Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

파이썬 tensorflow - ValueError: Shapes (...) and (...) are incompatible

모델 학습을 실행했는데,

...[생략]...
model.add(Dense(units=256, input_dim=784, activation='relu'))
model.add(Dense(units=128, activation='relu'))
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

ValueError가 발생한다면?

raise ValueError("Shapes %s and %s are incompatible" % (self, other))

상황에 따라 다를 수 있지만, 제가 겪은 상황에서의 self와 other의 의미는 각각 다음과 같습니다.

self == (batch_size, 요소의 dim)
other == (batch_size, 출력 층의 units)

사실 대개의 경우 이 오류는 model.fit에 전달한 X_train, Y_train과 validation_data에 전달한 값들의 차원이 신경망의 units와 맞지 않기 때문에 발생합니다.

예를 들어, validation_data에 전달할 Y_val에 대해 요구되는 차원이 "Y_val: (데이터 수, 10)"인데, 실수로 Y_val: "(데이터 수, 28, 28, 10)"라는 식의 값을 전달하게 되면, model.fit에서 X_train, Y_train에 대한 1차 학습은 끝났다는 식의 메시지와 함께,

 993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186

이어서 validation_data를 검증하려고 수행되는 시점에 다음과 같은 식의 Traceback 오류가 발생합니다.

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 28, 28, 10) and (50, 10) are incompatible

언급했듯이, 이것은 다음과 같이 해석될 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 정황으로 보아 model.fit의 validation_data에 전달한 데이터 중에 (데이터 수, 28, 28, 10)에 해당하는 값이 있으며 이것은 출력 Dense(batch_size, 10개의 출력)에 맞지 않으므로 오류가 발생했음을 짐작게 합니다. 실제로 validate_data에 전달한 값의 차원을 살펴보면,

print("X_val:", X_val.shape)  # X_val: (10000, 784)
print("Y_val:", Y_val.shape)  # Y_val: (10000, 28, 28, 10)

오류 메시지에서 나왔던 "(크기, 28, 28, 10)"과 동일하게 겹쳐 있는 Y_val의 데이터가 정확하지 않음을 알 수 있습니다. 사실, "(50, 10)"이라는 출력에서 "10"이 마지막 Dense(출력 층)의 units에 해당하기 때문에 이런 경우 X_val을 살펴볼 필요 없이 Y_val 값만 조사하면 됩니다.




한 가지 더 볼까요? ^^

model.add(Dense(units=5, activation='softmax'))

hist = model.fit(X_train, Y_train, epochs=1, batch_size=50, validation_data=(X_val, Y_val))

위와 같이 실행했는데 다음과 같은 오류가 발생한다면?

...[생략]...
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (50, 10) and (50, 5) are incompatible

게다가 이번엔 "993/1000 [============================>.] - ETA: 0s - loss: 0.2695 - accuracy: 0.9186"라는 식의 메시지도 전혀 없었습니다. 그렇다면, 이번엔 model.fit에 전달된 데이터 중 아직 validation_data를 검증하는 단계까지 가기도 전에 X_train, Y_train부터 맞지 않은 데이터가 전달된 것입니다.

따라서, 이렇게 해석해 볼 수 있고,

Shapes (batch_size, 요소의 dim) and (batch_size, 출력 층의 units) are incompatible

따라서 위의 예제에서는 마지막 Dense의 units가 5인데, 입력으로 전달된 데이터의 차원이 출력과 맞지 않은 것이므로 X_train이 아닌 Y_train의 데이터가 잘못된 경우라고 판정할 수 있습니다. 실제로 이에 대해 shape을 검사해 보면,

print("Y_train:", Y_train.shape)  # (데이터 크기, 10)

전달된 Y_train의 차원이 10으로 나오는데 Dense에는 5라고 지정했기 때문에 불일치가 발생한 것입니다. 만약 Dense에 지정한 units가 맞는 값이라면, 저 코드의 출력값(Y_train.shape)은 5가 나와야 했습니다. 혹은 반대로 데이터가 맞는 경우라면, 마지막 Dense의 출력을 잘못 지정한 것이므로 Dense의 units 값을 "model.add(Dense(units=10, activation='softmax'))"로 바꿔야 합니다.

