Microsoft MVP성태의 닷넷 이야기
Math: 5. Euler's totient function - C# [링크 복사], [링크+제목 복사],
조회: 29193
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[Phi.zip]    
(연관된 글이 1개 있습니다.)

Euler's totient function - C#

*** 유의사항: "프로젝트 오일러의 70번 문제"를 풀지 않은 분들의 경우 가능한 문제를 풀고 나서 읽기를 바랍니다.

"프로젝트 오일러" 문제의 69번과 70번 문제는 오일러의 φ(Phi) 함수를 구하는 수학적 지식이 있어야 합니다. 이번 글은 제가 그 문제를 푸는 과정에서 헤맸던 사항을 정리한 것에 불과하고, 제 지식의 한계로 ^^; 그 어떤 증명이나 수학적인 과정들을 포함하고 있지는 않습니다.

일단, 저는 φ(Phi) 함수를 모른 상태에서 10의 7승을 가볍게 생각하고 덤벼들었습니다. 즉, 다음과 같이 각각의 수마다 공약수가 있는지를 기반으로 계산을 시작했더랬습니다.

for (int i = 2; i < 1000000; i ++)
{
    int relativelyPrimeCount = 0;

    for (int j = 1; j < i; j ++)
    {
        if (유클리드호제법(i, j) == true)
        {
            relativelyPrimeCount ++;
        }
    }

    ...[생략]...
}

이 방법이 아닐 거라는 것을 아는 데에는 그리 오래 걸리진 않았습니다. ^^; (원래, "프로젝트 오일러"의 모든 문제는 1분 내에 계산이 나오도록 출제되었다고 합니다.)

따라서, 뭔가 수학적인 계산이 필요함을 알게 되었고 검색을 해서 오일러의 파이 함수를 구하는 공식을 찾아냈습니다.

Euler's totient function
; http://en.wikipedia.org/wiki/Totient#Euler.27s_product_formula

위의 그림에 보면 범용적으로 다음과 같은 계산을 통해서 구할 수 있다고 나옵니다. (역시, 수학자들은 머리가 비상합니다. ^^ 어쩜 저렇게 표기도 멋있게 하는지!)

euler_phi_func_1.png

위와 같이 씌여지면 '비(非) 수학자'들은 당황할 수 있는데 ^^ 그 아래에 있는 예제 식을 보면 금방 이해가 됩니다.

euler_phi_func_2.png

숫자 36은 소인수 분해를 하면 2, 3 값이 나옵니다. 따라서, 파이 함수 값은 36 * (1 - 1/2)(1 - 1/3) = 12라는 계산을 통해서 구할 수 있는 것입니다. 이 때문에 ^^ 지난번에 소인수 분해를 하는 함수를 다룬 이야기를 쓴 것입니다.

소수 판정 및 소인수 분해 소스 코드 - C#
; https://www.sysnet.pe.kr/2/0/1255

이렇게 해서 파이 함수를 C#으로 작성하면 대강 다음과 같이 나옵니다.

static int GetPhiCount(int targetNumber)
{
    // 소인수를 모두 구하고,
    List<int> primes = new List<int>();

    int tempNumber = targetNumber;

    for (int i = 2; i * i <= tempNumber;)
    {
        if (tempNumber % i == 0)
        {
            primes.Add(i);
            tempNumber = tempNumber / i;
        }
        else
        {
            i++;
        }
    }

    primes.Add(tempNumber);

    double product = 1;

    // Euler's totient function 계산을 합니다.
    for (int i = 0; i < primes.Count; i++)
    { 
        product = product * (1 - (double)1 / primes[i]);
    }

    return (int)(product * targetNumber);
}

위와 같이 계산하고 실행하면, 다음과 같이 계산이 되어 답이 9708131로 나옵니다.

