Microsoft MVP성태의 닷넷 이야기
.NET Framework: 955. .NET 메서드의 Signature 바이트 코드 분석 [링크 복사], [링크+제목 복사],
조회: 22180
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 9개 있습니다.)
.NET Framework: 491. 닷넷 Generic 타입의 메타 데이터 토큰 값 알아내는 방법
; https://www.sysnet.pe.kr/2/0/1848

.NET Framework: 494. 값(struct) 형식의 제네릭(Generic) 타입이 박싱되는 경우의 메타데이터 토큰 값
; https://www.sysnet.pe.kr/2/0/1857

.NET Framework: 495. CorElementType의 요소 값 설명
; https://www.sysnet.pe.kr/2/0/1860

.NET Framework: 509. ELEMENT_TYPE_MODIFIER의 조합
; https://www.sysnet.pe.kr/2/0/2894

.NET Framework: 510. 제네릭(Generic) 인자에 대한 메타데이터 등록 확인
; https://www.sysnet.pe.kr/2/0/2907

.NET Framework: 844. C# - 박싱과 언박싱
; https://www.sysnet.pe.kr/2/0/11943

.NET Framework: 955.  .NET 메서드의 Signature 바이트 코드 분석
; https://www.sysnet.pe.kr/2/0/12379

.NET Framework: 1130. C# - ELEMENT_TYPE_INTERNAL 유형의 사용 예
; https://www.sysnet.pe.kr/2/0/12903

.NET Framework: 1174. C# - ELEMENT_TYPE_FNPTR 유형의 사용 예
; https://www.sysnet.pe.kr/2/0/12998




.NET 메서드의 Signature 바이트 코드 분석

.NET Profiler를 만들 때, 메서드의 signature 분석이 요구될 때가 있습니다. 일례로 예전 글에서,

CLR Profiler - 별도 정의한 .NET 코드를 호출하도록 IL 코드 변경
; https://www.sysnet.pe.kr/2/0/10959

C++ 측에서 IL 코드를 재정의해 .NET 메서드로,

public static void Enter() { ... }

호출을 넘기기 위해 저 Enter 메서드의 signature를 다음과 같이 구성해 등록해야만 했습니다.

COR_SIGNATURE sigFunctionProbe[] = {
            IMAGE_CEE_CS_CALLCONV_DEFAULT,      // default calling convention (쉽게 말해, static 멤버)
            0x0,                                // # of arguments == 0
            ELEMENT_TYPE_VOID,                  // return type == void
        };

기왕 해보는 김에, 좀 더 복잡한 것을 통해 signature 분석 방법을 알아보겠습니다. ^^ 이를 위해 예제를 다음과 같이 작성하고,

using System;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    public readonly struct TestItem
    {
        internal static Task InvokeAsync<T>(MulticastDelegate @delegate, T arg)
        {
            NextCall(@delegate, arg);
            return null;
        }

        internal Task InvokeAsync2<T>(MulticastDelegate @delegate, T arg)
        {
            NextCall(@delegate, arg);
            return null;
        }

        private static void NextCall(MulticastDelegate @delegate, object arg)
        {
            Console.WriteLine(arg);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
        }
    }
}

ildasm을 이용해 역어셈블한 내용을 토대로,

C:\temp\ConsoleApp1\bin\Debug> ildasm /metadata=hex /bytes ConsoleApp1.exe /out=sample_il.txt

풀어보면, 예를 들어 "internal static Task InvokeAsync<T>(MulticastDelegate @delegate, T arg)" 메서드의 signature 출력에서 다음과 같은 바이트 출력을 볼 수 있습니다.

