Microsoft MVP성태의 닷넷 이야기
Math: 4. 소수 판정 및 소인수 분해 소스 코드 - C# [링크 복사], [링크+제목 복사],
조회: 31497
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

소수 판정 및 소인수 분해 소스 코드 - C#

*** 유의사항: "프로젝트 오일러 3번 문제"를 풀지 않은 분들의 경우 가능한 풀고 나서 읽기를 바랍니다.

처음에 저는 소인수 분해를 얻기 위해 sqrt(n)까지의 루프를 돌면서 해당 수에 대해 '소수'인지를 판별하는 방법을 사용했습니다. 즉, 나눠져서 0이 나오지 않은 수에 한해서 '소수'인지를 판단하고 그렇다면 '소인수 목록'에 추가하는 것인데요.

이를 위해, 소수를 구하는 방법이 필요했고 다음의 코드가 이를 잘 표현해 주고 있습니다.

// 출처: http://www.dotnetperls.com/prime
public static bool IsPrime(long candidate)
{
    if ((candidate & 1) == 0)
    {
        if (candidate == 2)
        {
            return true;
        }
        else
        {
            return false;
        }
    }

    for (int i = 3; (i * i) <= candidate; i += 2)
    {
        if ((candidate % i) == 0)
        {
            return false;
        }
    }

    return candidate != 1;
}

위의 코드에 보면, sqrt(candidate)로 구하지 않고, (i * i)로 판별을 하고 있는데요. 부동 소수점 연산을 필요로 하는 sqrt를 쓰지 않는 것은 괜찮은 아이디어 같습니다. ^^ 그렇긴 해도 사실 차이는 무시할 수 있을 정도인데, 예를 들어 600851475143라는 수에 대해서 테스트를 해보면 다음과 같은 결과를 얻을 수 있었습니다. (물론, JIT 컴파일 시간을 빼기 위해 이미 한번 실행한 코드로 계산된 값입니다.)

i * i: , 600851475143 == Non-Prime, ticks = 11
sqrt: , 600851475143 == Non-Prime, ticks = 15

아마도, i * i는 매 루프마다 수행되는 반면 sqrt로 한번 정해놓으면 재사용이 되기 때문에 성능 향상에 큰 차이는 없는 것 같습니다.

일단, 이렇게 해서 소수 판별 코드는 정했으니 소인수 목록을 구하는 방법은 다음과 같이 처리할 수 있습니다.

static HashSet<long> getFactorizationList1(long number)
{
    int rootLoop = (int)Math.Ceiling(Math.Sqrt(number)) + 1;

    HashSet<long> primes = new HashSet<long>();

    for (int i = 2; i < rootLoop; i++)
    {
        if ((number % i) != 0)
        {
            continue;
        }

        long quotient = number / i;
        if (PrimeTool.IsPrime(quotient) == true)
        {
            primes.Add(quotient);
        }

        if (PrimeTool.IsPrime(i) == true)
        {
            primes.Add(i);
        }
    }

    return primes;
}

그런데, 역시 ^^ 머리 좋은 분들이 계시더군요. 아래의 사이트에 보면 더 좋은 알고리즘이 있습니다.

소인수분해 하는 소스 코드 작성해봤는데요.
; http://kldp.org/node/36453

위의 방식으로 갈까 하다가... 혹시나 싶어서 "프로젝트 오일러"의 3번 문제를 풀었던 분들 중에서 코드를 열람해 보니 아이디가 skycolour(소라게) 님의 더 좋은 코드가 있어서 참조해 보았습니다.

static HashSet<long> getFactorizationList2(long number)
{
    HashSet<long> primes = new HashSet<long>();

    for (long i = 2; i <= number;)
    {
        if (number % i == 0)
        {
            primes.Add(i);
            number = number / i;
        }
        else
        {
            i++;
        }
    }

    return primes;
}

실제로 2개의 알고리즘으로 테스트를 해보면 후자의 방법이 훨씬 더 빠른 속도를 보여주고 있습니다.

Factorization #1, 600851475143 == # of factors: 4, ticks = 36105
Factorization #2, 600851475143 == # of factors: 4, ticks = 218

그런데, 이상하게도 특정 수에 대해서는 2번째 방법의 성능이 더 느리다는 것을 발견했습니다. 바로 해당 수가 소수인 경우입니다.