이 정도면, 향후 ValueError가 발생했을 때 어떤 데이터가 잘못된 것인지 판단할 수 있을 것입니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/30/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2021-11-30 04시33분
[1234] 안녕하세용
"마지막 요소가 (10이 아닌) 5가 나와야 했던 것입니다."
해당 경우에 해결 방법이 궁금합니다!
[guest]
2021-11-30 04시41분
글에 답이 있습니다. 해당 연산을 수행하는 X_train, Y_train, validation_data의 차원 수가 Dense에 지정한 units와 맞지 않기 때문입니다. 만약, 전달한 데이터가 올바른 값이라면 Dense의 units를 그에 맞게 변경해야 하고, 그 반대라면 Dense의 units에 맞는 데이터를 전달해야 합니다.

본문에서 언급한 것처럼, 각 데이터의 shape 값을 조사해보고 그것이 Dense의 units와 일치하는지 살펴보세요. (다르기 때문에 오류가 발생하는 것입니다. 좀 더 이해가 쉽도록 본문의 문장을 수정했습니다.)
정성태

... 91  92  [93]  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11611정성태7/15/201820864Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
11610정성태7/15/201817426Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
11609정성태7/15/201820474Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
11608정성태7/15/201825031Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
11607정성태7/14/201825346Graphics: 2. Unity로 실습하는 Shader [1]
11606정성태7/13/201825986사물인터넷: 19. PC에 연결해 동작하는 자신만의 USB 장치 만들어 보기파일 다운로드1
11605정성태7/13/201821847사물인터넷: 18. New NodeMCU v3 아두이노 호환 보드의 내장 LED 및 입력 핀 사용법 [1]파일 다운로드1
11604정성태7/12/201820964Math: 47. GeoGebra 기하 (24) - 정다각형파일 다운로드1
11603정성태7/12/201816971Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근파일 다운로드1
11602정성태7/11/201817143Math: 45. GeoGebra 기하 (22) - 반전기하학의 원에 관한 반사변환파일 다운로드1
11601정성태7/11/201819927Math: 44. GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환파일 다운로드1
11600정성태7/10/201818418Math: 43. GeoGebra 기하 (20) - 세 점을 지나는 원파일 다운로드1
11599정성태7/10/201817703Math: 42. GeoGebra 기하 (19) - 두 원의 안과 밖으로 접하는 직선파일 다운로드1
11598정성태7/10/201819603Windows: 147. 시스템 복구 디스크를 USB 디스크에 만드는 방법
11597정성태7/10/201821683사물인터넷: 17. Thinary Electronic - ATmega328PB 아두이노 호환 보드의 개발 환경 구성
11596정성태7/10/201819572기타: 72. 과거의 용어 설명 - OWIN
11595정성태7/10/201825339사물인터넷: 16. New NodeMCU v3 아두이노 호환 보드의 기본 개발 환경 구성
11594정성태7/8/201819750Math: 41. GeoGebra 기하 (18) - 원의 중심 및 접선파일 다운로드1
11593정성태7/8/201818777Math: 40. GeoGebra 기하 (17) - 각의 복사파일 다운로드1
11591정성태7/7/201818117Math: 39. GeoGebra 기하 (16) - 삼각형의 방심과 방접원파일 다운로드1
11590정성태7/7/201817660Math: 38. GeoGebra 기하 (15) - 삼각형의 수심파일 다운로드1
11589정성태7/7/201817946.NET Framework: 787. object로 형변환된 인스턴스를 원래의 타입 인자로 제네릭 메서드를 호출하는 방법 [2]파일 다운로드1
11588정성태7/7/201819417디버깅 기술: 116. windbg 분석 사례 - ASP.NET 웹 응용 프로그램의 CPU 100% 현상 (3)
11587정성태7/5/201819033.NET Framework: 786. ASP.NET - HttpCookieCollection을 다중 스레드에서 사용할 경우 무한 루프 현상
11586정성태7/5/201818196Math: 37. GeoGebra 기하 (14) - 삼각형의 무게 중심파일 다운로드1
11585정성태7/5/201818380Math: 36. GeoGebra 기하 (13) - 삼각형의 외심과 외접하는 원파일 다운로드1
... 91  92  [93]  94  95  96  97  98  99  100  101  102  103  104  105  ...