Microsoft MVP성태의 닷넷 이야기
.NET Framework: 955. .NET 메서드의 Signature 바이트 코드 분석 [링크 복사], [링크+제목 복사],
조회: 20190
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 9개 있습니다.)
.NET Framework: 491. 닷넷 Generic 타입의 메타 데이터 토큰 값 알아내는 방법
; https://www.sysnet.pe.kr/2/0/1848

.NET Framework: 494. 값(struct) 형식의 제네릭(Generic) 타입이 박싱되는 경우의 메타데이터 토큰 값
; https://www.sysnet.pe.kr/2/0/1857

.NET Framework: 495. CorElementType의 요소 값 설명
; https://www.sysnet.pe.kr/2/0/1860

.NET Framework: 509. ELEMENT_TYPE_MODIFIER의 조합
; https://www.sysnet.pe.kr/2/0/2894

.NET Framework: 510. 제네릭(Generic) 인자에 대한 메타데이터 등록 확인
; https://www.sysnet.pe.kr/2/0/2907

.NET Framework: 844. C# - 박싱과 언박싱
; https://www.sysnet.pe.kr/2/0/11943

.NET Framework: 955.  .NET 메서드의 Signature 바이트 코드 분석
; https://www.sysnet.pe.kr/2/0/12379

.NET Framework: 1130. C# - ELEMENT_TYPE_INTERNAL 유형의 사용 예
; https://www.sysnet.pe.kr/2/0/12903

.NET Framework: 1174. C# - ELEMENT_TYPE_FNPTR 유형의 사용 예
; https://www.sysnet.pe.kr/2/0/12998




.NET 메서드의 Signature 바이트 코드 분석

.NET Profiler를 만들 때, 메서드의 signature 분석이 요구될 때가 있습니다. 일례로 예전 글에서,

CLR Profiler - 별도 정의한 .NET 코드를 호출하도록 IL 코드 변경
; https://www.sysnet.pe.kr/2/0/10959

C++ 측에서 IL 코드를 재정의해 .NET 메서드로,

public static void Enter() { ... }

호출을 넘기기 위해 저 Enter 메서드의 signature를 다음과 같이 구성해 등록해야만 했습니다.

COR_SIGNATURE sigFunctionProbe[] = {
            IMAGE_CEE_CS_CALLCONV_DEFAULT,      // default calling convention (쉽게 말해, static 멤버)
            0x0,                                // # of arguments == 0
            ELEMENT_TYPE_VOID,                  // return type == void
        };

기왕 해보는 김에, 좀 더 복잡한 것을 통해 signature 분석 방법을 알아보겠습니다. ^^ 이를 위해 예제를 다음과 같이 작성하고,

using System;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    public readonly struct TestItem
    {
        internal static Task InvokeAsync<T>(MulticastDelegate @delegate, T arg)
        {
            NextCall(@delegate, arg);
            return null;
        }

        internal Task InvokeAsync2<T>(MulticastDelegate @delegate, T arg)
        {
            NextCall(@delegate, arg);
            return null;
        }

        private static void NextCall(MulticastDelegate @delegate, object arg)
        {
            Console.WriteLine(arg);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
        }
    }
}

ildasm을 이용해 역어셈블한 내용을 토대로,

C:\temp\ConsoleApp1\bin\Debug> ildasm /metadata=hex /bytes ConsoleApp1.exe /out=sample_il.txt

풀어보면, 예를 들어 "internal static Task InvokeAsync<T>(MulticastDelegate @delegate, T arg)" 메서드의 signature 출력에서 다음과 같은 바이트 출력을 볼 수 있습니다.