Factorization #1, 600851475143 == # of factors: 4, ticks = 35101
Factorization #2, 600851475143 == # of factors: 4, ticks = 218
Factorization #1, 100000007 == # of factors: 0, ticks = 283
Factorization #2, 100000007 == # of factors: 1, ticks = 2835450

원인은, 두 번째 방식의 소인수 분해에서 루프의 변수가 n까지 되는 것 때문에 그렇습니다.

static HashSet<long> getFactorizationList2(long number)
{
    HashSet<long> primes = new HashSet<long>();

    for (long i = 2; i <= number;)
    {
        if (number % i == 0)
        {
            primes.Add(i);
            number = number / i;
        }
        else
        {
            i ++;
        }
    }

    return primes;
}

즉, 주어진 수가 소수인 경우에는 루프를 n이 될 때까지 반복해서 오히려 계산량이 많아지게 되는 것입니다. 아하... 그래서 ^^ 2가지 방식의 장점을 다음과 같이 합쳐 보았습니다.

static HashSet<long> getFactorizationList3(long number)
{
    HashSet<long> primes = new HashSet<long>();
    long i;

    for (i = 2; i * i <= number; )
    {
        if (number % i == 0)
        {
            primes.Add(i);
            number = number / i;
        }
        else
        {
            i++;
        }
    }

    if (primes.Count != 0)
    {
        primes.Add(number);
    }

    return primes;
}

그렇게 해서 처리하니, 이번에는 소수와 소수가 아닌 수에 대한 편차가 심하지 않게 개선이 되었습니다.

Factorization #1, 600851475143 == # of factors: 4, ticks = 35598
Factorization #2, 600851475143 == # of factors: 4, ticks = 219
Factorization #3, 600851475143 == # of factors: 4, ticks = 83
Factorization #1, 100000007 == # of factors: 0, ticks = 284
Factorization #2, 100000007 == # of factors: 1, ticks = 2876019
Factorization #3, 100000007 == # of factors: 0, ticks = 360

여세를 몰아서 ^^ 2 ~ n까지의 숫자들에 대해 각각 소인수 목록을 구해오는 방법을 테스트해 보았는데,

for (long i = 2; i < number; i++)
{
    getFactorizationList(number);
}

음... 결과가 약간 실망스럽군요. ^^

Factorization Loop #1, 100 == Prime, ticks = 163
Factorization Loop #2, 100 == Prime, ticks = 186
Factorization Loop #3, 100 == Prime, ticks = 133
Factorization Loop #1, 100000 == Prime, ticks = 1503229
Factorization Loop #2, 100000 == Prime, ticks = 219711
Factorization Loop #3, 100000 == Prime, ticks = 196196
Factorization Loop #1, 10000000 == Prime, ticks = 1073849524
Factorization Loop #2, 10000000 == Prime, ticks = 25239246
Factorization Loop #3, 10000000 == Prime, ticks = 25895029

아쉽게도 ^^ 숫자가 커질수록 별다르게 힘을 못 받는 모습을 보여주고 있습니다. (루프마다 계산되는 i * i가 오히려 역효과가 발생한 듯 싶습니다.)

자... 여기서 한번 더 최적화 단계를 들어가는데요. 위와 같이 2 ~ n까지의 숫자들에 대한 소인수 목록을 구해오는 방식에서는 한가지 더 써먹을 것이 있습니다. 바로 중간 중간 '소수' 목록이 자동으로 구해진다는 점인데, 그래서 나누는 수를 단순히 +1씩 증가시킬 것이 아니라 소수 목록에서 발췌를 해오면 되는 것입니다.

따라서, 별도의 소수 목록만을 담은 컨테이너를 유지시켜 주어 다음과 같이 스스로 재활용하는 것이 가능합니다.

static List<long> _primes = new List<long>();
static HashSet<long> getFactorizationList4(long number)
{
    HashSet<long> primes = new HashSet<long>();

    for (int n = 0; n < _primes.Count;)
    {
        long prime = _primes[n];
        if (prime * prime > number)
        {
            break;
        }

        if (number % prime == 0)
        {
            primes.Add(prime);
            number = number / prime;
        }
        else
        {
            n++;
        }
    }

    if (primes.Count != 0)
    {
        primes.Add(number);
    }
    else
    {
        _primes.Add(number);
    }

    return primes;
}

최종적으로, Release 빌드로 설정하여 제 컴퓨터에서 테스트 해보니 다음과 같은 결과를 얻을 수 있었습니다.

Factorization Loop #1, 100 == Prime, ticks = 244
Factorization Loop #2, 100 == Prime, ticks = 194
Factorization Loop #3, 100 == Prime, ticks = 125
Factorization Loop #4, 100 == Prime, ticks = 96
Factorization Loop #1, 100000 == Prime, ticks = 1420842
Factorization Loop #2, 100000 == Prime, ticks = 159405
Factorization Loop #3, 100000 == Prime, ticks = 165762
Factorization Loop #4, 100000 == Prime, ticks = 84306
Factorization Loop #1, 10000000 == Prime, ticks = 882801285
Factorization Loop #2, 10000000 == Prime, ticks = 21123888
Factorization Loop #3, 10000000 == Prime, ticks = 20510663
Factorization Loop #4, 10000000 == Prime, ticks = 11524265

거의 2배 가까운 성능 향상이 있으니, 어느 정도는 만족스러운 결과를 얻은 것 같습니다.