// SIG: 10 01 02 12 4D 12 51 1E 00

우선 가장 첫 번째 바이트는, corhdr.h에 있는 "CorCallingConvention"이 담당합니다.

typedef enum CorCallingConvention
{
    IMAGE_CEE_CS_CALLCONV_DEFAULT       = 0x0,

    IMAGE_CEE_CS_CALLCONV_VARARG        = 0x5,
    IMAGE_CEE_CS_CALLCONV_FIELD         = 0x6,
    IMAGE_CEE_CS_CALLCONV_LOCAL_SIG     = 0x7,
    IMAGE_CEE_CS_CALLCONV_PROPERTY      = 0x8,
    IMAGE_CEE_CS_CALLCONV_UNMGD         = 0x9,
    IMAGE_CEE_CS_CALLCONV_GENERICINST   = 0xa,  // generic method instantiation
    IMAGE_CEE_CS_CALLCONV_NATIVEVARARG  = 0xb,  // used ONLY for 64bit vararg PInvoke calls
    IMAGE_CEE_CS_CALLCONV_MAX           = 0xc,  // first invalid calling convention


        // The high bits of the calling convention convey additional info
    IMAGE_CEE_CS_CALLCONV_MASK      = 0x0f,  // Calling convention is bottom 4 bits
    IMAGE_CEE_CS_CALLCONV_HASTHIS   = 0x20,  // Top bit indicates a 'this' parameter
    IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS = 0x40,  // This parameter is explicitly in the signature
    IMAGE_CEE_CS_CALLCONV_GENERIC   = 0x10,  // Generic method sig with explicit number of type arguments (precedes ordinary parameter count)
    // 0x80 is reserved for internal use
} CorCallingConvention;

그래서, 0x10 == IMAGE_CEE_CS_CALLCONV_GENERIC이 되는데 이와 함께 static 메서드의 경우 "IMAGE_CEE_CS_CALLCONV_DEFAULT"도 함께 지정된 것과 같습니다.

0x10 == IMAGE_CEE_CS_CALLCONV_GENERIC | IMAGE_CEE_CS_CALLCONV_DEFAULT

만약 저 메서드가 instance 멤버였다면 첫 번째 바이트는 다음과 같이 바뀝니다.

0x30 == IMAGE_CEE_CS_CALLCONV_GENERIC | IMAGE_CEE_CS_CALLCONV_HASTHIS

이후 차례로 다음의 의미를 갖는데,

// ========== 1. Generic 인자 및 매개 변수 수
01 == # of generic args (만약 IMAGE_CEE_CS_CALLCONV_GENERIC 유형이 아니라면 생략)
02 == # of arg

// ========== 2. 반환 타입
12 == 반환 타입의 CorElementType, 0x12 == ELEMENT_TYPE_CLASS
4D == 반환 타입(System.Threading.Tasks.Task)의 토큰에 대한 compressed 인코딩 값

// ========== 3. 인자 타입 ('# of arg' 값이 0 이라면 생략)
12 == 첫 번째 인자의 CorElementType, 0x12 == ELEMENT_TYPE_CLASS
51 == System.MulticastDelegate 토큰의 compressed 인코딩 값

1E == 두 번째 인자의 CorElementType, 0x1e == ELEMENT_TYPE_MVAR
00 == generic method의 타입 인덱스, 즉 T

이 중에서, CorElementType의 경우 ELEMENT_TYPE_CLASS나 ELEMENT_TYPE_VALUETYPE이라면 뒤이어 "메타데이터 토큰의 compressed 인코딩 값"이 나오는데요, 이 값의 구성을 알아보려면 Metadata에 (반환 타입의 System.Threading.Tasks.Task에 해당하는) 토큰을 먼저 확인해야 합니다.

// TypeRef #19 (01000013)
// -------------------------------------------------------
// Token:             0x01000013
// ResolutionScope:   0x23000001
// TypeRefName:       System.Threading.Tasks.Task

여기서 상위 1바이트가 RID라는 구분자라서 보통 IL disassembler에서는 (01)000013으로 표현하는데, "compressed" 시에는 인코딩 영향으로 rid를 잘라내는 식으로 구현합니다.

