Microsoft MVP성태의 닷넷 이야기
Math: 64. C# - 3층 구조의 신경망(분류) [링크 복사], [링크+제목 복사],
조회: 19526
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 3층 구조의 신경망(분류)

지난 글에 이어서,

C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

아래의 책에 보면,

실체가 손에 잡히는 딥러닝
; http://www.yes24.com/Product/Goods/74258238

3층 신경망을 이용한 분류 예제를 파이썬 코드로 싣고 있습니다.

# http://nanya-kanya.net/index.php/1232/#outline__1_30

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(-1.0, 1.0, 0.1)
Y = np.arange(-1.0, 1.0, 0.1)

w_im = np.array([[1.0, 2.0],
                [2.0, 3.0]])

w_mo = np.array([[ -1.0, 1.0],
                [1.0, -1.0]])

b_im = np.array([0.3, -0.3])
b_mo = np.array([0.4, 0.1])

def middle_layer(x, w, b):
    u = np.dot(x, w) + b
    return 1 / (1 + np.exp(-u))

def output_layer(x, w, b):
    u = np.dot(x, w) + b
    return np.exp(u) / np.sum(np.exp(u))

x_1 = []
y_1 = []
x_2 = []
y_2 = []

for i in range(20):
    for j in range(20):
        inp = np.array([X[i], Y[j]])
        mid = middle_layer(inp, w_im, b_im)
        out = output_layer(mid, w_mo, b_mo)

        if out[0] > out[1]:
            x_1.append(X[i])
            y_1.append(Y[j])
        else:
            x_2.append(X[i])
            y_2.append(Y[j])

        
plt.scatter(x_1, y_1, marker="+")
plt.scatter(x_2, y_2, marker="o")
plt.show()

역시 C#으로 표현한 후,

using MathNet.Numerics.LinearAlgebra;
using System;
using System.Linq;

using np = PythonUtils;
using vector = MathNet.Numerics.LinearAlgebra.Vector<double>;
using matrix = MathNet.Numerics.LinearAlgebra.Matrix<double>;
using System.Collections.Generic;

class Program
{
    static void Main(string[] args)
    {
        var X = np.arange(-1.0, 1.0, 0.1).ToArray();
        var Y = np.arange(-1.0, 1.0, 0.1).ToArray();

        List<double> x1 = new List<double>();
        List<double> x2 = new List<double>();
        List<double> y1 = new List<double>();
        List<double> y2 = new List<double>();

        matrix w_im = GetMatrix(new[] { 1.0, 2.0 }, new[] { 2.0, 3.0 });
        matrix w_mo = GetMatrix(new[] { -1.0, 1.0 }, new[] { 1.0, -1.0 });

        vector b_im = GetVector(0.3, -0.3);
        vector b_mo = GetVector(0.4, 0.1);

        Func<vector, matrix, vector, vector> middle_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return 1 / (1 + np.exp(-u)); // sigmoid
        };

        Func<vector, matrix, vector, vector> output_layer = (x, w, b) =>
        {
            vector u = x * w + b;
            return np.exp(u) / np.sum(u); // softmax
        };

        for (int i = 0; i < X.Length; i++)
        {
            for (int j = 0; j < Y.Length; j++)
            {
                var inp = GetVector(X[i], Y[j]);
                var mid = middle_layer(inp, w_im, b_im);
                var outp = output_layer(mid, w_mo, b_mo);

                if (outp[0] > outp[1])
                {
                    x1.Add(X[i]);
                    y1.Add(Y[j]);
                }
                else
                {
                    x2.Add(X[i]);
                    y2.Add(Y[j]);
                }
            }
        }

        OutputImage("layer3_neuron_classification.png");

        void OutputImage(string fileName)
        {
            Gridmap grid = new Gridmap(471, 471);
            grid.Show(x1.ToArray(), y1.ToArray(), x2.ToArray(), y2.ToArray(), fileName);
        }
    }
}

실행해 보면 다음의 분류 상태를 볼 수 있습니다.