이 외에도 덧글에 보니 재미있는 방법들이 있는데... 음, 그런 것들은 일단 넘어가겠습니다. ^^

첨부된 파일은 위의 코드를 포함한 예제 프로젝트이므로 여러분들도 테스트를 하실 수 있습니다. 더욱 좋은 코드 있으시면 덧글이나, 또는 수학을 많이 모르는 분들도 알기 쉽게 설명해 주시거나 아니면 그냥 아무 생각 없이 가져다 쓸 수 있도록 완성된 코드를 알려주시면 감사하겠습니다. ^^




참고로 아래의 코드는 .NET의 (internal 접근자를 가진) HashHelpers 타입에 구현된 IsPrime 메서드 구현입니다.

public static bool IsPrime(int candidate)
{
    if (((uint)candidate & (true ? 1u : 0u)) != 0)
    {
        int num = (int)Math.Sqrt(candidate);
        for (int i = 3; i <= num; i += 2)
        {
            if (candidate % i == 0)
            {
                return false;
            }
        }

        return true;
    }

    return candidate == 2;
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 2/11/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2016-03-24 11시53분
(BigInteger 급) 소수 판정해주는 웹 페이지
; https://www.wolframalpha.com/input/?i=2&lk=3
정성태

... [136]  137  138  139  140  141  142  143  144  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1654정성태3/19/201425182개발 환경 구성: 219. SOS.dll 확장 모듈을 버전 별로 구하는 방법 [4]
1653정성태3/13/201420013.NET Framework: 428. .NET Reflection으로 다차원/Jagged 배열을 구분하는 방법
1652정성태3/12/201421081VC++: 76. Direct Show를 사용하는 다른 프로그램의 필터 그래프를 graphedt.exe에서 확인하는 방법파일 다운로드1
1651정성태3/11/201424712.NET Framework: 427. C# 컴파일러는 변수를 초기화시키지 않을까요?
1650정성태3/6/201425496VC++: 75. Visual C++ 컴파일 오류 - Cannot use __try in functions that require object unwinding [1]파일 다운로드1
1649정성태3/5/201420147기타: 44. BTN 스토어 앱 개인정보 보호 정책 안내
1648정성태3/5/201420534개발 환경 구성: 218. 스토어 앱 인증 실패 - no privacy statement
1647정성태3/3/201421762오류 유형: 224. 스카이드라이브 비정상 종료 - Error 0x80040A41: No error description available
1646정성태3/3/201431016오류 유형: 223. Microsoft-Windows-DistributedCOM 10016 이벤트 로그 에러 [1]
1645정성태3/1/201420806기타: 43. 마이크로소프트 MVP들이 모여 전국 세미나를 엽니다.
1644정성태2/26/201427768.NET Framework: 426. m3u8 스트리밍 파일을 윈도우 8.1 Store App에서 재생하는 방법파일 다운로드1
1643정성태2/25/201423553오류 유형: 222. 윈도우 8 Store App - APPX1204 SignTool Error: An unexpected internal error has occurred [1]
1642정성태2/25/201428147Windows: 91. 한글이 포함된 사용자 프로파일 경로 변경 [2]
1641정성태2/24/201425035기타: 42. 클래스 설명 [5]
1640정성태2/24/201446011.NET Framework: 425. C# - VLC(ActiveX) 컨트롤을 레지스트리 등록 없이 사용하는 방법 [15]
1639정성태2/23/201421731기타: 41. BBS 스토어 앱 개인정보 보호 정책 안내
1638정성태2/18/201444369Windows: 90. 실행 파일로부터 관리자 요구 권한을 제거하는 방법(부제: 크랙 버전을 보다 안전하게 실행하는 방법) [8]
1637정성태2/14/201425501Windows: 89. 컴퓨터를 껐는데도 어느 순간 자동으로 켜진다면? - 두 번째 이야기
1636정성태2/14/201421375Windows: 88. Hyper-V가 설치된 컴퓨터의 윈도우 백업 설정
1635정성태2/14/201422311오류 유형: 221. SharePoint - System.InvalidOperationException: The farm is unavailable.
1634정성태2/14/201422460.NET Framework: 424. C# - CSharpCodeProvider로 컴파일한 메서드의 실행이 일반 메서드보다 더 빠르다? [1]파일 다운로드1
1633정성태2/13/201425327오류 유형: 220. 2014년 2월 13일 이후로 Visual Studio 2010 Macro가 동작하지 않는다면? [3]
1632정성태2/12/201443303.NET Framework: 423. C#에서 DirectShow를 이용한 미디어 재생 [2]파일 다운로드1
1631정성태2/11/201422327개발 환경 구성: 217. Realtek 사운드 장치에서 재생되는 오디오를 GraphEditor로 녹음하는 방법
1630정성태2/5/201422633개발 환경 구성: 216. Hyper-V에 올려진 윈도우 XP VM에서 24bit 컬러 및 ClearType 활성화하는 방법
1629정성태2/5/201432440개발 환경 구성: 215. DOS batch - 하나의 .bat 파일에서 다중 .bat 파일을 (비동기로) 실행하는 방법 [1]
... [136]  137  138  139  140  141  142  143  144  145  146  147  148  149  150  ...