68. msxml6r.dll 설치 오류
660정성태2/3/200923020Windows: 41. UAC 보안 취약 [2]
659정성태2/2/200934328오류 유형: 67. ClickOnce 응용 프로그램이 실행되지 않을 때.
658정성태2/1/200926364Team Foundation Server: 30. 소스 서버 보안
657정성태2/1/200929276Windows: 40. Q1 Ultra + Windows 7 베타
656정성태2/1/200930772디버깅 기술: 24. .NET JIT 최적화 코드 생성 제어
655정성태1/31/200927019Windows: 39. IE8 표준 모드 [4]
653정성태1/29/200921932.NET Framework: 122. XML Serializer를 이용한 값 복사: 성능은 어떨까!파일 다운로드1
652정성태1/22/200922778.NET Framework: 121. WPF - PrintTicket provider failed to bind to printer.
... 166  167  168  169  170  171  172  [173]  174  175  176  177  178  179  180  ...