Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

파이썬 tensorflow - ValueError: Shapes (...) and (...) are incompatible

모델 학습을 실행했는데,

...[생략]...
model.add(Dense(units=256, input_dim=784, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

ValueError가 발생한다면?

raise ValueError("Shapes %s and %s are incompatible" % (self, other))

상황에 따라 다를 수 있지만, 제가 겪은 상황에서의 self와 other의 의미는 각각 다음과 같습니다.

self == (batch_size, 요소의 dim)
other == (batch_size, 출력 층의 units)

사실 대개의 경우 이 오류는 model.fit에 전달한 X_train, Y_train과 validation_data에 전달한 값들의 차원이 신경망의 units와 맞지 않기 때문에 발생합니다.

예를 들어, validation_data에 전달할 Y_val에 대해 요구되는 차원이 "Y_val: (데이터 수, 10)"인데, 실수로 Y_val: "(데이터 수, 28, 28, 10)"라는 식의 값을 전달하게 되면, model.fit에서 X_train, Y_train에 대한 1차 학습은 끝났다는 식의 메시지와 함께,

 993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186

이어서 validation_data를 검증하려고 수행되는 시점에 다음과 같은 식의 Traceback 오류가 발생합니다.

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 28, 28, 10) and (50, 10) are incompatible

언급했듯이, 이것은 다음과 같이 해석될 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 정황으로 보아 model.fit의 validation_data에 전달한 데이터 중에 (데이터 수, 28, 28, 10)에 해당하는 값이 있으며 이것은 출력 Dense(batch_size, 10개의 출력)에 맞지 않으므로 오류가 발생했음을 짐작게 합니다. 실제로 validate_data에 전달한 값의 차원을 살펴보면,

print("X_val:", X_val.shape)  # X_val: (10000, 784)
print("Y_val:", Y_val.shape)  # Y_val: (10000, 28, 28, 10)

오류 메시지에서 나왔던 "(크기, 28, 28, 10)"과 동일하게 겹쳐 있는 Y_val의 데이터가 정확하지 않음을 알 수 있습니다. 사실, "(50, 10)"이라는 출력에서 "10"이 마지막 Dense(출력 층)의 units에 해당하기 때문에 이런 경우 X_val을 살펴볼 필요 없이 Y_val 값만 조사하면 됩니다.




한 가지 더 볼까요? ^^

model.add(Dense(units=5, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

위와 같이 실행했는데 다음과 같은 오류가 발생한다면?

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 10) and (50, 5) are incompatible

게다가 이번엔 "993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186"라는 식의 메시지도 전혀 없었습니다. 그렇다면, 이번엔 model.fit에 전달된 데이터 중 아직 validation_data를 검증하는 단계까지 가기도 전에 X_train, Y_train부터 맞지 않은 데이터가 전달된 것입니다.

따라서, 이렇게 해석해 볼 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 위의 예제에서는 마지막 Dense의 units가 5인데, 입력으로 전달된 데이터의 차원이 출력과 맞지 않은 것이므로 X_train이 아닌 Y_train의 데이터가 잘못된 경우라고 판정할 수 있습니다. 실제로 이에 대해 shape을 검사해 보면,

print("Y_train:", Y_train.shape)  # (데이터 크기, 10)

전달된 Y_train의 차원이 10으로 나오는데 Dense에는 5라고 지정했기 때문에 불일치가 발생한 것입니다. 만약 Dense에 지정한 units가 맞는 값이라면, 저 코드의 출력값(Y_train.shape)은 5가 나와야 했습니다. 혹은 반대로 데이터가 맞는 경우라면, 마지막 Dense의 출력을 잘못 지정한 것이므로 Dense의 units 값을 "model.add(Dense(units=10, activation='softmax'))"로 바꿔야 합니다.

이 정도면, 향후 ValueError가 발생했을 때 어떤 데이터가 잘못된 것인지 판단할 수 있을 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/30/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-11-30 04시33분
[1234] 안녕하세용
"마지막 요소가 (10이 아닌) 5가 나와야 했던 것입니다."
해당 경우에 해결 방법이 궁금합니다!
[guest]
2021-11-30 04시41분
글에 답이 있습니다. 해당 연산을 수행하는 X_train, Y_train, validation_data의 차원 수가 Dense에 지정한 units와 맞지 않기 때문입니다. 만약, 전달한 데이터가 올바른 값이라면 Dense의 units를 그에 맞게 변경해야 하고, 그 반대라면 Dense의 units에 맞는 데이터를 전달해야 합니다.

