Microsoft MVP성태의 닷넷 이야기
.NET Framework: 1162. C# - 인텔 CPU의 P-Core와 E-Core를 구분하는 방법 [링크 복사], [링크+제목 복사],
조회: 20894
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 3개 있습니다.)

C# - 인텔 CPU의 P-Core와 E-Core를 구분하는 방법

작년 말에 구매한 PC의 경우 엘더레이크 CPU를 장착하고 있는데요,

인텔 코어i9-12세대 12900K (엘더레이크) 정품
; http://prod.danawa.com/info/?pcode=15594887&cate=11341237

이 제품의 소개를 보면,

코어 수: 8+8 코어
스레드 수: 16+8 스레드

이런 식으로 표기가 되어 있습니다. 의미인즉, 8개의 P-Core와 8개의 E-Core로 나뉜다는 것인데, P-Core는 제 성능을 발휘할 수 있는 데다 Hyper-Threading도 지원을 하고 있어 8개의 P-Core가 16개의 스레드 수를 갖는 것이고, 반면 E-Core는 시스템의 작업 부하가 낮을 때 선택돼 저전력으로 동작하는 것으로 8개의 E-Core가 하이퍼스레딩 없이 각각 1개의 스레드를 담당할 수 있습니다.

이로 인해, 만약 개발자가 특정 스레드의 성능을 높이기 위해 Thread-affinity를 부여하고 싶다면 대상 코어가 P-Core인지, E-Core인지 확인해야 할 필요가 생긴 것입니다. 관련해서는 이미 인텔에서 자세한 자료를 배포하고 있는데요,

Game Dev Guide for Alder Lake Performance Hybrid Architecture
; https://www.intel.com/content/www/us/en/developer/articles/guide/alder-lake-developer-guide.html

그래서 Win32 API에도 이를 위한 정보를 구하려면 GetSystemCpuSetInformation 함수를 이용하면 됩니다.

GetSystemCpuSetInformation function
; https://learn.microsoft.com/en-us/windows/win32/procthread/getsystemcpusetinformation

SYSTEM_CPU_SET_INFORMATION structure (winnt.h)
; https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-system_cpu_set_information

간단하게 C#으로 구현해 볼까요? ^^ 전체 소스 코드는 다음과 같습니다.

using System.Collections;
using System.Collections.Concurrent;
using System.Diagnostics;
using System.Runtime.InteropServices;

namespace Console1
{
    internal class NativeMethods
    {
        [DllImport("kernel32.dll")]
        internal static extern uint GetCurrentThreadId();

        [DllImport("kernel32.dll", SetLastError = true, EntryPoint = "GetSystemCpuSetInformation")]
        static extern unsafe bool _GetSystemCpuSetInformation(byte* Information, uint BufferLength,
            out uint ReturnedLength, IntPtr Process, uint Flags);

        public static CpuInfo GetSystemCpuSetInformation()
        {
            IntPtr currentProcess = Process.GetCurrentProcess().Handle;
            return GetSystemCpuSetInformation(currentProcess);
        }

        public static unsafe CpuInfo GetSystemCpuSetInformation(IntPtr processHandle)
        {
            List<SYSTEM_CPU_SET_INFORMATION> list = new List<SYSTEM_CPU_SET_INFORMATION>();

            uint size;

            do
            {
                bool result = NativeMethods.GetSystemCpuSetInformationRequiredSize(processHandle, out size);
                if (result == false)
                {
                    break;
                }

                byte[] buffer = new byte[size];

                fixed (byte* pBuffer = buffer)
                {
                    result = _GetSystemCpuSetInformation(pBuffer, size, out _, processHandle, 0);
                    if (result == false)
                    {
                        break;
                    }

                    SYSTEM_CPU_SET_INFORMATION* pItem = (SYSTEM_CPU_SET_INFORMATION*)pBuffer;
                    int itemSize = sizeof(SYSTEM_CPU_SET_INFORMATION);

                    if ((size % itemSize) != 0)
                    {
                        break;
                    }

                    uint loopCOunt = size / (uint)itemSize;

                    for (int i = 0; i < loopCOunt; i++)
                    {
                        list.Add(*pItem);
                        pItem++;
                    }
                }
            } while (false);

            return new CpuInfo(list);
        }

        static unsafe bool GetSystemCpuSetInformationRequiredSize(IntPtr processHandle, out uint size)
        {
            NativeMethods._GetSystemCpuSetInformation(null, 0, out size, processHandle, 0);

            uint lastError = NativeMethods.GetLastError();
            if (lastError == (uint)Win32Error.ERROR_INSUFFICIENT_BUFFER)
            {
                return true;
            }

            return false;
        }

        [DllImport("kernel32.dll")]
        public static extern uint GetLastError();
    }

