Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 18964
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13667정성태7/7/20246622닷넷: 2273. C# - 리눅스 환경에서의 Hyper-V Socket 연동 (AF_VSOCK)파일 다운로드1
13666정성태7/7/20247700Linux: 74. C++ - Vsock 예제 (Hyper-V Socket 연동)파일 다운로드1
13665정성태7/6/20247880Linux: 73. Linux 측의 socat을 이용한 Hyper-V 호스트와의 vsock 테스트파일 다운로드1
13663정성태7/5/20247474닷넷: 2272. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)의 VMID Wildcards 유형파일 다운로드1
13662정성태7/4/20247491닷넷: 2271. C# - WSL 2 VM의 VM ID를 알아내는 방법 - Host Compute System API파일 다운로드1
13661정성태7/3/20247413Linux: 72. g++ - 다른 버전의 GLIBC로 소스코드 빌드
13660정성태7/3/20247522오류 유형: 912. Visual C++ - Linux 프로젝트 빌드 오류
13659정성태7/1/20247858개발 환경 구성: 715. Windows - WSL 2 환경의 Docker Desktop 네트워크
13658정성태6/28/20248235개발 환경 구성: 714. WSL 2 인스턴스와 호스트 측의 Hyper-V에 운영 중인 VM과 네트워크 연결을 하는 방법 - 두 번째 이야기
13657정성태6/27/20247911닷넷: 2270. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)을 위한 EndPoint 사용자 정의
13656정성태6/27/20248085Windows: 264. WSL 2 VM의 swap 파일 위치
13655정성태6/24/20247850닷넷: 2269. C# - Win32 Resource 포맷 해석파일 다운로드1
13654정성태6/24/20247787오류 유형: 911. shutdown - The entered computer name is not valid or remote shutdown is not supported on the target computer.
13653정성태6/22/20247937닷넷: 2268. C# 코드에서 MAKEINTREOURCE 매크로 처리
13652정성태6/21/20249246닷넷: 2267. C# - Linux 환경에서 (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드2
13651정성태6/19/20248487닷넷: 2266. C# - (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드1
13650정성태6/18/20248410개발 환경 구성: 713. "WSL --debug-shell"로 살펴보는 WSL 2 VM의 리눅스 환경
13649정성태6/18/20247957오류 유형: 910. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter" (2)
13648정성태6/17/20248278오류 유형: 909. C# - DynamicMethod 사용 시 System.TypeAccessException
13647정성태6/16/20249344개발 환경 구성: 712. Windows - WSL 2의 네트워크 통신 방법 - 세 번째 이야기 (같은 IP를 공유하는 WSL 2 인스턴스) [1]
13646정성태6/14/20247758오류 유형: 908. Process Explorer - "Error configuring dump resources: The system cannot find the file specified."
13645정성태6/13/20248197개발 환경 구성: 711. Visual Studio로 개발 시 기본 등록하는 dev tag 이미지로 Docker Desktop k8s에서 실행하는 방법
13644정성태6/12/20248868닷넷: 2265. C# - System.Text.Json의 기본적인 (한글 등에서의) escape 처리 [1]
13643정성태6/12/20248315오류 유형: 907. MySqlConnector 사용 시 System.IO.FileLoadException 오류
13642정성태6/11/20248198스크립트: 65. 파이썬 - asgi 버전(2, 3)에 따라 달라지는 uvicorn 호스팅
13641정성태6/11/20248673Linux: 71. Ubuntu 20.04를 22.04로 업데이트
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...