Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 18979
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 16  17  18  19  20  21  22  23  [24]  25  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
13337정성태5/5/202312863Linux: 59. dockerfile - docker exec로 container에 접속 시 자동으로 실행되는 코드 적용
13336정성태5/4/202312398.NET Framework: 2111. C# - 바이너리 출력 디렉터리와 연관된 csproj 설정
13335정성태4/30/202313320.NET Framework: 2110. C# - FFmpeg.AutoGen 라이브러리를 이용한 기본 프로젝트 구성 - Windows Forms파일 다운로드1
13334정성태4/29/202312322Windows: 250. Win32 C/C++ - Modal 메시지 루프 내에서 SetWindowsHookEx를 이용한 Thread 메시지 처리 방법
13333정성태4/28/202310819Windows: 249. Win32 C/C++ - 대화창 템플릿을 런타임에 코딩해서 사용파일 다운로드1
13332정성태4/27/202311117Windows: 248. Win32 C/C++ - 대화창을 위한 메시지 루프 사용자 정의파일 다운로드1
13331정성태4/27/202310754오류 유형: 856. dockerfile - 구 버전의 .NET Core 이미지 사용 시 apt update 오류
13330정성태4/26/202311307Windows: 247. Win32 C/C++ - CS_GLOBALCLASS 설명
13329정성태4/24/202311510Windows: 246. Win32 C/C++ - 직접 띄운 대화창 템플릿을 위한 Modal 메시지 루프 생성파일 다운로드1
13328정성태4/19/202311333VS.NET IDE: 184. Visual Studio - Fine Code Coverage에서 동작하지 않는 Fake/Shim 테스트
13327정성태4/19/202311530VS.NET IDE: 183. C# - .NET Core/5+ 환경에서 Fakes를 이용한 단위 테스트 방법
13326정성태4/18/202314118.NET Framework: 2109. C# - 닷넷 응용 프로그램에서 SQLite 사용 (System.Data.SQLite) [1]파일 다운로드1
13325정성태4/18/202312276스크립트: 48. 파이썬 - PostgreSQL의 with 문을 사용한 경우 연결 개체 누수
13324정성태4/17/202312494.NET Framework: 2108. C# - Octave의 "save -binary ..."로 생성한 바이너리 파일 분석파일 다운로드1
13323정성태4/16/202312180개발 환경 구성: 677. Octave에서 Excel read/write를 위한 io 패키지 설치
13322정성태4/15/202313699VS.NET IDE: 182. Visual Studio - 32비트로만 빌드된 ActiveX와 작업해야 한다면?
13321정성태4/14/202311613개발 환경 구성: 676. WSL/Linux Octave - Python 스크립트 연동
13320정성태4/13/202311383개발 환경 구성: 675. Windows Octave 8.1.0 - Python 스크립트 연동
13319정성태4/12/202312372개발 환경 구성: 674. WSL 2 환경에서 GNU Octave 설치
13318정성태4/11/202312029개발 환경 구성: 673. JetBrains IDE에서 "Squash Commits..." 메뉴가 비활성화된 경우
13317정성태4/11/202312248오류 유형: 855. WSL 2 Ubuntu 20.04 - error: cannot communicate with server: Post http://localhost/v2/snaps/...
13316정성태4/10/202310697오류 유형: 854. docker-compose 시 "json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)" 오류 발생
13315정성태4/10/202311645Windows: 245. Win32 - 시간 만료를 갖는 컨텍스트 메뉴와 윈도우 메시지의 영역별 정의파일 다운로드1
13314정성태4/9/202312504개발 환경 구성: 672. DosBox를 이용한 Turbo C, Windows 3.1 설치 [1]
13313정성태4/9/202311908개발 환경 구성: 671. Hyper-V VM에 Turbo C 2.0 설치 [2]
13312정성태4/8/202311657Windows: 244. Win32 - 시간 만료를 갖는 MessageBox 대화창 구현 (개선된 버전)파일 다운로드1
... 16  17  18  19  20  21  22  23  [24]  25  26  27  28  29  30  ...