[0]21 ==> 1.75 (21, 12)
[1]291 ==> 1.515625 (291, 192)
[2]2817 ==> 1.50480769230769 (2817, 1872)
[3]2991 ==> 1.50150602409639 (2991, 1992)
[4]4435 ==> 1.25141083521445 (4435, 3544)
[5]20617 ==> 1.02185765265662 (20617, 20176)
[6]23729 ==> 1.01933072726492 (23729, 23279)
[7]49781 ==> 1.01654040146209 (49781, 48971)
[8]75841 ==> 1.00873856139604 (75841, 75184)
[9]118577 ==> 1.00595546129374 (118577, 117875)
[10]176569 ==> 1.00496880976232 (176569, 175696)
[11]209681 ==> 1.00474385574845 (209681, 208691)
[12]223121 ==> 1.00445682952852 (223121, 222131)
[13]284029 ==> 1.00384887255248 (284029, 282940)
[14]400399 ==> 1.00340567361668 (400399, 399040)
[15]474883 ==> 1.00294622038996 (474883, 473488)
[16]704129 ==> 1.00243444439857 (704129, 702419)
[17]732031 ==> 1.00235378851778 (732031, 730312)
[18]778669 ==> 1.00228215874454 (778669, 776896)
[19]783169 ==> 1.0022690159663 (783169, 781396)
[20]979571 ==> 1.00202538689493 (979571, 977591)
[21]989537 ==> 1.0020232112352 (989537, 987539)
[22]1288663 ==> 1.00178409288788 (1288663, 1286368)
[23]1405913 ==> 1.00170571256962 (1405913, 1403519)
[24]1504051 ==> 1.00169629917736 (1504051, 1501504)
[25]1514419 ==> 1.00163696539025 (1514419, 1511944)
[26]1617953 ==> 1.00159343411051 (1617953, 1615379)
[27]1679567 ==> 1.00154564021527 (1679567, 1676975)
[28]1945241 ==> 1.00143632966803 (1945241, 1942451)
[29]2094901 ==> 1.00143266612617 (2094901, 2091904)
[30]2239261 ==> 1.0013724224038 (2239261, 2236192)
[31]2710627 ==> 1.00125996595765 (2710627, 2707216)
[32]2868469 ==> 1.00124716569118 (2868469, 2864896)
[33]3159587 ==> 1.00117494999016 (3159587, 3155879)
[34]3582907 ==> 1.00111402322488 (3582907, 3578920)
[35]3689251 ==> 1.0011014351491 (3689251, 3685192)
[36]4079147 ==> 1.00108670070255 (4079147, 4074719)
[37]4696009 ==> 1.00107632552825 (4696009, 4690960)
[38]5050429 ==> 1.00089359323969 (5050429, 5045920)
[39]5380657 ==> 1.0008923223447 (5380657, 5375860)
[40]5459471 ==> 1.00085796137744 (5459471, 5454791)
[41]5886817 ==> 1.00084003811029 (5886817, 5881876)
[42]6018163 ==> 1.00083067694101 (6018163, 6013168)
[43]6159431 ==> 1.00081892749421 (6159431, 6154391)
[44]6606071 ==> 1.00081809864482 (6606071, 6600671)
[45]6636841 ==> 1.00077763053849 (6636841, 6631684)
[46]7188239 ==> 1.00075179187505 (7188239, 7182839)
[47]7357291 ==> 1.00074798090044 (7357291, 7351792)
[48]7507321 ==> 1.00074502794821 (7507321, 7501732)
[49]7983917 ==> 1.0007242290464 (7983917, 7978139)
[50]8219537 ==> 1.00069906784866 (8219537, 8213795)
[51]8849513 ==> 1.00067778448828 (8849513, 8843519)
[52]9708131 ==> 1.00064936196064 (9708131, 9701831)

그런데, 이 답은 옳지 않다고 판정되었습니다. 제가 이 단계에서 ^^; 거의 이틀을 고민했습니다. 혹시 파이 함수를 구하는 내부 코드에 문제가 있는 것은 아닌지...? 내가 모르는 뭔가 특별한 수학적 지식이 포함되어야 하는 것은 아닌지...? 와 같은 별의별 가정을 다 해보았는데, 결국 문제를 쉽게 식별하지 못했던 가장 큰 이유는,,, 코드를 쳐다보는 눈이 '리턴값'을 주목하는 데 오래 걸렸기 때문이었습니다.

설마... 리턴값이 잘못 되었으리라고는 상상도 못했는데요.

다시 "Euler's totient function" 공식을 보시면, 분수를 포함하므로 결국 값들이 double 형으로 계산이 되는 것을 알 수 있습니다. 따라서 단순히 (int) 값으로 형변환하면 값이 절삭이 되어 결과가 틀어져 버리는 것입니다. 위의 계산값들을 보면 미세한 n / φ(n) 결과값이 0.0001로 순위가 차이가 나기 때문에 (int) 형변환으로 인한 오차는 클 수밖에 없었던 것이지요.

(int) 절삭의 효과는 테스트 해보면 다음과 같습니다.

