Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

파이썬 tensorflow - ValueError: Shapes (...) and (...) are incompatible

모델 학습을 실행했는데,

...[생략]...
model.add(Dense(units=256, input_dim=784, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

ValueError가 발생한다면?

raise ValueError("Shapes %s and %s are incompatible" % (self, other))

상황에 따라 다를 수 있지만, 제가 겪은 상황에서의 self와 other의 의미는 각각 다음과 같습니다.

self == (batch_size, 요소의 dim)
other == (batch_size, 출력 층의 units)

사실 대개의 경우 이 오류는 model.fit에 전달한 X_train, Y_train과 validation_data에 전달한 값들의 차원이 신경망의 units와 맞지 않기 때문에 발생합니다.

예를 들어, validation_data에 전달할 Y_val에 대해 요구되는 차원이 "Y_val: (데이터 수, 10)"인데, 실수로 Y_val: "(데이터 수, 28, 28, 10)"라는 식의 값을 전달하게 되면, model.fit에서 X_train, Y_train에 대한 1차 학습은 끝났다는 식의 메시지와 함께,

 993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186

이어서 validation_data를 검증하려고 수행되는 시점에 다음과 같은 식의 Traceback 오류가 발생합니다.

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 28, 28, 10) and (50, 10) are incompatible

언급했듯이, 이것은 다음과 같이 해석될 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 정황으로 보아 model.fit의 validation_data에 전달한 데이터 중에 (데이터 수, 28, 28, 10)에 해당하는 값이 있으며 이것은 출력 Dense(batch_size, 10개의 출력)에 맞지 않으므로 오류가 발생했음을 짐작게 합니다. 실제로 validate_data에 전달한 값의 차원을 살펴보면,

print("X_val:", X_val.shape)  # X_val: (10000, 784)
print("Y_val:", Y_val.shape)  # Y_val: (10000, 28, 28, 10)

오류 메시지에서 나왔던 "(크기, 28, 28, 10)"과 동일하게 겹쳐 있는 Y_val의 데이터가 정확하지 않음을 알 수 있습니다. 사실, "(50, 10)"이라는 출력에서 "10"이 마지막 Dense(출력 층)의 units에 해당하기 때문에 이런 경우 X_val을 살펴볼 필요 없이 Y_val 값만 조사하면 됩니다.




한 가지 더 볼까요? ^^

model.add(Dense(units=5, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

위와 같이 실행했는데 다음과 같은 오류가 발생한다면?

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 10) and (50, 5) are incompatible

게다가 이번엔 "993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186"라는 식의 메시지도 전혀 없었습니다. 그렇다면, 이번엔 model.fit에 전달된 데이터 중 아직 validation_data를 검증하는 단계까지 가기도 전에 X_train, Y_train부터 맞지 않은 데이터가 전달된 것입니다.

따라서, 이렇게 해석해 볼 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 위의 예제에서는 마지막 Dense의 units가 5인데, 입력으로 전달된 데이터의 차원이 출력과 맞지 않은 것이므로 X_train이 아닌 Y_train의 데이터가 잘못된 경우라고 판정할 수 있습니다. 실제로 이에 대해 shape을 검사해 보면,

print("Y_train:", Y_train.shape)  # (데이터 크기, 10)

전달된 Y_train의 차원이 10으로 나오는데 Dense에는 5라고 지정했기 때문에 불일치가 발생한 것입니다. 만약 Dense에 지정한 units가 맞는 값이라면, 저 코드의 출력값(Y_train.shape)은 5가 나와야 했습니다. 혹은 반대로 데이터가 맞는 경우라면, 마지막 Dense의 출력을 잘못 지정한 것이므로 Dense의 units 값을 "model.add(Dense(units=10, activation='softmax'))"로 바꿔야 합니다.