    public enum Win32Error
    {
        // MessageId: ERROR_INSUFFICIENT_BUFFER
        // MessageText:
        // The data area passed to a system call is too small.
        ERROR_INSUFFICIENT_BUFFER = 122,
    }

    public enum CPU_SET_INFORMATION_TYPE
    {
        CpuSetInformation
    }

    [StructLayout(LayoutKind.Sequential)]
    public struct CPU_INNER_STATUS
    {
        public byte Status;

        public bool Parked
        {
            get { return (Status & (int)CpuStatusBit.Parked) == 1; }
        }

        public bool Allocated
        {
            get { return (Status & (int)CpuStatusBit.Allocated) == 1; }
        }

        public bool AllocatedToTargetProcess
        {
            get { return (Status & (int)CpuStatusBit.AllocatedToTargetProcess) == 1; }
        }

        public bool RealTime
        {
            get { return (Status & (int)CpuStatusBit.RealTime) == 1; }
        }

        [Flags]
        enum CpuStatusBit
        {
            Parked = 0x01,
            Allocated = 0x02,
            AllocatedToTargetProcess = 0x04,
            RealTime = 0x08,
        }
    }

    [StructLayout(LayoutKind.Sequential)]
    public struct CPU_STATUS
    {
        public byte AllFlags;
        public CPU_INNER_STATUS CpuStatus;
    }

    [StructLayout(LayoutKind.Sequential)]
    public struct CPU_CLASS
    {
        public uint Reserved;
        public byte SchedulingClass;
    }

    [StructLayout(LayoutKind.Explicit)]
    public struct CPU_SET
    {
        [FieldOffset(0)]
        public uint Id;
        [FieldOffset(4)]
        public short Group;
        [FieldOffset(6)]
        public byte LogicalProcessorIndex;
        [FieldOffset(7)]
        public byte CoreIndex;
        [FieldOffset(8)]
        public byte LastLevelCacheIndex;
        [FieldOffset(9)]
        public byte NumaNodeIndex;
        [FieldOffset(10)]
        public byte EfficiencyClass;

        [FieldOffset(11)]
        public CPU_STATUS FlagsAndStatus;

        [FieldOffset(11)]
        public CPU_CLASS Scheduling;

        [FieldOffset(16)]
        public ulong AllocationTag;
    }

    public class CpuInfo : IEnumerable<SYSTEM_CPU_SET_INFORMATION>
    {
        readonly List<SYSTEM_CPU_SET_INFORMATION> _list;
        readonly bool _isHybrid;
        readonly int _pcoreCount;
        readonly int _ecoreCount;

        internal CpuInfo(List<SYSTEM_CPU_SET_INFORMATION> list)
        {
            _list = list;

            _pcoreCount = _list.Count((e) => e.IsPCore == true);
            _ecoreCount = _list.Count((e) => e.IsECore == true);

            _isHybrid = _pcoreCount > 0 && _ecoreCount > 0;

            if (_isHybrid == false)
            {
                _pcoreCount = 0;
                _ecoreCount = 0;
            }
        }

        public int LogicalCoreCount => _list.Count;

        public SYSTEM_CPU_SET_INFORMATION this[int index] => _list[index];

        public IEnumerator<SYSTEM_CPU_SET_INFORMATION> GetEnumerator() => _list.GetEnumerator();

        IEnumerator IEnumerable.GetEnumerator() => _list.GetEnumerator();

        public bool IsHybrid => _isHybrid;

        public int PCoreCount => _pcoreCount;

        public int ECoreCount => _ecoreCount;
    }

    [StructLayout(LayoutKind.Sequential)]
    public struct SYSTEM_CPU_SET_INFORMATION
    {
        public uint Size;
        public CPU_SET_INFORMATION_TYPE Type;
        public CPU_SET Set;

        public override string ToString()
        {
            return $"{Set.LogicalProcessorIndex}: {Set.EfficiencyClass}";
        }

        public int Index
        {
            get { return Set.LogicalProcessorIndex; }
        }

        public bool IsPCore
        {
            get { return (int)Set.EfficiencyClass >= 1; }
        }

        public bool IsECore
        {
            get { return (int)Set.EfficiencyClass == 0; }
        }
    }
}

그래서 이를 이용해 다음과 같은 식으로 코딩할 수 있습니다.

using Console1;

internal class Program
{
    static void Main(string[] args)
    {
        CpuInfo cpuInfo = NativeMethods.GetSystemCpuSetInformation();
        if (cpuInfo.LogicalCoreCount == 0)
        {
            Console.WriteLine("failed to call Win32 API GetSystemCpuSetInformation");
            return;
        }

        Console.WriteLine($"IsHybridCPU: {cpuInfo.IsHybrid}");

        if (cpuInfo.IsHybrid)
        {
            Console.WriteLine($"# of PCore: {cpuInfo.PCoreCount}");
            Console.WriteLine($"# of ECore: {cpuInfo.ECoreCount}");

            Console.WriteLine();

            foreach (var item in cpuInfo)
            {
                Console.WriteLine($"[{item.Index}] IsPCore == {item.IsPCore}");
            }
        }
        else
        {
            Console.WriteLine($"# of Cores: {cpuInfo.LogicalCoreCount}");
        }
    }
}

제 컴퓨터에서 위의 코드를 실행하면 다음과 같은 식으로 출력합니다.

