Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18686
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 46  47  48  49  50  51  52  53  [54]  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12591정성태4/9/202120961.NET Framework: 1034. C# - byte 배열을 Hex(16진수) 문자열로 고속 변환하는 방법 [2]파일 다운로드1
12590정성태4/9/202117142.NET Framework: 1033. C# - .NET 4.0 이하에서 Console.IsInputRedirected 구현 [1]
12589정성태4/8/202118298.NET Framework: 1032. C# - Environment.OSVersion의 문제점 및 윈도우 운영체제의 버전을 구하는 다양한 방법 [1]
12588정성태4/7/202120061개발 환경 구성: 565. PowerShell - New-SelfSignedCertificate를 사용해 CA 인증서 생성 및 인증서 서명 방법
12587정성태4/6/202121367개발 환경 구성: 564. Windows 10 - ClickOnce 배포처럼 사용할 수 있는 MSIX 설치 파일 [1]
12586정성태4/5/202118292오류 유형: 710. Windows - Restart-Computer / shutdown 명령어 수행 시 Access is denied(E_ACCESSDENIED)
12585정성태4/5/202117194개발 환경 구성: 563. 기본 생성된 kubeconfig 파일의 내용을 새롭게 생성한 인증서로 구성하는 방법
12584정성태4/1/202118376개발 환경 구성: 562. kubeconfig 파일 없이 kubectl 옵션만으로 실행하는 방법
12583정성태3/29/202119236개발 환경 구성: 561. kubectl 수행 시 다른 k8s 클러스터로 접속하는 방법
12582정성태3/29/202118704오류 유형: 709. Visual C++ - 컴파일 에러 error C2059: syntax error: '__stdcall'
12581정성태3/28/202118652.NET Framework: 1031. WinForm/WPF에서 Console 창을 띄워 출력하는 방법 (2) - Output 디버깅 출력을 AllocConsole로 우회 [2]
12580정성태3/28/202116577오류 유형: 708. SQL Server Management Studio - Execution Timeout Expired.
12579정성태3/28/202117196오류 유형: 707. 중첩 가상화(Nested Virtualization) - The virtual machine could not be started because this platform does not support nested virtualization.
12578정성태3/27/202117569개발 환경 구성: 560. Docker Desktop for Windows 기반의 Kubernetes 구성 (2) - WSL 2 인스턴스에 kind가 구성한 k8s 서비스 위치
12577정성태3/26/202119149개발 환경 구성: 559. Docker Desktop for Windows 기반의 Kubernetes 구성 - WSL 2 인스턴스에 kind 도구로 k8s 클러스터 구성
12576정성태3/25/202117264개발 환경 구성: 558. Docker Desktop for Windows에서 DockerDesktopVM 기반의 Kubernetes 구성 (2) - k8s 서비스 위치
12575정성태3/24/202115860개발 환경 구성: 557. Docker Desktop for Windows에서 DockerDesktopVM 기반의 Kubernetes 구성 [1]
12574정성태3/23/202121361.NET Framework: 1030. C# Socket의 Close/Shutdown 동작 (동기 모드)
12573정성태3/22/202118757개발 환경 구성: 556. WSL 인스턴스 초기 설정 명령어 [1]
12572정성태3/22/202117989.NET Framework: 1029. C# - GC 호출로 인한 메모리 압축(Compaction)을 확인하는 방법파일 다운로드1
12571정성태3/21/202115998오류 유형: 706. WSL 2 기반으로 "Enable Kubernetes" 활성화 시 초기화 실패 [1]
12570정성태3/19/202121433개발 환경 구성: 555. openssl - CA로부터 인증받은 새로운 인증서를 생성하는 방법
12569정성태3/18/202121700개발 환경 구성: 554. WSL 인스턴스 export/import 방법 및 단축 아이콘 설정 방법
12568정성태3/18/202115007오류 유형: 705. C# 빌드 - Couldn't process file ... due to its being in the Internet or Restricted zone or having the mark of the web on the file.
12567정성태3/17/202117217개발 환경 구성: 553. Docker Desktop for Windows를 위한 k8s 대시보드 활성화 [1]
12566정성태3/17/202117029개발 환경 구성: 552. Kubernetes - kube-apiserver와 REST API 통신하는 방법 (Docker Desktop for Windows 환경)
... 46  47  48  49  50  51  52  53  [54]  55  56  57  58  59  60  ...