Microsoft MVP성태의 닷넷 이야기
Windows: 214. 윈도우 - 스레드 스택의 "red zone" [링크 복사], [링크+제목 복사],
조회: 12470
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 1개 있습니다.)

윈도우 - 스레드 스택의 "red zone"

"Raymond Chen"의 글을 제 마음대로 정리한 것입니다.

Why do we even need to define a red zone? Can’t I just use my stack for anything?
; https://devblogs.microsoft.com/oldnewthing/20190111-00/?p=100685

"red zone"이 뭔지 궁금해서 찾아본 건데, 정작 x86/x64에서는 실습을 할 수 없어 다소 제목 값을 못하게 되었습니다. ^^




보통 스택은 이렇게 구성됩니다.

stack_red_zone_1.png

그런데 일부 플랫폼에서는 SP가 가리키는 (스택은 상위 주소에서 하위 주소로 자라므로) 아래의 영역에 대해 "red zone"이라는 구역을 정의하기도 합니다.

stack_red_zone_2.png

그런 경우에는 "red zone"도 (비록 SP 포인터 범위에 포함되지는 않지만) 유효한 영역, 다르게 표현하면 응용 프로그램의 동작을 위해 필요한 공간으로 취급합니다. 윈도우 운영체제의 경우 CPU 종류 별로 다음과 같이 red zone 크기를 정한다고 하는데,

stack_red_zone_3.png

따라서 우리가 일반적으로 사용하는 INTEL/AMD CPU인 x86, x64 환경에서는 red zone 영역이 없습니다.

그런데, 개인적으로 한 번도 궁금해 본 적이 없는 질문을 "Raymond Chen"이 합니다. 우리는 분명히 SP 포인터가 스택의 top을 가리키고 그 영역 내의 데이터만 건드리지 않는다면 프로그램 수행에는 아무런 지장이 없을 것임을 알 수 있습니다. 그렇다면 그 top을 넘어서는 하위 주소의 범위를 임의 목적으로 사용하는 것도 가능하지 않을까요?

하지만 그에 대한 반례로, 아래의 코드를 예시로 듭니다.

// x86 기준의 코드

    MOV     [esp-4], eax       ; save eax below the stack pointer
    MOV     ecx, [esp-4]       ; read it into ecx
    CMP     ecx, eax           ; are they the same?
    JNZ     panic              ; N: something crazy happened

(SP 범위를 넘어서는) [esp-4] 주소에 eax의 값을 보관하고, 다시 그 값을 ecx에 보관 후 ecx와 eax의 값을 비교하면... 당연히 값은 같을 것입니다. 그런데, 경우에 따라 panic 라벨로 점프하는 코드가 실행될 수 있다는 것입니다.

위의 코드는 x86이므로 일단 red zone으로 여겨지는 안전 영역이 0바이트로 아예 존재하지 않습니다. 이것은, 시스템이 정확히 SP 포인터가 가리키는 위치 내의 데이터만 안 건드린다면 안정성이 보장된다는 "가정"을 하게 됩니다.

따라서, 위의 어셈블리 코드에서 "[esp-4]" 영역은 다른 특별한 상황에서 (응용 프로그램 개발자가 아닌) 시스템 코드에 의해 임의로 사용될 수도 있다는 것입니다.

일례로, windbg의 .call 명령어 사용은,

.call (Call Function)
; https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/-call--call-function-

현재의 스레드 스택을 사용해야 할 것이고, SP 영역 밖의 내용이 안전하다는 가정으로 필요에 따라 esp-4 영역을 사용합니다.

이 외에도, 절묘하게 "MOV [esp-4], eax" 코드가 수행된 후 스레드가 선점된 상태에서 메모리 관리자가 해당 코드를 담은 메모리 페이지를 working set에서 내렸다고 가정해 보겠습니다. 이후 스레드가 실행을 재개하면 메모리 관리자는 디스크로 내린 코드 페이지를 working set에 다시 올리려 할 것입니다. 그런데, 하필 그 과정에서 I/O 에러가 발생하는 상황도 있을 것입니다. 그럼 운영체제는 예외 처리 절차에 따라 exception frame을 현재 스택에 구성하게 되는데요, 이때도 역시 응용 프로그램의 유효한 스택 사용을 SP 포인터를 기준으로 하므로 그 이후의 영역, 즉 [esp-4] 위치의 메모리가 사용될 것입니다.

물론, 위와 같은 우연이 겹칠 확률은 거의 없을 것입니다. 하지만 분명한 건, SP 포인터 이후의 내용이 100% 안전하지는 않다는 것입니다.