#define RidFromToken(tk) ((RID) ((tk) & 0x00ffffff))

그래서, 순수 토큰 id 값으로 2바이트 우측 shift 연산을 한 다음,

0x13 << 2 (결과 값: 4C)

해당 토큰이 "TypeRef"인지 "TypeSpec"인지에 따라 1 또는 2를 더합니다.

if (typeRef) 4C | 1;
else if (typeSpec) 4C | 2;

즉, 하위 2바이트를 shift 해 확보한 자리를 통해 0 == TypeDef, 1 == TypeRef, 2 == TypeSpec 유형의 토큰임을 알 수 있습니다. 이렇게 구한 값을 이제 범위에 따라 1, 2, 또는 4 바이트 인코딩을 합니다.

int ridIndex = ...id...;

if (ridIndex <= 0x7F)
{
    // 작으면 1byte로 끝남.
    // (BYTE)ridIndex;
}
else if (ridIndex >= 0x80 && ridIndex <= 0x3FFF)
{
    // (short)(ridIndex |= 0x8000);
}
else
{
    // (int)(ridIndex |= 0xC0000000);
}

그렇기 때문에, (01)000013이었던 System.Threading.Tasks.Task 타입의 토큰이 1바이트인 "4D"로 인코딩 된 것입니다. 이런 식으로 첫 번째 인자인 "12 51"도 해석할 수 있습니다.

// TypeRef #20 (01000014)
// -------------------------------------------------------
// Token:             0x01000014
// ResolutionScope:   0x23000001
// TypeRefName:       System.MulticastDelegate

12 == ELEMENT_TYPE_CLASS
51 == System.MulticastDelegate 토큰(01000014)의 compressed 인코딩 값

마지막으로, 두 번째 인자는 generic이라 특별히 1E == ELEMENT_TYPE_MVAR 바이트가 선행이 된 다음 generic 인자의 "인덱스"가 지정이 되었습니다. 약간 혼란의 여지를 줄 수 있는데, 여기서 인덱스는 해당 메서드에서의 generic 인자의 순서가 아니라, 메타데이터에 등록된 generic 인자의 인덱스를 의미합니다.




사실, 지난 글에 소개한 라이브러리를 사용하면 위와 같은 내용을 코딩으로 작업할 필요는 없습니다. 가령, 다음의 메서드가 이미 그 작업을 아주 잘 수행하고 있기 때문입니다.

bool SigParser::ParseMethod(sig_elem_type elem_type)
; https://github.com/microsoftarchive/clrprofiler/blob/master/ILRewrite/ILRewriteProfiler/sigparse.inl#L340

(첨부 파일은 이 글의 예제 코드sample_il.txt 파일을 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 10/26/2020]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2022-01-06 03시05분
Decyphering methods signature with .NET profiling APIs
; https://chnasarre.medium.com/decyphering-method-signature-with-clr-profiling-api-8328a72a216e

-------------------------

Generic 관련 signature 예제

public class Var2Class1<T, V>
{
    public void Method(T t, V v) // 20 02 01 13 00 13 01
    {
        /* 8C0400001B : box!T */
        /* 8C0700001B : box!V */
        Console.Write($"{t}{v}");
    }
}

public class Var2Class2<T2, V2>
{
    public void Method(T2 t, V2 v) // 20 02 01 13 00 13 01
    {
        /* 8C0400001B : box!T2 */
        /* 8C0700001B : box!V2 */
        Console.Write($"{t}{v}");
    }
}

public class Var2M2Class1<T3, V3>
{
    public void Method<X, Y>(T3 t, V3 v, X x, Y y) // 30 02 04 01 13 00 13 01 1e 00 1e 01
    {
        /* 8C0400001B : box!T3 */
        /* 8C0700001B : box!V3 */
        /* 8C0800001B : box!!X */
        /* 8C0900001B : box!!Y */
        Console.Write($"{t}{v}{x}{y}");
    }
}

public class Var2M2Class2<T4, V4>
{
    public void Method<X2, Y2>(T4 t, V4 v, X2 x, Y2 y) // 30 02 04 01 13 00 13 01 1e 00 1e 01
    {
        /* 8C0400001B : box!T4 */
        /* 8C0700001B : box!V4 */
        /* 8C0800001B : box!!X2 */
        /* 8C0900001B : box!!Y2 */
        Console.Write($"{t}{v}{x}{y}");
    }
}


--------------------------------

07 04 12 80 9d 02 1c 13 00

07: IMAGE_CEE_CS_CALLCONV_LOCAL_SIG
04: # of local variables
12: ELEMENT_TYPE_CLASS
80 9d: class token
02: ELEMENT_TYPE_BOOLEAN
1c: ELEMENT_TYPE_OBJECT
13 00: ELEMENT_TYPE_VAR !T0
정성태