layer3_neuron_classification.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 7/7/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [121]  122  123  124  125  126  127  128  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
10934정성태4/5/201626468디버깅 기술: 77. windbg의 콜스택 함수 인자를 쉽게 확인하는 방법 [1]
10933정성태4/5/201631829.NET Framework: 571. C# - 스레드 선호도(Thread Affinity) 지정하는 방법 [8]파일 다운로드1
10932정성태4/4/201624533VC++: 96. C/C++ 식 평가 - printf("%d %d %d\n", a, a++, a);
10931정성태3/31/201624906개발 환경 구성: 283. Hyper-V 내에 구성한 Active Directory 환경의 시간 구성 방법 [3]
10930정성태3/30/201622911.NET Framework: 570. .NET 4.5부터 추가된 CLR Profiler의 실행 시 Rejit 기능
10929정성태3/29/201633262.NET Framework: 569. ServicePointManager.DefaultConnectionLimit의 역할파일 다운로드1
10928정성태3/28/201638983.NET Framework: 568. ODP.NET의 완전한 닷넷 버전 Oracle ODP.NET, Managed Driver [2]파일 다운로드1
10927정성태3/25/201627440.NET Framework: 567. System.Net.ServicePointManager의 DefaultConnectionLimit 속성 설명
10926정성태3/24/201627769.NET Framework: 566. openssl의 PKCS#1 PEM 개인키 파일을 .NET RSACryptoServiceProvider에서 사용하는 방법 [10]파일 다운로드1
10925정성태3/24/201621302.NET Framework: 565. C# - Rabin-Miller 소수 생성 방법을 이용하여 RSACryptoServiceProvider의 개인키를 직접 채워보자 - 두 번째 이야기파일 다운로드1
10924정성태3/22/201622595오류 유형: 324. Visual Studio에서 Azure 클라우드 서비스 생성 시 Failed to initialize the PowerShell host 에러 발생
10923정성태3/21/201622939.NET Framework: 564. C# - DGML로 바이너리 트리 출력하는 방법 [1]파일 다운로드1
10922정성태3/21/201624167.NET Framework: 563. 디버깅 용도로 이진 트리의 내용을 출력하는 방법파일 다운로드1
10921정성태3/17/201627488.NET Framework: 562. BBI 인터프리터 C/C++ 코드를 C#으로 변환 [3]파일 다운로드2
10920정성태3/15/201628067.NET Framework: 561. null 처리된 객체가 왜 GC에 의해 수집되지 않을까요? [6]파일 다운로드1
10919정성태3/12/201624292.NET Framework: 560. C#에서 return할 때 명시적으로 casting한 것과 안한 것의 차이 [2]파일 다운로드1
10918정성태3/10/201621283.NET Framework: 559. WPF - ICommand.CanExecuteChanged가 해제되지 않는 문제 [2]파일 다운로드1
10917정성태3/10/201641226.NET Framework: 558. WPF - ICommand 동작 방식 [9]파일 다운로드1
10916정성태3/9/201628334.NET Framework: 557. 머신 바이트 배열로부터 역어셈블해주는 라이브러리 - Udis86 Assembler파일 다운로드2
10915정성태3/9/201623399오류 유형: 323. FatalExecutionEngineError was detected
10914정성태3/8/201626757오류 유형: 322. 정적 라이브러리 참조 시 "LNK2019 unresolved external symbol '...' referenced in function" 오류 발생파일 다운로드1
10913정성태3/7/201626560.NET Framework: 556. C#으로 다루는 MBR(Master Boot Record) [9]파일 다운로드1
10912정성태3/2/201622727.NET Framework: 555. List<T>의 Resize 메서드 구현 [2]파일 다운로드1
10911정성태2/29/201626739Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#파일 다운로드1
10910정성태2/29/201628645Math: 14. HTML에서 수학 관련 기호/수식을 표현하기 위한 방법 - MathJax.js - 두 번째 이야기 [5]
10909정성태2/25/201626896기타: 56. ETW provider 목록 [3]
... [121]  122  123  124  125  126  127  128  129  130  131  132  133  134  135  ...