위의 시나리오에서 실제로 windbg의 .call 명령어를 실습해 볼까요? ^^

간단하게 C++로 다음의 코드를 작성하고,

#include <iostream>
#include <stdio.h>

int Add(int i, int j)
{
    return i + j;
}

int main()
{
    std::cout << "Press any key to exit...!\n";
    getchar();
}

실행 후 windbg로 연결(Attach)합니다. 이후, Add 함수와 스택 포인터 위치의 데이터를 확인하고,

// Stupid debugger tricks: Calling functions and methods
// ; https://devblogs.microsoft.com/oldnewthing/20070427-00/?p=27083

0:004> x ConsoleApplication1!Add
00007ff7`6ffb2120 ConsoleApplication1!Add (int, int)

0:004> dd rsp-8
00000065`b39ff740  00000000 00000000 761c84ee 00007fff
00000065`b39ff750  00000000 00000000 00000000 00000000
00000065`b39ff760  00000000 00000000 00000000 00000000
00000065`b39ff770  00000000 00000000 7400244d 00007fff
00000065`b39ff780  00000000 00000000 00000000 00000000
00000065`b39ff790  00000000 00000000 00000000 00000000
00000065`b39ff7a0  00000000 00000000 7614dfb8 00007fff
00000065`b39ff7b0  00000000 00000000 00000000 00000000

.call을 실행합니다.

0:004> .call ConsoleApplication1!Add(1,2)
Thread is set up for call, 'g' will execute.
WARNING: This can have serious side-effects,
including deadlocks and corruption of the debuggee.

0:004> g
.call returns:
int 0n3

ntdll!DbgBreakPoint:
00007fff`76192af0 cc              int     3

이제 다음과 같이 이전 rsp-8 위치의 데이터를 확인하면,

0:004> dd 00000065`b39ff740
00000065`b39ff740  ccfdebcc cccccccc 761c84ee 00007fff
00000065`b39ff750  00000000 00000000 00000000 00000000
00000065`b39ff760  00000000 00000000 00000000 00000000
00000065`b39ff770  00000000 00000000 7400244d 00007fff
00000065`b39ff780  00000000 00000000 00000000 00000000
00000065`b39ff790  00000000 00000000 00000000 00000000
00000065`b39ff7a0  00000000 00000000 7614dfb8 00007fff
00000065`b39ff7b0  00000000 00000000 00000000 00000000

보다시피 windbg의 .call 호출 수행으로 스택이 변조되었습니다. 아울러, 함수에 전달했던 값은 (64비트 ABI 규약으로) rcx, rdx에 전달된 것을 확인할 수 있습니다.

0:004> r
rax=00000065b347a000 rbx=0000000000000000 rcx=0000000000000001
rdx=0000000000000002 rsi=0000000000000000 rdi=0000000000000000
rip=00007ff76ffb2120 rsp=00000065b39ff718 rbp=0000000000000000
 r8=0000000000000000  r9=0000000000000000 r10=00007fff7408cff0
r11=0000000000000000 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0         nv up ei pl zr na po nc
cs=0033  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000246
ConsoleApplication1!Add:
00007ff7`6ffb2120 89542410        mov     dword ptr [rsp+10h],edx ss:00000065`b39ff728=00000000

참고로, ".call" 명령은 windbg가 제공하는 것이지만, 그게 없어도 개발자가 직접 stack frame을 구성해 호출하는 것이 가능합니다.




그건 그렇고 ARM 개발 환경 도구가 국내에도 정발되었다면,

Windows Dev Kit 2023 
; https://www.microsoft.com/en-us/d/windows-dev-kit-2023/94k0p67w7581

ARM64에서 16바이트 공간의 red zone 여부를 테스트할 수 있었을 텐데... 아쉽군요. ^^ 아마도 위와 같이 windbg로 .call 명령어를 수행하면 rsp-16까지의 데이터 변조는 발생하지 않을 것입니다. (혹시 확인해 주실 분 있을까요? ^^)




정리해 보면, Raymond Chen의 글도 제목이 좀 이상합니다. 제목과는 달리 왜 "red zone" 영역이 필요한지에 대해서는 언급이 없고, 그냥 플랫폼 별로 존재한다고만 언급한 것이 전부입니다. 이에 대해 좀 더 찾아보면 아래의 문서에서,

// https://www.agner.org/optimize/calling_conventions.pdf

64 bit Linux, BSD and Mac. This system has six integer registers and eight XMM registers 
for parameter transfer. This means that a maximum of 14 parameters can be transferred in 
registers in 64 bit Linux, BSD and Mac, while 64 bit Windows allows only 4. There is no 
shadow space on the stack. Instead there is a "red zone" below the stack pointer that can 
be used for temporary storage. The red zone is the space from [rsp-128] to [rsp-8]. A 
function can rely on this space being untouched by interrupt and exception handlers (except 
in kernel code). It is therefore safe to use this space for temporary storage as long as you 
don't do any push or call instructions. Everything stored in the red zone is destroyed by 
function calls. The red zone is not available in Windows.

