Microsoft MVP성태의 닷넷 이야기
Math: 63. C# - 3층 구조의 신경망 [링크 복사], [링크+제목 복사],
조회: 19004
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경만을 표현한 파이썬 용 소스 코드가 나오는데 다음과 같습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_29

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.2)
Y = np.arange(-1.0, 1.0, 0.2)

Z = np.zeros((10, 10))

w_im = np.array([[2.0, -2.0],
                 [1.0, 4.0]])
w_mo = np.array([[1.0],
                 [-1.0]])

b_im = np.array([3.0, -3.0])
b_mo = np.array([0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return u

for i in range(10):
    for j in range(10):

        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        Z[j][i] = out[0]
        
plt.imshow(Z, "gray", vmin = 0.0, vmax = 1.0)
plt.colorbar()
plt.show()

C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;

class Program
{
    static void Main(string[] args)
    {
        var X0 = np.arange(-1.0, 1.0, 0.2).ToArray();
        var X1 = np.arange(-1.0, 1.0, 0.2).ToArray();

        double[,] Y = new double[X0.Length, X1.Length];

        matrix w_im = GetMatrix(new[] { -4.0, 4.0 }, new[] { -4.0, -4.0 });
        matrix w_mo = GetMatrix(new[] { 1.0 }, new[] { -1.0 });

        vector b_im = GetVector(3.0, -3.0);
        vector b_mo = GetVector(0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u));
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            return x * w + b;
        };

        for (int i = 0; i < X0.Length; i++)
        {
            for (int j = 0; j < X1.Length; j++)
            {
                var inp = GetVector(X0[i], X1[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                Y[j, i] = outp[0];
            }
        }

        OutputImage("layer3_neuron.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(371, 371);
            grid.Show(Y, fileName);
        }
    }

    private static Matrix<double> GetMatrix(params double[][] values)
    {
        return CreateMatrix.DenseOfRows(values.Length, values[0].Length, values);
    }

    private static Vector<double> GetVector(params double [] values)
    {
        return CreateVector.DenseOfArray(values);
    }
}

실행해 보면, 좌측의 출력은 matplotlib의 출력이고 우측은 C# 출력입니다.

layer3_neuron.png

제 경우에, 신경망 출력의 값을 단순히 다음과 같이 gray 색으로 보간했는데,

double minX = gridmap.Min();
double maxX = gridmap.Max();

Func<double, double> lerf = (value) =>
{
    return (value - minX) / (maxX - minX);
};

for (int i = 0; i < count; i++)
{
    double h, l, s;
    double r1, g1, b1;

    h = 0;
    l = lerf(gridmap[i]);
    s = 0;

    pl.hlsrgb(h, l, s, out r1, out g1, out b1);
    r[i + 16] = (int)(r1 * 255.0);
    g[i + 16] = (int)(g1 * 255.0);
    b[i + 16] = (int)(b1 * 255.0);
}

matplotlib과 차이가 납니다. 어쩌면 보간 방식의 차이일 수도 있고, HLS to RGB 방식의 차이일 수 있는데 중요한 것은 신경망 출력이 가중치와 편향에 따라 다양해진다는 점이므로 넘어가도 좋겠습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  [79]  80  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11958정성태6/25/201924474Linux: 18. C# - .NET Core Console로 리눅스 daemon 프로그램 만드는 방법 [6]
11957정성태6/24/201922867Windows: 160. WMI 쿼리를 명령행에서 간단하게 수행하는 wmic.exe [2]
11956정성태6/24/201921346Linux: 17. CentOS 7에서 .NET Core Web App 실행 환경 구성 [1]
11955정성태6/20/201919709Math: 60. C# - 로지스틱 회귀를 이용한 분류파일 다운로드1
11954정성태6/20/201918477오류 유형: 550. scp - sudo: no tty present and no askpass program specified
11953정성태6/20/201916628오류 유형: 549. The library 'libhostpolicy.so' required to execute the application was not found in '...'
11952정성태6/20/201917341Linux: 16. 우분투, Centos의 Netbios 호스트 이름 풀이 방법
11951정성태6/20/201920571오류 유형: 548. scp 연결 시 "Permission denied" 오류 및 "WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!" 경고
11950정성태6/18/201920667.NET Framework: 845. C# - 윈도우 작업 관리자와 리소스 모니터의 메모리 값을 구하는 방법
11949정성태6/18/201915979오류 유형: 547. CoreCLR Profiler 예제 프로젝트 빌드 시 컴파일 오류 유형
11948정성태6/17/201918440Linux: 15. 리눅스 환경의 Visual Studio Code에서 TFS 서버 연동
11947정성태6/17/201920210Linux: 14. 리눅스 환경에서 TFS 서버 연동
11946정성태6/17/201921204개발 환경 구성: 445. C# - MathNet으로 정규 분포를 따르는 데이터를 생성, PLplot으로 Histogram 표현파일 다운로드1
11945정성태6/17/201918896Linux: 13. node.js에서 syslog로 출력하는 방법
11944정성태6/16/201925290Linux: 12. Ubuntu 16.04/18.04에서 node.js 최신 버전 설치 방법
11943정성태6/15/201918517.NET Framework: 844. C# - 박싱과 언박싱 [1]
11942정성태6/13/201924802개발 환경 구성: 444. 로컬의 Visual Studio Code로 원격 리눅스 머신에 접속해 개발하는 방법 [1]
11941정성태6/13/201917476오류 유형: 546. "message NETSDK1057: You are using a preview version of .NET Core" 빌드 경고 없애는 방법
11940정성태6/13/201917707개발 환경 구성: 443. Visual Studio의 Connection Manager 기능(Remote SSH 관리)을 위한 명령행 도구파일 다운로드1
11939정성태6/13/201916503오류 유형: 545. Managed Debugging Assistant 'FatalExecutionEngineError'
11938정성태6/12/201919016Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류파일 다운로드1
11937정성태6/11/201925377개발 환경 구성: 442. .NET Core 3.0 preview 5를 이용해 Windows Forms/WPF 응용 프로그램 개발 [1]
11936정성태6/10/201918302Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인 [2]파일 다운로드1
11935정성태6/9/201919844.NET Framework: 843. C# - PLplot 출력을 파일이 아닌 Window 화면으로 변경
11934정성태6/7/201921171VC++: 133. typedef struct와 타입 전방 선언으로 인한 C2371 오류파일 다운로드1
11933정성태6/7/201919539VC++: 132. enum 정의를 C++11의 enum class로 바꿀 때 유의할 사항파일 다운로드1
... 76  77  78  [79]  80  81  82  83  84  85  86  87  88  89  90  ...