// SIG: 10 01 02 12 4D 12 51 1E 00

우선 가장 첫 번째 바이트는, corhdr.h에 있는 "CorCallingConvention"이 담당합니다.

typedef enum CorCallingConvention
{
    IMAGE_CEE_CS_CALLCONV_DEFAULT       = 0x0,

    IMAGE_CEE_CS_CALLCONV_VARARG        = 0x5,
    IMAGE_CEE_CS_CALLCONV_FIELD         = 0x6,
    IMAGE_CEE_CS_CALLCONV_LOCAL_SIG     = 0x7,
    IMAGE_CEE_CS_CALLCONV_PROPERTY      = 0x8,
    IMAGE_CEE_CS_CALLCONV_UNMGD         = 0x9,
    IMAGE_CEE_CS_CALLCONV_GENERICINST   = 0xa,  // generic method instantiation
    IMAGE_CEE_CS_CALLCONV_NATIVEVARARG  = 0xb,  // used ONLY for 64bit vararg PInvoke calls
    IMAGE_CEE_CS_CALLCONV_MAX           = 0xc,  // first invalid calling convention


        // The high bits of the calling convention convey additional info
    IMAGE_CEE_CS_CALLCONV_MASK      = 0x0f,  // Calling convention is bottom 4 bits
    IMAGE_CEE_CS_CALLCONV_HASTHIS   = 0x20,  // Top bit indicates a 'this' parameter
    IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS = 0x40,  // This parameter is explicitly in the signature
    IMAGE_CEE_CS_CALLCONV_GENERIC   = 0x10,  // Generic method sig with explicit number of type arguments (precedes ordinary parameter count)
    // 0x80 is reserved for internal use
} CorCallingConvention;

그래서, 0x10 == IMAGE_CEE_CS_CALLCONV_GENERIC이 되는데 이와 함께 static 메서드의 경우 "IMAGE_CEE_CS_CALLCONV_DEFAULT"도 함께 지정된 것과 같습니다.

0x10 == IMAGE_CEE_CS_CALLCONV_GENERIC | IMAGE_CEE_CS_CALLCONV_DEFAULT

만약 저 메서드가 instance 멤버였다면 첫 번째 바이트는 다음과 같이 바뀝니다.

0x30 == IMAGE_CEE_CS_CALLCONV_GENERIC | IMAGE_CEE_CS_CALLCONV_HASTHIS

이후 차례로 다음의 의미를 갖는데,

// ========== 1. Generic 인자 및 매개 변수 수
01 == # of generic args (만약 IMAGE_CEE_CS_CALLCONV_GENERIC 유형이 아니라면 생략)
02 == # of arg

// ========== 2. 반환 타입
12 == 반환 타입의 CorElementType, 0x12 == ELEMENT_TYPE_CLASS
4D == 반환 타입(System.Threading.Tasks.Task)의 토큰에 대한 compressed 인코딩 값

// ========== 3. 인자 타입 ('# of arg' 값이 0 이라면 생략)
12 == 첫 번째 인자의 CorElementType, 0x12 == ELEMENT_TYPE_CLASS
51 == System.MulticastDelegate 토큰의 compressed 인코딩 값

1E == 두 번째 인자의 CorElementType, 0x1e == ELEMENT_TYPE_MVAR
00 == generic method의 타입 인덱스, 즉 T

이 중에서, CorElementType의 경우 ELEMENT_TYPE_CLASS나 ELEMENT_TYPE_VALUETYPE이라면 뒤이어 "메타데이터 토큰의 compressed 인코딩 값"이 나오는데요, 이 값의 구성을 알아보려면 Metadata에 (반환 타입의 System.Threading.Tasks.Task에 해당하는) 토큰을 먼저 확인해야 합니다.

// TypeRef #19 (01000013)
// -------------------------------------------------------
// Token:             0x01000013
// ResolutionScope:   0x23000001
// TypeRefName:       System.Threading.Tasks.Task

여기서 상위 1바이트가 RID라는 구분자라서 보통 IL disassembler에서는 (01)000013으로 표현하는데, "compressed" 시에는 인코딩 영향으로 rid를 잘라내는 식으로 구현합니다.