응용 프로그램 개발자가 명시적인 push/call 명령어 없이 임시 용도로 활용할 수 있는 SP 이후의 공간이라고 합니다. 왜 저런 공간이 필요한 것인지... 그래도 모르겠군요. ^^; 저런 의미에서 볼 때 Raymond도 "... a red zone, which is a region of the stack below the stack pointer that is still valid for applications to use."라는 설명으로 퉁친 것 같습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 11/25/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13667정성태7/7/20246622닷넷: 2273. C# - 리눅스 환경에서의 Hyper-V Socket 연동 (AF_VSOCK)파일 다운로드1
13666정성태7/7/20247700Linux: 74. C++ - Vsock 예제 (Hyper-V Socket 연동)파일 다운로드1
13665정성태7/6/20247880Linux: 73. Linux 측의 socat을 이용한 Hyper-V 호스트와의 vsock 테스트파일 다운로드1
13663정성태7/5/20247475닷넷: 2272. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)의 VMID Wildcards 유형파일 다운로드1
13662정성태7/4/20247491닷넷: 2271. C# - WSL 2 VM의 VM ID를 알아내는 방법 - Host Compute System API파일 다운로드1
13661정성태7/3/20247413Linux: 72. g++ - 다른 버전의 GLIBC로 소스코드 빌드
13660정성태7/3/20247522오류 유형: 912. Visual C++ - Linux 프로젝트 빌드 오류
13659정성태7/1/20247858개발 환경 구성: 715. Windows - WSL 2 환경의 Docker Desktop 네트워크
13658정성태6/28/20248235개발 환경 구성: 714. WSL 2 인스턴스와 호스트 측의 Hyper-V에 운영 중인 VM과 네트워크 연결을 하는 방법 - 두 번째 이야기
13657정성태6/27/20247911닷넷: 2270. C# - Hyper-V Socket 통신(AF_HYPERV, AF_VSOCK)을 위한 EndPoint 사용자 정의
13656정성태6/27/20248088Windows: 264. WSL 2 VM의 swap 파일 위치
13655정성태6/24/20247850닷넷: 2269. C# - Win32 Resource 포맷 해석파일 다운로드1
13654정성태6/24/20247787오류 유형: 911. shutdown - The entered computer name is not valid or remote shutdown is not supported on the target computer.
13653정성태6/22/20247937닷넷: 2268. C# 코드에서 MAKEINTREOURCE 매크로 처리
13652정성태6/21/20249247닷넷: 2267. C# - Linux 환경에서 (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드2
13651정성태6/19/20248487닷넷: 2266. C# - (Reflection 없이) DLL AssemblyFileVersion 구하는 방법파일 다운로드1
13650정성태6/18/20248410개발 환경 구성: 713. "WSL --debug-shell"로 살펴보는 WSL 2 VM의 리눅스 환경
13649정성태6/18/20247957오류 유형: 910. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter" (2)
13648정성태6/17/20248278오류 유형: 909. C# - DynamicMethod 사용 시 System.TypeAccessException
13647정성태6/16/20249344개발 환경 구성: 712. Windows - WSL 2의 네트워크 통신 방법 - 세 번째 이야기 (같은 IP를 공유하는 WSL 2 인스턴스) [1]
13646정성태6/14/20247758오류 유형: 908. Process Explorer - "Error configuring dump resources: The system cannot find the file specified."
13645정성태6/13/20248197개발 환경 구성: 711. Visual Studio로 개발 시 기본 등록하는 dev tag 이미지로 Docker Desktop k8s에서 실행하는 방법
13644정성태6/12/20248868닷넷: 2265. C# - System.Text.Json의 기본적인 (한글 등에서의) escape 처리 [1]
13643정성태6/12/20248319오류 유형: 907. MySqlConnector 사용 시 System.IO.FileLoadException 오류
13642정성태6/11/20248198스크립트: 65. 파이썬 - asgi 버전(2, 3)에 따라 달라지는 uvicorn 호스팅
13641정성태6/11/20248673Linux: 71. Ubuntu 20.04를 22.04로 업데이트
1  2  3  4  5  6  7  8  9  10  [11]  12  13  14  15  ...