본문에서 언급한 것처럼, 각 데이터의 shape 값을 조사해보고 그것이 Dense의 units와 일치하는지 살펴보세요. (다르기 때문에 오류가 발생하는 것입니다. 좀 더 이해가 쉽도록 본문의 문장을 수정했습니다.)
정성태

... 151  152  153  154  155  156  [157]  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1162정성태10/30/201127412.NET Framework: 260. .NET 스레드 콜 스택 덤프 (2) - Managed Stack Explorer 소스 코드를 이용한 스택 덤프 구하는 방법파일 다운로드1
1161정성태10/29/201124135.NET Framework: 259. Type.GetMethod - System.Reflection.AmbiguousMatchException파일 다운로드1
1159정성태10/28/201127684.NET Framework: 258. Roslyn 맛보기 - SyntaxTree 조작 [2]
1158정성태10/24/201126830.NET Framework: 257. Roslyn 맛보기 - Roslyn Symbol / Binding API파일 다운로드1
1157정성태10/23/201131414.NET Framework: 256. Roslyn 맛보기 - Syntax Analysis (Roslyn Syntax API) [2]
1156정성태10/23/201129954.NET Framework: 255. Roslyn 맛보기 - Roslyn Services APIs를 이용한 Code Issue 및 Code Action 기능 소개 [1]
1155정성태10/22/201127918.NET Framework: 254. Roslyn 맛보기 - C# Interactive (2)
1154정성태10/22/201134653.NET Framework: 253. Roslyn 맛보기 - C# Interactive (1)
1153정성태10/21/201143621.NET Framework: 252. Roslyn 맛보기 - C# 소스 코드를 스크립트처럼 다루는 방법 [7]파일 다운로드1
1152정성태10/20/201125050.NET Framework: 251. string.GetHashCode는 hash 값을 cache 할까?
1151정성태10/18/201124088Java: 13. 자바도 64비트에서 (2GB) OutOfMemoryException 예외가 발생할까?
1150정성태10/18/201131467.NET Framework: 250. WPF - ComboBox의 SelectionChagned 이벤트파일 다운로드1
1149정성태10/16/201126998.NET Framework: 249. WPF - d:DesignHeight 값을 구할 수 있을까?
1148정성태10/14/201132828Java: 12. 자바에서 LINQ 사용? [7]
1147정성태10/13/201128970.NET Framework: 248. 닷넷에서 지원되는 문자열 인코딩 이름 목록
1146정성태10/12/201134729.NET Framework: 247. LINQ에서의 Max 기능 구현 [10]파일 다운로드1
1144정성태10/10/201130392.NET Framework: 246. WCF - 서버 측에서의 유효한 Timeout 설정파일 다운로드1
1143정성태10/9/201135746.NET Framework: 245. ASP.NET 서버 측 코드에서 페이스북 계정 연동하는 방법
1142정성태10/8/201136384.NET Framework: 244. 윈도우 폼을 열고 닫는 것만으로 메모리 leak이 발생할까? [2]파일 다운로드1
1141정성태10/7/201134958.NET Framework: 243. DataTable에 대해서 Dispose 메서드를 호출할 필요가 있을까? [4]파일 다운로드1
1140정성태10/6/201128232.NET Framework: 242. 닷넷 개발자 입장에서 이해해 보는 자바의 서블릿, JSP
1138정성태10/1/201147096Java: 11. 웹 로직에서 MS-SQL 서버 연결 [2]
1137정성태9/30/201131396Java: 10. 닷넷 개발자가 설치해 본 Oracle WebLogic Server - 설치 및 기본 도메인 구성
1136정성태9/29/201127038개발 환경 구성: 131. Visual Studio - ASP.NET의 Code-behind처럼 cs 파일을 그룹핑하는 매크로 함수 [2]파일 다운로드1
1135정성태9/29/201124318오류 유형: 138. TF10216: Team Foundation services are currently unavailable
1134정성태9/27/201131765.NET Framework: 241. C# 5.0에 새로 추가된 Caller Info 특성 [5]
... 151  152  153  154  155  156  [157]  158  159  160  161  162  163  164  165  ...