Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 19155
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  173  174  175  176  177  [178]  179  180  ...
NoWriterDateCnt.TitleFile(s)
535정성태9/11/200729798.NET Framework: 96. WCF - PerSession에서의 클라이언트 연결 관리 [5]
534정성태9/3/200725284개발 환경 구성: 29. VHD 파일 크기 줄이기
533정성태9/2/200727940개발 환경 구성: 28. CA 서비스 - 사용자 정의 템플릿 유형 추가
532정성태9/2/200730502개발 환경 구성: 27. AD CA에서 Code Signing 인증서 유형 추가 방법
531정성태9/2/200726239.NET Framework: 95. WCF에서의 DataTable 사용
530정성태9/1/200722694.NET Framework: 94. WCF 예외에 대한 시행착오
529정성태8/31/200725617.NET Framework: 93. WCF - DataContract와 KnownType 특성 [1]
528정성태8/30/200720253오류 유형: 47. VPC - 네트워크 어댑터 MAC 주소 중복 오류
527정성태8/30/200730393Team Foundation Server: 20. 잠긴 파일을 강제로 해제 [2]
526정성태8/29/200720237오류 유형: 46. VS.NET 2008 - ASP.NET 디버깅 : Strong name validation failed.
525정성태8/27/200722540VS.NET IDE: 54. VS.NET 2008 - 새롭게 도입되는 XSD Schema Designer
524정성태8/23/200740047오류 유형: 45. 요청한 작업은, 사용자가 매핑한 구역이 열려 있는...
523정성태8/16/200722632VS.NET IDE: 53. VS.NET 2008 - 서비스 참조 시 기존 데이터 컨테이너 DLL 사용
522정성태8/13/200726300VS.NET IDE: 52. VS.NET 2008 - WCF를 위한 디버깅 환경 개선
521정성태8/8/200726370.NET Framework: 92. XmlSerializer 생성자의 실행 속도를 올리는 방법 - 두 번째 이야기 [3]
520정성태8/7/200721556VS.NET IDE: 51. Visual Studio 2008 베타 2 설치
519정성태7/27/200727903오류 유형: 44. System.BadImageFormatException [2]
518정성태7/26/200728943오류 유형: 43. System.ComponentModel.LicenseException [1]
517정성태7/19/200717159개발 환경 구성: 26. VPC - 일반 사용자 계정으로 구동
516정성태7/19/200720356오류 유형: 42. TFS - Error loading menu: Index was outside the bounds of the array [2]
515정성태7/18/200728045오류 유형: 41. SSL 서버 자격 증명을 만드는 동안 심각한 오류가 발생했습니다.
514정성태7/14/200720737Team Foundation Server: 19. Orcas에서 개선되는 TFS 기능들
513정성태7/4/200731709.NET Framework: 91. Foreground Thread / Background Thread [1]
512정성태6/27/200721708오류 유형: 40. error PRJ0050: Failed to register output.
511정성태6/25/200729683.NET Framework: 90. XmlSerializer 생성자의 실행 속도를 올리는 방법 [2]
510정성태6/25/200744683디버깅 기술: 15. First-Chance Exception
... 166  167  168  169  170  171  172  173  174  175  176  177  [178]  179  180  ...