#define RidFromToken(tk) ((RID) ((tk) & 0x00ffffff))

그래서, 순수 토큰 id 값으로 2바이트 우측 shift 연산을 한 다음,

0x13 << 2 (결과 값: 4C)

해당 토큰이 "TypeRef"인지 "TypeSpec"인지에 따라 1 또는 2를 더합니다.

if (typeRef) 4C | 1;
else if (typeSpec) 4C | 2;

즉, 하위 2바이트를 shift 해 확보한 자리를 통해 0 == TypeDef, 1 == TypeRef, 2 == TypeSpec 유형의 토큰임을 알 수 있습니다. 이렇게 구한 값을 이제 범위에 따라 1, 2, 또는 4 바이트 인코딩을 합니다.

int ridIndex = ...id...;

if (ridIndex <= 0x7F)
{
    // 작으면 1byte로 끝남.
    // (BYTE)ridIndex;
}
else if (ridIndex >= 0x80 && ridIndex <= 0x3FFF)
{
    // (short)(ridIndex |= 0x8000);
}
else
{
    // (int)(ridIndex |= 0xC0000000);
}

그렇기 때문에, (01)000013이었던 System.Threading.Tasks.Task 타입의 토큰이 1바이트인 "4D"로 인코딩 된 것입니다. 이런 식으로 첫 번째 인자인 "12 51"도 해석할 수 있습니다.

// TypeRef #20 (01000014)
// -------------------------------------------------------
// Token:             0x01000014
// ResolutionScope:   0x23000001
// TypeRefName:       System.MulticastDelegate

12 == ELEMENT_TYPE_CLASS
51 == System.MulticastDelegate 토큰(01000014)의 compressed 인코딩 값

마지막으로, 두 번째 인자는 generic이라 특별히 1E == ELEMENT_TYPE_MVAR 바이트가 선행이 된 다음 generic 인자의 "인덱스"가 지정이 되었습니다. 약간 혼란의 여지를 줄 수 있는데, 여기서 인덱스는 해당 메서드에서의 generic 인자의 순서가 아니라, 메타데이터에 등록된 generic 인자의 인덱스를 의미합니다.




사실, 지난 글에 소개한 라이브러리를 사용하면 위와 같은 내용을 코딩으로 작업할 필요는 없습니다. 가령, 다음의 메서드가 이미 그 작업을 아주 잘 수행하고 있기 때문입니다.

bool SigParser::ParseMethod(sig_elem_type elem_type)
; https://github.com/microsoftarchive/clrprofiler/blob/master/ILRewrite/ILRewriteProfiler/sigparse.inl#L340

(첨부 파일은 이 글의 예제 코드sample_il.txt 파일을 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 10/26/2020]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2022-01-06 03시05분
Decyphering methods signature with .NET profiling APIs
; https://chnasarre.medium.com/decyphering-method-signature-with-clr-profiling-api-8328a72a216e

-------------------------

Generic 관련 signature 예제

public class Var2Class1<T, V>
{
    public void Method(T t, V v) // 20 02 01 13 00 13 01
    {
        /* 8C0400001B : box!T */
        /* 8C0700001B : box!V */
        Console.Write($"{t}{v}");
    }
}

public class Var2Class2<T2, V2>
{
    public void Method(T2 t, V2 v) // 20 02 01 13 00 13 01
    {
        /* 8C0400001B : box!T2 */
        /* 8C0700001B : box!V2 */
        Console.Write($"{t}{v}");
    }
}

public class Var2M2Class1<T3, V3>
{
    public void Method<X, Y>(T3 t, V3 v, X x, Y y) // 30 02 04 01 13 00 13 01 1e 00 1e 01
    {
        /* 8C0400001B : box!T3 */
        /* 8C0700001B : box!V3 */
        /* 8C0800001B : box!!X */
        /* 8C0900001B : box!!Y */
        Console.Write($"{t}{v}{x}{y}");
    }
}

public class Var2M2Class2<T4, V4>
{
    public void Method<X2, Y2>(T4 t, V4 v, X2 x, Y2 y) // 30 02 04 01 13 00 13 01 1e 00 1e 01
    {
        /* 8C0400001B : box!T4 */
        /* 8C0700001B : box!V4 */
        /* 8C0800001B : box!!X2 */
        /* 8C0900001B : box!!Y2 */
        Console.Write($"{t}{v}{x}{y}");
    }
}