Console.WriteLine(((int)1.3));
Console.WriteLine(((int)1.6));

1
1

Console.WriteLine(((int)Math.Round(1.3)));
Console.WriteLine(((int)Math.Round(1.6)));

1
2

따라서, 반환값을 (int) 형변환하기 전에, Math.Round로 보정을 해주면 "프로젝트 오일러" 측에서 원하는 답이 나옵니다. ^^; 일단 그걸로 답을 내었으니 급한 불은 껐고. 이제 성능 개선을 해볼 차례입니다.

그래서, 조금 더 들여다 보면 파이 함수의 재미있는 성질을 발견하게 됩니다.

오일러 피 함수
; http://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%ED%94%BC_%ED%95%A8%EC%88%98

위의 글에 보면 다음과 같은 공식이 나옵니다.

p가 소수일 때, φ(p) = p - 1

예를 들어, p == 13이면, (소수의 성질이라 당연하겠지만) 12를 반환하면 되는 것입니다. 만약 이 값을 기존 "Euler's totient function"에 대입하면 다음과 같이 소수점이 포함된 값이 나옵니다.

φ(13) = 13 * (1 - 1/13)
      = 13 * 0.92307692307692313 (923076이 반복되는 무한 소수)

물론, 거의 12가 나오긴 하지만 엄밀히 (13 - 1) != 13 * 0.92307692307692313이므로 정확하게 반환해주는 공식을 추가하는 것이 좋겠습니다.

이렇게 소수들에 대한 파이 함수 값을 구하고 나면 다시 한번 재미있는 성질을 찾을 수 있는데요.

m, n이 서로소인 정수일 때, φ(mn) = φ(m)φ(n)

위의 2가지 성질로 인해서 정수값으로 반환할 수 있는 좀 더 많은 기회가 생깁니다. 왜냐하면, 모든 수는 소수 아니면, 소인수 분해되어 결국 소수의 곱으로 바뀌기 때문에 중간에 나오는 소수의 정수값을 보관해 두었다가 다른 수의 소인수 분해에 그 값의 곱을 이용하면 되기 때문입니다.

그런데, 위의 경우로 걸러지지 않는 수들이 있습니다. 바로 4와 같은 수인데, 이런 경우 φ(2 * 2) != φ(2)φ(2)입니다. 즉, m과 n이 서로소라는 조건에 맞지 않으므로 계산이 틀려지는데요. 그런데, 다음과 같은 성질도 있어서 4는 여기에 대입해 줄 수 있습니다.

φ(pk) =  pk - p(k - 1) = pk - 1 * (p - 1)

그래서, 함수는 최종적으로 다음과 같이 바뀔 수 있습니다.

static List<int> _primes = new List<int>();
static int GetPhiCount2(Dictionary<int, int> primePhi, int targetNumber)
{
    // 소인수를 모두 구하고
    Dictionary<int, int> primes = new Dictionary<int, int>();

    int tempNumber = targetNumber;
    int primeCount = 0;
    int firstPrimeNumber = 0;
    int secondPrimeNumber = 0;

    for (int n = 0; n < _primes.Count; )
    {
        int prime = _primes[n];

        if (prime * prime > targetNumber)
        {
            break;
        }

        if (tempNumber % prime == 0)
        {
            if (primes.ContainsKey(prime) == true)
            {
                primes[prime]++;
            }
            else
            {
                primes.Add(prime, 1);
            }

            primeCount++;
            firstPrimeNumber = prime;

            tempNumber = tempNumber / prime;
        }
        else
        {
            n++;
        }
    }

    if (primes.Count == 0)
    {
        // 적용 1: p가 소수일 때, φ(p) = p - 1 
        _primes.Add(targetNumber);
        primePhi.Add(targetNumber, targetNumber - 1);
        return targetNumber - 1;
    }

    if (tempNumber != 1)
    {
        primes.Add(tempNumber, 1);
        secondPrimeNumber = tempNumber;
        primeCount++;
    }

    if (primes.Count == 2 && primeCount == 2)
    {
        // 적용 2: m,n이 서로소인 정수일 때, φ(mn) = φ(m)φ(n)
        return primePhi[firstPrimeNumber] * primePhi[secondPrimeNumber];
    }
    else if (primes.Count == 1)
    {
        // 적용 3: φ(pk) =  pk - p(k - 1) = pk - 1 * (p - 1)
        int k = primes[firstPrimeNumber];
        return PowOf(firstPrimeNumber, k - 1) * (firstPrimeNumber - 1);
    }

    double product = 1;

    foreach (var aPrimeKey in primes.Keys)
    {
        product = product * (1 - (double)1 / aPrimeKey);
    }

    return (int)Math.Round(product * targetNumber);
}

static int PowOf(int p, int k)
{
    int result = 1;

    while (k-- > 0)
    {
        result = result * p;
    }

    return result;
}

함수는 길어졌지만, 탈출구가 많아졌기 때문에 이렇게 계산하면 결과를 20초 안에 끊을 수 있습니다. 위의 방법은 지난번 "소인수 분해"의 마지막 부분에서 소수를 재활용하는 방법까지 사용된 것입니다.