IsHybridCPU: True
# of PCore: 16
# of ECore: 8

[0] IsPCore == True
[1] IsPCore == True
[2] IsPCore == True
[3] IsPCore == True
[4] IsPCore == True
[5] IsPCore == True
[6] IsPCore == True
[7] IsPCore == True
[8] IsPCore == True
[9] IsPCore == True
[10] IsPCore == True
[11] IsPCore == True
[12] IsPCore == True
[13] IsPCore == True
[14] IsPCore == True
[15] IsPCore == True
[16] IsPCore == False
[17] IsPCore == False
[18] IsPCore == False
[19] IsPCore == False
[20] IsPCore == False
[21] IsPCore == False
[22] IsPCore == False
[23] IsPCore == False

보는 바와 같이 P-core가 16개, E-core가 8개입니다. 이를 위한 구분은 SYSTEM_CPU_SET_INFORMATION 구조체에 있는 EfficiencyClass 필드의 값을 이용하면 되는데요, Intel 문서에 보면,

This value represents the power-to-performance ratio of a logical processor. Cores with a higher Efficiency Class value in the EfficiencyClass field have higher performance but lower power efficiency.


EfficiencyClass의 값이 높을수록 고성능이면서 전력 소비는 (성능을 높임에 따라) 비효율적이라고 합니다. 현재는 PCore인 경우 1, ECore인 경우 0이 나오는데요, 이 값의 타입이 byte인 것을 감안하면 또 다른 값이 향후 추가될 여지가 있습니다.




이를 이용해서 ECore를 바쁘게 만들어볼까요? ^^ ProcessThread.ProcessorAffinity 속성과 함께라면 다음과 같이 ECore 수만큼의 스레드를 생성하고 일정 시간 무한 루프를 돌아 부하를 줄 수 있습니다.

public class CpuInfo : IEnumerable
{
    // ...[생략]...

    public void LoadAllEcore_And_SeeTaskManagerCpuInfo_ForSeconds(int loadSeconds)
    {
        if (IsHybrid == false)
        {
            return;
        }

        List<Thread> threads = new List<Thread>();
        EventWaitHandle startSignal = new EventWaitHandle(false, EventResetMode.ManualReset);

        foreach (var item in _list)
        {
            if (item.IsPCore == true)
            {
                continue;
            }

            Thread t = new Thread((obj) =>
            {
                if (obj == null)
                {
                    return;
                }

                int tid = (int)NativeMethods.GetCurrentThreadId();
                SetThreadAffinity(tid, (int)obj);

                startSignal.WaitOne();

                long started = Environment.TickCount64;
                while (true)
                {
                    long diff = Environment.TickCount64 - started;
                    if (diff / 1000 > loadSeconds)
                    {
                        break;
                    }
                }
            });

            threads.Add(t);
            t.Start(item.Index);
        }

        startSignal.Set();

        foreach (var item in threads)
        {
            item.Join();
        }
    }

    static void SetThreadAffinity(int threadId, int coreIndex)
    {
        foreach (ProcessThread thread in Process.GetCurrentProcess().Threads)
        {
            if (threadId == thread.Id)
            {
                if (OperatingSystem.IsWindows())
                {
                    thread.ProcessorAffinity = new IntPtr(1 << (coreIndex));
                    return;
                }
            }
        }
    }
}

위의 메서드를 호출하면 작업 관리자에서 다음과 같이 E-Core들의 사용량이 100%가 되는 것을 확인할 수 있습니다.

intel_pcore_1.png

그런데, 다소 이상한 점이 있습니다. 저렇게 E-core를 모두 바쁘게 만들었더니 윈도우 운영체제의 UI 반응 속도가 전체적으로 느려졌습니다. 분명히, P-core들은 놀고 있음에도 컴퓨터 사용이 힘들 정도로 성능이 낮아지는데, 어쩌면 윈도우 11의 UI 관련 동작들을 기본적으로 E-core에서 스케줄링이 되도록 만든 것이 아닌가... 할 정도입니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/28/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2023-06-21 08시52분
.NET에서 코어(Core) 관련 CPU 정보 알아내는 방법
; https://www.sysnet.pe.kr/2/0/960

