Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18584
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 16  17  18  19  20  21  22  23  [24]  25  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
13343정성태5/9/202313486디버깅 기술: 192. Windbg - Hyper-V VM으로 이더넷 원격 디버깅 연결하는 방법
13342정성태5/8/202312130.NET Framework: 2115. System.Text.Json의 역직렬화 시 필드/속성 주의
13341정성태5/8/202311953닷넷: 2114. C# 12 - 모든 형식의 별칭(Using aliases for any type)
13340정성태5/8/202312292오류 유형: 857. Microsoft.Data.SqlClient.SqlException - 0x80131904
13339정성태5/6/202313459닷넷: 2113. C# 12 - 기본 생성자(Primary Constructors)
13338정성태5/6/202311924닷넷: 2112. C# 12 - 기본 람다 매개 변수파일 다운로드1
13337정성태5/5/202313040Linux: 59. dockerfile - docker exec로 container에 접속 시 자동으로 실행되는 코드 적용
13336정성태5/4/202312614.NET Framework: 2111. C# - 바이너리 출력 디렉터리와 연관된 csproj 설정
13335정성태4/30/202313536.NET Framework: 2110. C# - FFmpeg.AutoGen 라이브러리를 이용한 기본 프로젝트 구성 - Windows Forms파일 다운로드1
13334정성태4/29/202312552Windows: 250. Win32 C/C++ - Modal 메시지 루프 내에서 SetWindowsHookEx를 이용한 Thread 메시지 처리 방법
13333정성태4/28/202310945Windows: 249. Win32 C/C++ - 대화창 템플릿을 런타임에 코딩해서 사용파일 다운로드1
13332정성태4/27/202311272Windows: 248. Win32 C/C++ - 대화창을 위한 메시지 루프 사용자 정의파일 다운로드1
13331정성태4/27/202310868오류 유형: 856. dockerfile - 구 버전의 .NET Core 이미지 사용 시 apt update 오류
13330정성태4/26/202311541Windows: 247. Win32 C/C++ - CS_GLOBALCLASS 설명
13329정성태4/24/202311796Windows: 246. Win32 C/C++ - 직접 띄운 대화창 템플릿을 위한 Modal 메시지 루프 생성파일 다운로드1
13328정성태4/19/202311584VS.NET IDE: 184. Visual Studio - Fine Code Coverage에서 동작하지 않는 Fake/Shim 테스트
13327정성태4/19/202311809VS.NET IDE: 183. C# - .NET Core/5+ 환경에서 Fakes를 이용한 단위 테스트 방법
13326정성태4/18/202314443.NET Framework: 2109. C# - 닷넷 응용 프로그램에서 SQLite 사용 (System.Data.SQLite) [1]파일 다운로드1
13325정성태4/18/202312494스크립트: 48. 파이썬 - PostgreSQL의 with 문을 사용한 경우 연결 개체 누수
13324정성태4/17/202312777.NET Framework: 2108. C# - Octave의 "save -binary ..."로 생성한 바이너리 파일 분석파일 다운로드1
13323정성태4/16/202312348개발 환경 구성: 677. Octave에서 Excel read/write를 위한 io 패키지 설치
13322정성태4/15/202313966VS.NET IDE: 182. Visual Studio - 32비트로만 빌드된 ActiveX와 작업해야 한다면?
13321정성태4/14/202311866개발 환경 구성: 676. WSL/Linux Octave - Python 스크립트 연동
13320정성태4/13/202311632개발 환경 구성: 675. Windows Octave 8.1.0 - Python 스크립트 연동
13319정성태4/12/202312594개발 환경 구성: 674. WSL 2 환경에서 GNU Octave 설치
13318정성태4/11/202312261개발 환경 구성: 673. JetBrains IDE에서 "Squash Commits..." 메뉴가 비활성화된 경우
... 16  17  18  19  20  21  22  23  [24]  25  26  27  28  29  30  ...