Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18581
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  [74]  75  ...
NoWriterDateCnt.TitleFile(s)
12087정성태12/21/201918574디버깅 기술: 145. windbg/sos - Dictionary의 entries 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12086정성태12/20/201921113디버깅 기술: 144. windbg - Marshal.FreeHGlobal에서 발생한 덤프 분석 사례
12085정성태12/20/201919090오류 유형: 586. iisreset - The data is invalid. (2147942413, 8007000d) 오류 발생 - 두 번째 이야기 [1]
12084정성태12/19/201919521디버깅 기술: 143. windbg/sos - Hashtable의 buckets 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12083정성태12/17/201922454Linux: 27. linux - lldb를 이용한 .NET Core 응용 프로그램의 메모리 덤프 분석 방법 [2]
12082정성태12/17/201920675오류 유형: 585. lsof: WARNING: can't stat() fuse.gvfsd-fuse file system
12081정성태12/16/201922574개발 환경 구성: 465. 로컬 PC에서 개발 중인 ASP.NET Core 웹 응용 프로그램을 다른 PC에서도 접근하는 방법 [5]
12080정성태12/16/201919693.NET Framework: 870. C# - 프로세스의 모든 핸들을 열람
12079정성태12/13/201921638오류 유형: 584. 원격 데스크톱(rdp) 환경에서 다중 또는 고용량 파일 복사 시 "Unspecified error" 오류 발생
12078정성태12/13/201921464Linux: 26. .NET Core 응용 프로그램을 위한 메모리 덤프 방법 [3]
12077정성태12/13/201920468Linux: 25. 자주 실행할 명령어 또는 초기 환경을 "~/.bashrc" 파일에 등록
12076정성태12/12/201919039디버깅 기술: 142. Linux - lldb 환경에서 sos 확장 명령어를 이용한 닷넷 프로세스 디버깅 - 배포 방법에 따른 차이
12075정성태12/11/201919916디버깅 기술: 141. Linux - lldb 환경에서 sos 확장 명령어를 이용한 닷넷 프로세스 디버깅
12074정성태12/10/201919578디버깅 기술: 140. windbg/Visual Studio - 값이 변경된 경우를 위한 정지점(BP) 설정(Data Breakpoint)
12073정성태12/10/201921031Linux: 24. Linux/C# - 실행 파일이 아닌 스크립트 형식의 명령어를 Process.Start로 실행하는 방법
12072정성태12/9/201917787오류 유형: 583. iisreset 수행 시 "No such interface supported" 오류
12071정성태12/9/201921302오류 유형: 582. 리눅스 디스크 공간 부족 및 safemode 부팅 방법
12070정성태12/9/201923222오류 유형: 581. resize2fs: Bad magic number in super-block while trying to open /dev/.../root
12069정성태12/2/201919695디버깅 기술: 139. windbg - x64 덤프 분석 시 메서드의 인자 또는 로컬 변수의 값을 확인하는 방법
12068정성태11/28/201928332디버깅 기술: 138. windbg와 Win32 API로 알아보는 Windows Heap 정보 분석 [3]파일 다운로드2
12067정성태11/27/201919787디버깅 기술: 137. 실제 사례를 통해 Debug Diagnostics 도구가 생성한 닷넷 웹 응용 프로그램의 성능 장애 보고서 설명 [1]파일 다운로드1
12066정성태11/27/201919399디버깅 기술: 136. windbg - C# PInvoke 호출 시 마샬링을 담당하는 함수 분석 - OracleCommand.ExecuteReader에서 OpsSql.Prepare2 PInvoke 호출 분석
12065정성태11/25/201917688디버깅 기술: 135. windbg - C# PInvoke 호출 시 마샬링을 담당하는 함수 분석파일 다운로드1
12064정성태11/25/201920675오류 유형: 580. HTTP Error 500.0/500.33 - ANCM In-Process Handler Load Failure
12063정성태11/21/201919637디버깅 기술: 134. windbg - RtlReportCriticalFailure로부터 parameters 정보 찾는 방법
12062정성태11/21/201919041디버깅 기술: 133. windbg - CoTaskMemFree/FreeCoTaskMem에서 발생한 덤프 분석 사례 - 두 번째 이야기
... 61  62  63  64  65  66  67  68  69  70  71  72  73  [74]  75  ...