... 46  [47]  48  49  50  51  52  53  54  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
1525정성태11/2/201331109.NET Framework: 391. C# - EXE/DLL로부터 추출한 이미지/아이콘의 배경색 투명 처리 [8]
1516정성태10/28/201333294.NET Framework: 390. FolderBrowserDialog보다 더 쓸만한 대화창이 필요하다면? [1]
1511정성태10/12/201326924.NET Framework: 389. The 3n + 1 problem의 C#/Java 버전 풀이 [2]
1508정성태10/4/201328124.NET Framework: 388. 일반 닷넷 프로젝트에서 WinRT API를 호출하는 방법 [2]파일 다운로드1
1504정성태9/24/201331255.NET Framework: 387. UDP 브로드캐스팅을 이용해 서비스 측의 IP 주소를 구하는 방법 [1]파일 다운로드1
1500정성태9/20/201346370.NET Framework: 386. C# 버전의 한글 형태소 분석기 [1]파일 다운로드1
1494정성태9/13/201334731.NET Framework: 385. Html Agility Pack 소개 - 웹 문서에서 텍스트만 분리하는 방법 [2]파일 다운로드1
1493정성태9/13/201336214.NET Framework: 384. WebClient.DownloadString 문자열 인코딩 문제
1491정성태9/9/201326666.NET Framework: 383. RSAParameters의 ToXmlString과 ExportParameters의 결과 비교
1488정성태8/27/201330530.NET Framework: 382. WCF에서 DataSet을 binary encoding으로 직렬화하는 방법파일 다운로드1
1486정성태8/27/201330356.NET Framework: 381. SqlCommand를 이용해 Microsoft SQL 서버의 쿼리 실행 계획을 구하는 방법파일 다운로드1
1485정성태8/26/201333837.NET Framework: 380. 프로세스 스스로 풀 덤프 남기는 방법 [3]파일 다운로드1
1483정성태8/23/201328288.NET Framework: 379. System.IO.MemoryStream, ArraySegment&lt;T&gt; 의 효율적인 사용법 [1]
1482정성태8/23/201321815.NET Framework: 378. Java / C# - 정수의 부호 유무에 따른 16진수 문자열 변환
1475정성태8/12/201335590.NET Framework: 377. 프로세스가 종료된 후에도 소켓이 살아있다면?파일 다운로드1
1472정성태8/7/201327613.NET Framework: 376. .NET 2.0의 유니코드 관련 문자열 비교 오류
1469정성태8/6/201325456.NET Framework: 375. System.Net.Sockets.Socket이 Thread-safe할까? [2]파일 다운로드1
1466정성태7/27/201332603.NET Framework: 374. C#과 비교한 C++ STL vector 성능 [7]파일 다운로드1
1461정성태6/27/201344799.NET Framework: 373. C# 문자열의 인코딩이란?
1460정성태6/17/201326623.NET Framework: 372. PerformanceCounter - Category does not exist. [1]
1458정성태6/13/201331071.NET Framework: 371. CAS Lock 방식이 과연 성능에 얼마나 도움이 될까요? [1]파일 다운로드1
1456정성태6/5/201335732.NET Framework: 370. C# - WebKit .NET 사용 [2]파일 다운로드1
1455정성태6/1/201329642.NET Framework: 369. ThreadPool.QueueUserWorkItem의 실행 지연 [4]파일 다운로드1
1446정성태4/30/201328819.NET Framework: 368. Encoding 타입의 대체(fallback) 메카니즘 [1]
1441정성태4/21/201336751.NET Framework: 367. LargeAddressAware 옵션이 적용된 닷넷 32비트 프로세스의 가용 메모리 [14]
1438정성태4/17/201328934.NET Framework: 366. 다른 프로세스에 환경 변수 설정하는 방법 - 두 번째 이야기 [1]파일 다운로드1
... 46  [47]  48  49  50  51  52  53  54  55  56  57  58  59  60  ...