Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 2개 있습니다.)
(시리즈 글이 8개 있습니다.)
.NET Framework: 614. C# - DateTime.Ticks의 정밀도
; https://www.sysnet.pe.kr/2/0/11082

.NET Framework: 827. C# - 인터넷 시간 서버로부터 받은 시간을 윈도우에 적용하는 방법
; https://www.sysnet.pe.kr/2/0/11883

스크립트: 33. JavaScript와 C#의 시간 변환
; https://www.sysnet.pe.kr/2/0/12849

Windows: 204.  Windows 10부터 바뀐 QueryPerformanceFrequency, QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/13035

.NET Framework: 1997. C# - nano 시간을 가져오는 방법
; https://www.sysnet.pe.kr/2/0/13036

스크립트: 47. 파이썬의 time.time() 실숫값을 GoLang / C#에서 사용하는 방법
; https://www.sysnet.pe.kr/2/0/13308

닷넷: 2143. C# - 시스템 Time Zone 변경 시 이벤트 알림을 받는 방법
; https://www.sysnet.pe.kr/2/0/13413

닷넷: 2309. C# - .NET Core에서 바뀐 DateTime.Ticks의 정밀도
; https://www.sysnet.pe.kr/2/0/13803




Windows 10부터 바뀐 QueryPerformanceFrequency, QueryPerformanceCounter

예전 글에서,

윈도우 운영체제의 시간 함수 (5) - TSC(Time Stamp Counter)와 QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/11068

제가 QueryPerformanceFrequency는 초당 틱 수를 반환한다고 했고, QueryPerformanceCounter는 그 틱의 단위가 적용된다고 했습니다.

재미있는 것은, 그 당시 QueryPerformanceFrequency는 (시스템마다 다를 수 있는) 3,328,129라는 값을 반환했는데요, 최근에 다시 소스 코드를 돌려 보니,

using System;
using System.Runtime.InteropServices;

internal class Program
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceFrequency(out long lpFrequency);

    static void Main(string[] args)
    {
        long lpFrequency;
        QueryPerformanceFrequency(out lpFrequency);
        Console.WriteLine($"QueryPerformanceFrequency == {lpFrequency}");
    }
}

고정적으로 10,000,000 값이 나옵니다. ^^; 검색 결과 이런 글이 나오는군요.

QueryPerformanceFrequency returns 10mhz on Windows 10 Build 1809+, causing performance loss/increased jitter/latency
; https://answers.microsoft.com/en-us/windows/forum/all/queryperformancefrequency-returns-10mhz-on-windows/44946807-5355-4b36-ba3e-43aa86ce30c0?auth=1

그러니까, Windows 10 build 1809부터 고정적으로 저 값이 나오도록 바뀐 것입니다. 아마도 frequency의 값을 운영체제 차원에서 정규화를 시도해 보정한 값이 나오는 듯합니다.

따라서, 이제는 QueryPerformanceFrequency에서 고정적으로 10,000,000 값을 반환해 주기 때문에 QueryPerformanceCounter의 1차이는,

T = 1 / 10,000,000 = 0.0000001초
                   = 0.0001밀리초
                   = 0.1마이크로초
                   = 100나노초

100나노초 단위가 된 것입니다. 이런 의미에서 봤을 때 다음의 Win32 API들이,

윈도우 운영체제의 시간 함수 (3) - QueryInterruptTimePrecise, QueryInterruptTime 함수
; https://www.sysnet.pe.kr/2/0/11066

문서에서 100나노초라고 일관되게 정한 것이 이해가 갑니다. ^^

lpInterruptTimePrecise [out]

A pointer to a ULONGLONG in which to receive the interrupt-time count in system time units of 100 nanoseconds. Divide by ten million, or 1e7, to get seconds (there are 1e9 nanoseconds in a second, so there are 1e7 100-nanoseconds in a second).


개인적으로는, 이런 변화는 나쁘지 않다고 봅니다. 향후에는 더 이상 QueryPerformanceFrequency 값을 구할 필요 없이 10,000,000으로 고정해도 되고, QueryPerformanceCounter의 단위를 100나노초라고 가정하고 계산할 수 있기 때문입니다.

단지, 한동안은 Windows 10 build 1809 미만의 컴퓨터도 고려를 해야 한다면 QueryPerformanceFrequency에 따른 계산을 병행할 필요는 있겠습니다. ^^




그런데, 실제로 테스트를 해보면 Windows 10뿐만 아니라 (VM에서 테스트했지만) Windows 7 x64, Windows Server 2012 R2에서도 동일하게 QueryPerformanceFrequency == 10,000,000 값이 나옵니다.

