Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 2개 있습니다.)
(시리즈 글이 8개 있습니다.)
.NET Framework: 614. C# - DateTime.Ticks의 정밀도
; https://www.sysnet.pe.kr/2/0/11082

.NET Framework: 827. C# - 인터넷 시간 서버로부터 받은 시간을 윈도우에 적용하는 방법
; https://www.sysnet.pe.kr/2/0/11883

스크립트: 33. JavaScript와 C#의 시간 변환
; https://www.sysnet.pe.kr/2/0/12849

Windows: 204.  Windows 10부터 바뀐 QueryPerformanceFrequency, QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/13035

.NET Framework: 1997. C# - nano 시간을 가져오는 방법
; https://www.sysnet.pe.kr/2/0/13036

스크립트: 47. 파이썬의 time.time() 실숫값을 GoLang / C#에서 사용하는 방법
; https://www.sysnet.pe.kr/2/0/13308

닷넷: 2143. C# - 시스템 Time Zone 변경 시 이벤트 알림을 받는 방법
; https://www.sysnet.pe.kr/2/0/13413

닷넷: 2309. C# - .NET Core에서 바뀐 DateTime.Ticks의 정밀도
; https://www.sysnet.pe.kr/2/0/13803




Windows 10부터 바뀐 QueryPerformanceFrequency, QueryPerformanceCounter

예전 글에서,

윈도우 운영체제의 시간 함수 (5) - TSC(Time Stamp Counter)와 QueryPerformanceCounter
; https://www.sysnet.pe.kr/2/0/11068

제가 QueryPerformanceFrequency는 초당 틱 수를 반환한다고 했고, QueryPerformanceCounter는 그 틱의 단위가 적용된다고 했습니다.

재미있는 것은, 그 당시 QueryPerformanceFrequency는 (시스템마다 다를 수 있는) 3,328,129라는 값을 반환했는데요, 최근에 다시 소스 코드를 돌려 보니,

using System;
using System.Runtime.InteropServices;

internal class Program
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceFrequency(out long lpFrequency);

    static void Main(string[] args)
    {
        long lpFrequency;
        QueryPerformanceFrequency(out lpFrequency);
        Console.WriteLine($"QueryPerformanceFrequency == {lpFrequency}");
    }
}

고정적으로 10,000,000 값이 나옵니다. ^^; 검색 결과 이런 글이 나오는군요.

QueryPerformanceFrequency returns 10mhz on Windows 10 Build 1809+, causing performance loss/increased jitter/latency
; https://answers.microsoft.com/en-us/windows/forum/all/queryperformancefrequency-returns-10mhz-on-windows/44946807-5355-4b36-ba3e-43aa86ce30c0?auth=1

그러니까, Windows 10 build 1809부터 고정적으로 저 값이 나오도록 바뀐 것입니다. 아마도 frequency의 값을 운영체제 차원에서 정규화를 시도해 보정한 값이 나오는 듯합니다.

따라서, 이제는 QueryPerformanceFrequency에서 고정적으로 10,000,000 값을 반환해 주기 때문에 QueryPerformanceCounter의 1차이는,

T = 1 / 10,000,000 = 0.0000001초
                   = 0.0001밀리초
                   = 0.1마이크로초
                   = 100나노초

100나노초 단위가 된 것입니다. 이런 의미에서 봤을 때 다음의 Win32 API들이,

윈도우 운영체제의 시간 함수 (3) - QueryInterruptTimePrecise, QueryInterruptTime 함수
; https://www.sysnet.pe.kr/2/0/11066

문서에서 100나노초라고 일관되게 정한 것이 이해가 갑니다. ^^

lpInterruptTimePrecise [out]

A pointer to a ULONGLONG in which to receive the interrupt-time count in system time units of 100 nanoseconds. Divide by ten million, or 1e7, to get seconds (there are 1e9 nanoseconds in a second, so there are 1e7 100-nanoseconds in a second).


개인적으로는, 이런 변화는 나쁘지 않다고 봅니다. 향후에는 더 이상 QueryPerformanceFrequency 값을 구할 필요 없이 10,000,000으로 고정해도 되고, QueryPerformanceCounter의 단위를 100나노초라고 가정하고 계산할 수 있기 때문입니다.

단지, 한동안은 Windows 10 build 1809 미만의 컴퓨터도 고려를 해야 한다면 QueryPerformanceFrequency에 따른 계산을 병행할 필요는 있겠습니다. ^^




그런데, 실제로 테스트를 해보면 Windows 10뿐만 아니라 (VM에서 테스트했지만) Windows 7 x64, Windows Server 2012 R2에서도 동일하게 QueryPerformanceFrequency == 10,000,000 값이 나옵니다.