이 정도면, 향후 ValueError가 발생했을 때 어떤 데이터가 잘못된 것인지 판단할 수 있을 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/30/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-11-30 04시33분
[1234] 안녕하세용
"마지막 요소가 (10이 아닌) 5가 나와야 했던 것입니다."
해당 경우에 해결 방법이 궁금합니다!
[guest]
2021-11-30 04시41분
글에 답이 있습니다. 해당 연산을 수행하는 X_train, Y_train, validation_data의 차원 수가 Dense에 지정한 units와 맞지 않기 때문입니다. 만약, 전달한 데이터가 올바른 값이라면 Dense의 units를 그에 맞게 변경해야 하고, 그 반대라면 Dense의 units에 맞는 데이터를 전달해야 합니다.

본문에서 언급한 것처럼, 각 데이터의 shape 값을 조사해보고 그것이 Dense의 units와 일치하는지 살펴보세요. (다르기 때문에 오류가 발생하는 것입니다. 좀 더 이해가 쉽도록 본문의 문장을 수정했습니다.)
정성태

1  2  [3]  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13904정성태3/25/20253171디버깅 기술: 218. Windbg로 살펴보는 Win32 Critical Section파일 다운로드1
13903정성태3/24/20252355VS.NET IDE: 197. (OneDrive, Dropbox 등의 공유 디렉터리에 있는) C++ 프로젝트의 출력 경로 변경하기
13902정성태3/24/20252841개발 환경 구성: 742. Oracle - 테스트용 hr 계정 및 데이터 생성파일 다운로드1
13901정성태3/9/20253180Windows: 280. Hyper-V의 3가지 Thread Scheduler (Classic, Core, Root)
13900정성태3/8/20253928스크립트: 72. 파이썬 - SQLAlchemy + oracledb 연동
13899정성태3/7/20252536스크립트: 71. 파이썬 - asyncio의 ContextVar 전달
13898정성태3/5/20253341오류 유형: 948. Visual Studio - Proxy Authentication Required: dotnetfeed.blob.core.windows.net
13897정성태3/5/20254280닷넷: 2326. C# - PowerShell과 연동하는 방법 (두 번째 이야기)파일 다운로드1
13896정성태3/5/20254075Windows: 279. Hyper-V Manager - VM 목록의 CPU Usage 항목이 항상 0%로 나오는 문제
13895정성태3/4/20254016Linux: 117. eBPF / bpf2go - Map에 추가된 요소의 개수를 확인하는 방법
13894정성태2/28/20253856Linux: 116. eBPF / bpf2go - BTF Style Maps 정의 구문과 데이터 정렬 문제
13893정성태2/27/20253378Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법
13892정성태2/24/20254780닷넷: 2325. C# - PowerShell과 연동하는 방법파일 다운로드1
13891정성태2/23/20253544닷넷: 2324. C# - 프로세스의 성능 카운터용 인스턴스 이름을 구하는 방법파일 다운로드1
13890정성태2/21/20253319닷넷: 2323. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(Win32 API)파일 다운로드1
13889정성태2/20/20254688닷넷: 2322. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(성능 카운터, WMI) [1]파일 다운로드1
13888정성태2/17/20253769닷넷: 2321. Blazor에서 발생할 수 있는 async void 메서드의 부작용
13887정성태2/17/20254841닷넷: 2320. Blazor의 razor 페이지에서 code-behind 파일로 코드를 분리 및 DI 사용법
13886정성태2/15/20253661VS.NET IDE: 196. Visual Studio - Code-behind처럼 cs 파일을 그룹핑하는 방법
13885정성태2/14/20254752닷넷: 2319. ASP.NET Core Web API / Razor 페이지에서 발생할 수 있는 async void 메서드의 부작용
13884정성태2/13/20255153닷넷: 2318. C# - (async Task가 아닌) async void 사용 시의 부작용파일 다운로드1
13883정성태2/12/20254854닷넷: 2317. C# - Memory Mapped I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
13882정성태2/10/20253624스크립트: 70. 파이썬 - oracledb 패키지 연동 시 Thin / Thick 모드
13881정성태2/7/20253994닷넷: 2316. C# - Port I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
13880정성태2/5/20255245오류 유형: 947. sshd - Failed to start OpenSSH server daemon.
13879정성태2/5/20255278오류 유형: 946. Ubuntu - N: Updating from such a repository can't be done securely, and is therefore disabled by default.
1  2  [3]  4  5  6  7  8  9  10  11  12  13  14  15  ...