굳이 짜 맞춰 본다면, 저 당시에 Windows 10을 필두로 하위 운영체제에도 점차로 적용된 것이 아닌가... 예상하는데요, 그렇다고는 하지만 이것을 100%라고 가정할 수는 없으므로 쉽사리 10,000,000 값을 고정적으로 쓰기에는 다소 불안한 면이 있습니다. ^^




그러고 보니, 최근에 썼던 마이크로초 단위의 sleep 기능을 설명한 코드가,

C# - 윈도우 환경에서 usleep을 호출하는 방법
; https://www.sysnet.pe.kr/2/0/12980

이랬는데,

static internal class NativeMethods
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceCounter(out long lpPerformanceCount);

    public static void uSleep(long waitTime) 
    {
        long time1 = 0, time2 = 0;

        QueryPerformanceCounter(out time1);

        do
        {
            QueryPerformanceCounter(out time2);
        } while ((time2 - time1) < waitTime);
    }
}

왜 제가 QueryPerformanceCounter의 반환값을 마이크로초 단위라고 가정했을까요? ^^; 이것을 범용적으로 만들려면 이렇게 작성해야 하고,

static internal class NativeMethods
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceCounter(out long lpPerformanceCount);

    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceFrequency(out long ticksPerSecond);

    static long _ticksPerMicroSeconds;

    static NativeMethods()
    {
        long ticksPerSecond = 0;
        QueryPerformanceFrequency(out ticksPerSecond);
        _ticksPerMicroSeconds = ticksPerSecond / 1000 / 1000;
    }

    public static void uSleep(long waitTime)
    {
        long utime1 = 0, utime2 = 0;

        QueryPerformanceCounter(out utime1);
        utime1 = utime1 / _ticksPerMicroSeconds;

        do
        {
            QueryPerformanceCounter(out utime2);
            utime2 = utime2 / _ticksPerMicroSeconds;
        } while ((utime2 - utime1) < waitTime);
    }
}

Windows 10 이상의 PC에서 동작하는 것을 가정한다면 다음과 같이 만들어도 됩니다.

static internal class NativeMethods
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceCounter(out long lpPerformanceCount);

    public static void uSleep(long waitTime)
    {
        waitTime = waitTime * 10; // 100나노초 단위를 갖는 QueryPerformanceCounter 값과 비교하기 위해!
        long time1 = 0, time2 = 0;

        QueryPerformanceCounter(out time1);

        do
        {
            QueryPerformanceCounter(out time2);
        } while ((time2 - time1) < waitTime);
    }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/22/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
12153정성태2/23/202024400.NET Framework: 898. Trampoline을 이용한 후킹의 한계파일 다운로드1
12152정성태2/23/202021417.NET Framework: 897. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 세 번째 이야기(Trampoline 후킹)파일 다운로드1
12151정성태2/22/202024053.NET Framework: 896. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 - 두 번째 이야기 (원본 함수 호출)파일 다운로드1
12150정성태2/21/202024127.NET Framework: 895. C# - Win32 API를 Trampoline 기법을 이용해 C# 메서드로 가로채는 방법 [1]파일 다운로드1
12149정성태2/20/202021042.NET Framework: 894. eBEST C# XingAPI 래퍼 - 연속 조회 처리 방법 [1]
12148정성태2/19/202025724디버깅 기술: 163. x64 환경에서 구현하는 다양한 Trampoline 기법 [1]
12147정성태2/19/202021030디버깅 기술: 162. x86/x64의 기계어 코드 최대 길이
12146정성태2/18/202022223.NET Framework: 893. eBEST C# XingAPI 래퍼 - 로그인 처리파일 다운로드1
12145정성태2/18/202023841.NET Framework: 892. eBEST C# XingAPI 래퍼 - Sqlite 지원 추가파일 다운로드1
12144정성태2/13/202024014.NET Framework: 891. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 두 번째 이야기파일 다운로드1
12143정성태2/13/202018427.NET Framework: 890. 상황별 GetFunctionPointer 반환값 정리 - x64파일 다운로드1
12142정성태2/12/202022342.NET Framework: 889. C# 코드로 접근하는 MethodDesc, MethodTable파일 다운로드1
12141정성태2/10/202021345.NET Framework: 888. C# - ASP.NET Core 웹 응용 프로그램의 출력 가로채기 [2]파일 다운로드1
12140정성태2/10/202022705.NET Framework: 887. C# - ASP.NET 웹 응용 프로그램의 출력 가로채기파일 다운로드1
12139정성태2/9/202022397.NET Framework: 886. C# - Console 응용 프로그램에서 UI 스레드 구현 방법
12138정성태2/9/202028605.NET Framework: 885. C# - 닷넷 응용 프로그램에서 SQLite 사용 [6]파일 다운로드1
12137정성태2/9/202020248오류 유형: 592. [AhnLab] 경고 - 디버거 실행을 탐지했습니다.
12136정성태2/6/202021896Windows: 168. Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
12135정성태2/6/202027692개발 환경 구성: 468. Nuget 패키지의 로컬 보관 폴더를 옮기는 방법 [2]
12134정성태2/5/202024968.NET Framework: 884. eBEST XingAPI의 C# 래퍼 버전 - XingAPINet Nuget 패키지 [5]파일 다운로드1
12133정성태2/5/202022707디버깅 기술: 161. Windbg 환경에서 확인해 본 .NET 메서드 JIT 컴파일 전과 후 - 두 번째 이야기
12132정성태1/28/202025733.NET Framework: 883. C#으로 구현하는 Win32 API 후킹(예: Sleep 호출 가로채기) [1]파일 다운로드1
12131정성태1/27/202024463개발 환경 구성: 467. LocaleEmulator를 이용해 유니코드를 지원하지 않는(한글이 깨지는) 프로그램을 실행하는 방법 [1]
12130정성태1/26/202022031VS.NET IDE: 142. Visual Studio에서 windbg의 "Open Executable..."처럼 EXE를 직접 열어 디버깅을 시작하는 방법
12129정성태1/26/202029054.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법 [3]
12128정성태1/26/202023171오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...