How does Windows exploit hyperthreading?
; https://devblogs.microsoft.com/oldnewthing/20040913-00/?p=37883

Why is Windows using only even-numbered processors?
; https://devblogs.microsoft.com/oldnewthing/20230620-00/?p=108358
정성태

... 16  17  18  19  20  21  22  23  24  25  26  27  28  29  [30]  ...
NoWriterDateCnt.TitleFile(s)
11835정성태3/5/201921708.NET Framework: 810. C# 8.0의 Index/Range 연산자를 .NET Framework에서 사용하는 방법 및 비동기 스트림의 컴파일 방법 [3]파일 다운로드1
11813정성태2/12/201918311.NET Framework: 809. C# - ("Save File Dialog" 등의) 대화 창에 확장 속성을 보이는 방법
11810정성태2/11/201918492.NET Framework: 808. .NET Profiler - GAC 모듈에서 GAC 비-등록 모듈을 참조하는 경우의 문제
11809정성태2/11/201920623.NET Framework: 807. ClrMD를 이용해 메모리 덤프 파일로부터 특정 인스턴스를 참조하고 있는 소유자 확인
11805정성태1/28/201921618.NET Framework: 806. C# - int []와 object []의 차이로 이해하는 제네릭의 필요성 [4]파일 다운로드1
11802정성태1/7/201920098.NET Framework: 805. 두 개의 윈도우를 각각 실행하는 방법(Windows Forms, WPF)파일 다운로드1
11799정성태12/19/201822220.NET Framework: 804. WPF(또는 WinForm)에서 UWP UI 구성 요소 사용하는 방법 [3]파일 다운로드1
11778정성태11/14/201820024.NET Framework: 803. UWP 앱에서 한 컴퓨터(localhost, 127.0.0.1) 내에서의 소켓 연결
11776정성태11/13/201818512.NET Framework: 802. Windows에 로그인한 계정이 마이크로소프트의 계정인지, 로컬 계정인지 알아내는 방법
11768정성태11/2/201819190.NET Framework: 801. SOIL(Simple OpenGL Image Library) - Native DLL 및 .NET DLL 제공
11758정성태10/23/201820660.NET Framework: 800. C# - Azure REST API 사용을 위한 인증 획득 [3]파일 다운로드1
11747정성태10/17/201819881.NET Framework: 799. C# - DLL에도 EXE처럼 Main 메서드를 넣어 실행할 수 있도록 만드는 방법파일 다운로드1
11722정성태10/4/201821191.NET Framework: 798. C# - Hyper-V 가상 머신의 직렬 포트와 연결된 Named Pipe 간의 통신파일 다운로드1
11721정성태10/4/201821490.NET Framework: 797. Linux 환경의 .NET Core 응용 프로그램에서 직렬 포트(Serial Port, COM Port) 사용 방법파일 다운로드1
11719정성태10/4/201823662.NET Framework: 796. C# - 인증서를 윈도우에 설치하는 방법
11712정성태10/2/201827629.NET Framework: 795. C# - 폰트 목록을 한글이 아닌 영문으로 구하는 방법 [3]
11710정성태10/2/201822041.NET Framework: 794. C# - 같은 모양, 다른 값의 한글 자음을 비교하는 호환 분해 [5]
11696정성태9/19/201820197.NET Framework: 793. C# - REST API를 이용해 NuGet 저장소 제어파일 다운로드1
11679정성태8/30/201820559.NET Framework: 792. C# COM 서버가 제공하는 COM 이벤트를 C++에서 받는 방법 [1]파일 다운로드1
11676정성태8/29/201827575.NET Framework: 791. C# - ElasticSearch를 위한 Client 라이브러리 제작 [1]파일 다운로드1
11634정성태8/1/201821631.NET Framework: 790. .NET Thread 상태가 Cooperative일 때 GC hang 현상 재현 방법파일 다운로드1
11629정성태7/26/201823780.NET Framework: 789. C# 컴파일 옵션 - Check for arithmetic overflow/underflow [2]
11615정성태7/17/201823087.NET Framework: 788. RawInput을 이용한 키보드/마우스 입력 모니터링파일 다운로드1
11589정성태7/7/201817799.NET Framework: 787. object로 형변환된 인스턴스를 원래의 타입 인자로 제네릭 메서드를 호출하는 방법 [2]파일 다운로드1
11587정성태7/5/201818867.NET Framework: 786. ASP.NET - HttpCookieCollection을 다중 스레드에서 사용할 경우 무한 루프 현상
11583정성태7/5/201817992.NET Framework: 785. public으로 노출되지 않은 다른 어셈블리의 delegate 인스턴스를 Reflection으로 생성하는 방법파일 다운로드1
... 16  17  18  19  20  21  22  23  24  25  26  27  28  29  [30]  ...