첨부된 파일은 위의 코드를 포함한 예제 프로젝트입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/10/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 106  107  [108]  109  110  111  112  113  114  115  116  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11224정성태6/13/201718118.NET Framework: 661. Json.NET의 DeserializeObject 수행 시 속성 이름을 동적으로 바꾸는 방법파일 다운로드1
11223정성태6/12/201716817개발 환경 구성: 318. WCF Service Application과 WCFTestClient.exe
11222정성태6/10/201720533오류 유형: 399. WCF - A property with the name 'UriTemplateMatchResults' already exists.파일 다운로드1
11221정성태6/10/201717461오류 유형: 398. Fakes - Assembly 'Jennifer5.Fakes' with identity '[...].Fakes, [...]' uses '[...]' which has a higher version than referenced assembly '[...]' with identity '[...]'
11220정성태6/10/201722858.NET Framework: 660. Shallow Copy와 Deep Copy [1]파일 다운로드2
11219정성태6/7/201718202.NET Framework: 659. 닷넷 - TypeForwardedFrom / TypeForwardedTo 특성의 사용법
11218정성태6/1/201721007개발 환경 구성: 317. Hyper-V 내의 VM에서 다시 Hyper-V를 설치: Nested Virtualization
11217정성태6/1/201716898오류 유형: 397. initerrlog: Could not open error log file 'C:\...\MSSQL12.MSSQLSERVER\MSSQL\Log\ERRORLOG'
11216정성태6/1/201719001오류 유형: 396. Activation context generation failed
11215정성태6/1/201719913오류 유형: 395. 관리 콘솔을 실행하면 "This app has been blocked for your protection" 오류 발생 [1]
11214정성태6/1/201717648오류 유형: 394. MSDTC 서비스 시작 시 -1073737712(0xC0001010) 오류와 함께 종료되는 문제 [1]
11213정성태5/26/201722438오류 유형: 393. TFS - The underlying connection was closed: Could not establish trust relationship for the SSL/TLS secure channel.
11212정성태5/26/201721782오류 유형: 392. Windows Server 2016에 KB4019472 업데이트가 실패하는 경우
11211정성태5/26/201720806오류 유형: 391. BeginInvoke에 전달한 람다 함수에 CS1660 에러가 발생하는 경우
11210정성태5/25/201721284기타: 65. ActiveX 없는 전자 메일에 사용된 "개인정보 보호를 위해 암호화된 보안메일"의 암호화 방법
11209정성태5/25/201768194Windows: 143. Windows 10의 Recovery 파티션을 삭제 및 새로 생성하는 방법 [16]
11208정성태5/25/201727920오류 유형: 390. diskpart의 set id 명령어에서 "The specified type is not in the correct format." 오류 발생
11207정성태5/24/201728186Windows: 142. Windows 10의 복구 콘솔로 부팅하는 방법
11206정성태5/24/201721454오류 유형: 389. DISM.exe - The specified image in the specified wim is already mounted for read/write access.
11205정성태5/24/201721256.NET Framework: 658. C#의 tail call 구현은? [1]
11204정성태5/22/201730789개발 환경 구성: 316. 간단하게 살펴보는 Docker for Windows [7]
11203정성태5/19/201718734오류 유형: 388. docker - Host does not exist: "default"
11202정성태5/19/201719798오류 유형: 387. WPF - There is no registered CultureInfo with the IetfLanguageTag 'ug'.
11201정성태5/16/201722535오류 유형: 386. WPF - .NET 3.5 이하에서 TextBox에 한글 입력 시 TextChanged 이벤트의 비정상 종료 문제 [1]파일 다운로드1
11200정성태5/16/201719299오류 유형: 385. WPF - 폰트가 없어 System.IO.FileNotFoundException 예외가 발생하는 경우
11199정성태5/16/201721139.NET Framework: 657. CultureInfo.GetCultures가 반환하는 값
... 106  107  [108]  109  110  111  112  113  114  115  116  117  118  119  120  ...