굳이 짜 맞춰 본다면, 저 당시에 Windows 10을 필두로 하위 운영체제에도 점차로 적용된 것이 아닌가... 예상하는데요, 그렇다고는 하지만 이것을 100%라고 가정할 수는 없으므로 쉽사리 10,000,000 값을 고정적으로 쓰기에는 다소 불안한 면이 있습니다. ^^




그러고 보니, 최근에 썼던 마이크로초 단위의 sleep 기능을 설명한 코드가,

C# - 윈도우 환경에서 usleep을 호출하는 방법
; https://www.sysnet.pe.kr/2/0/12980

이랬는데,

static internal class NativeMethods
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceCounter(out long lpPerformanceCount);

    public static void uSleep(long waitTime) 
    {
        long time1 = 0, time2 = 0;

        QueryPerformanceCounter(out time1);

        do
        {
            QueryPerformanceCounter(out time2);
        } while ((time2 - time1) < waitTime);
    }
}

왜 제가 QueryPerformanceCounter의 반환값을 마이크로초 단위라고 가정했을까요? ^^; 이것을 범용적으로 만들려면 이렇게 작성해야 하고,

static internal class NativeMethods
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceCounter(out long lpPerformanceCount);

    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceFrequency(out long ticksPerSecond);

    static long _ticksPerMicroSeconds;

    static NativeMethods()
    {
        long ticksPerSecond = 0;
        QueryPerformanceFrequency(out ticksPerSecond);
        _ticksPerMicroSeconds = ticksPerSecond / 1000 / 1000;
    }

    public static void uSleep(long waitTime)
    {
        long utime1 = 0, utime2 = 0;

        QueryPerformanceCounter(out utime1);
        utime1 = utime1 / _ticksPerMicroSeconds;

        do
        {
            QueryPerformanceCounter(out utime2);
            utime2 = utime2 / _ticksPerMicroSeconds;
        } while ((utime2 - utime1) < waitTime);
    }
}

Windows 10 이상의 PC에서 동작하는 것을 가정한다면 다음과 같이 만들어도 됩니다.

static internal class NativeMethods
{
    [DllImport("Kernel32.dll")]
    static extern bool QueryPerformanceCounter(out long lpPerformanceCount);

    public static void uSleep(long waitTime)
    {
        waitTime = waitTime * 10; // 100나노초 단위를 갖는 QueryPerformanceCounter 값과 비교하기 위해!
        long time1 = 0, time2 = 0;

        QueryPerformanceCounter(out time1);

        do
        {
            QueryPerformanceCounter(out time2);
        } while ((time2 - time1) < waitTime);
    }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 4/22/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  [93]  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11610정성태7/15/201817395Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
11609정성태7/15/201820419Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
11608정성태7/15/201824978Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
11607정성태7/14/201825309Graphics: 2. Unity로 실습하는 Shader [1]
11606정성태7/13/201825943사물인터넷: 19. PC에 연결해 동작하는 자신만의 USB 장치 만들어 보기파일 다운로드1
11605정성태7/13/201821753사물인터넷: 18. New NodeMCU v3 아두이노 호환 보드의 내장 LED 및 입력 핀 사용법 [1]파일 다운로드1
11604정성태7/12/201820888Math: 47. GeoGebra 기하 (24) - 정다각형파일 다운로드1
11603정성태7/12/201816931Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근파일 다운로드1
11602정성태7/11/201817112Math: 45. GeoGebra 기하 (22) - 반전기하학의 원에 관한 반사변환파일 다운로드1
11601정성태7/11/201819868Math: 44. GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환파일 다운로드1
11600정성태7/10/201818327Math: 43. GeoGebra 기하 (20) - 세 점을 지나는 원파일 다운로드1
11599정성태7/10/201817636Math: 42. GeoGebra 기하 (19) - 두 원의 안과 밖으로 접하는 직선파일 다운로드1
11598정성태7/10/201819527Windows: 147. 시스템 복구 디스크를 USB 디스크에 만드는 방법
11597정성태7/10/201821628사물인터넷: 17. Thinary Electronic - ATmega328PB 아두이노 호환 보드의 개발 환경 구성
11596정성태7/10/201819553기타: 72. 과거의 용어 설명 - OWIN
11595정성태7/10/201825310사물인터넷: 16. New NodeMCU v3 아두이노 호환 보드의 기본 개발 환경 구성
11594정성태7/8/201819701Math: 41. GeoGebra 기하 (18) - 원의 중심 및 접선파일 다운로드1
11593정성태7/8/201818731Math: 40. GeoGebra 기하 (17) - 각의 복사파일 다운로드1
11591정성태7/7/201818057Math: 39. GeoGebra 기하 (16) - 삼각형의 방심과 방접원파일 다운로드1
11590정성태7/7/201817619Math: 38. GeoGebra 기하 (15) - 삼각형의 수심파일 다운로드1
11589정성태7/7/201817891.NET Framework: 787. object로 형변환된 인스턴스를 원래의 타입 인자로 제네릭 메서드를 호출하는 방법 [2]파일 다운로드1
11588정성태7/7/201819360디버깅 기술: 116. windbg 분석 사례 - ASP.NET 웹 응용 프로그램의 CPU 100% 현상 (3)
11587정성태7/5/201818973.NET Framework: 786. ASP.NET - HttpCookieCollection을 다중 스레드에서 사용할 경우 무한 루프 현상
11586정성태7/5/201818149Math: 37. GeoGebra 기하 (14) - 삼각형의 무게 중심파일 다운로드1
11585정성태7/5/201818317Math: 36. GeoGebra 기하 (13) - 삼각형의 외심과 외접하는 원파일 다운로드1
11584정성태7/5/201818304Math: 35. GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원파일 다운로드1
... 91  92  [93]  94  95  96  97  98  99  100  101  102  103  104  105  ...