--------------------------------

07 04 12 80 9d 02 1c 13 00

07: IMAGE_CEE_CS_CALLCONV_LOCAL_SIG
04: # of local variables
12: ELEMENT_TYPE_CLASS
80 9d: class token
02: ELEMENT_TYPE_BOOLEAN
1c: ELEMENT_TYPE_OBJECT
13 00: ELEMENT_TYPE_VAR !T0
정성태

1  [2]  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13893정성태2/27/20252211Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법
13892정성태2/24/20252959닷넷: 2325. C# - PowerShell과 연동하는 방법파일 다운로드1
13891정성태2/23/20252489닷넷: 2324. C# - 프로세스의 성능 카운터용 인스턴스 이름을 구하는 방법파일 다운로드1
13890정성태2/21/20252305닷넷: 2323. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(Win32 API)파일 다운로드1
13889정성태2/20/20253038닷넷: 2322. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(성능 카운터, WMI) [1]파일 다운로드1
13888정성태2/17/20252483닷넷: 2321. Blazor에서 발생할 수 있는 async void 메서드의 부작용
13887정성태2/17/20253061닷넷: 2320. Blazor의 razor 페이지에서 code-behind 파일로 코드를 분리 및 DI 사용법
13886정성태2/15/20252572VS.NET IDE: 196. Visual Studio - Code-behind처럼 cs 파일을 그룹핑하는 방법
13885정성태2/14/20253229닷넷: 2319. ASP.NET Core Web API / Razor 페이지에서 발생할 수 있는 async void 메서드의 부작용
13884정성태2/13/20253501닷넷: 2318. C# - (async Task가 아닌) async void 사용 시의 부작용파일 다운로드1
13883정성태2/12/20253243닷넷: 2317. C# - Memory Mapped I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
13882정성태2/10/20252564스크립트: 70. 파이썬 - oracledb 패키지 연동 시 Thin / Thick 모드
13881정성태2/7/20252815닷넷: 2316. C# - Port I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
13880정성태2/5/20253155오류 유형: 947. sshd - Failed to start OpenSSH server daemon.
13879정성태2/5/20253380오류 유형: 946. Ubuntu - N: Updating from such a repository can't be done securely, and is therefore disabled by default.
13878정성태2/3/20253182오류 유형: 945. Windows - 최대 절전 모드 시 DRIVER_POWER_STATE_FAILURE 발생 (pacer.sys)
13877정성태1/25/20253236닷넷: 2315. C# - PCI 장치 열거 (레지스트리, SetupAPI)파일 다운로드1
13876정성태1/25/20253691닷넷: 2314. C# - ProcessStartInfo 타입의 Arguments와 ArgumentList파일 다운로드1
13875정성태1/24/20253123스크립트: 69. 파이썬 - multiprocessing 패키지의 spawn 모드로 동작하는 uvicorn의 workers
13874정성태1/24/20253541스크립트: 68. 파이썬 - multiprocessing Pool의 기본 프로세스 시작 모드(spawn, fork)
13873정성태1/23/20252968디버깅 기술: 217. WinDbg - PCI 장치 열거파일 다운로드1
13872정성태1/23/20252870오류 유형: 944. WinDbg - 원격 커널 디버깅이 연결은 되지만 Break (Ctrl + Break) 키를 눌러도 멈추지 않는 현상
13871정성태1/22/20253280Windows: 278. Windows - 윈도우를 다른 모니터 화면으로 이동시키는 단축키 (Window + Shift + 화살표)
13870정성태1/18/20253718개발 환경 구성: 741. WinDbg - 네트워크 커널 디버깅이 가능한 NIC 카드 지원 확대
13869정성태1/18/20253444개발 환경 구성: 740. WinDbg - _NT_SYMBOL_PATH 환경 변수에 설정한 경로로 심벌 파일을 다운로드하지 않는 경우
13868정성태1/17/20253096Windows: 277. Hyper-V - Windows 11 VM의 Enhanced Session 모드로 로그인을 할 수 없는 문제
1  [2]  3  4  5  6  7  8  9  10  11  12  13  14  15  ...