Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 2개 있습니다.)
스크립트: 49. 파이썬 - "Transformers (신경망 언어모델 라이브러리) 강좌" - 1장 2절 코드 실행 결과
; https://www.sysnet.pe.kr/2/0/13363

스크립트: 50. Transformers (신경망 언어모델 라이브러리) 강좌 - 2장 코드 실행 결과
; https://www.sysnet.pe.kr/2/0/13375




파이썬 - "Transformers (신경망 언어모델 라이브러리) 강좌" - 1장 2절 코드 실습

다음의 강좌에서,

Transformers (신경망 언어모델 라이브러리) 강좌
; https://wikidocs.net/book/8056

1장 2절의 내용에,

2. 🤗Transformers가 할 수 있는 일들
; https://wikidocs.net/166787

포함된 코드를 구글 Colab에서 수행한 결과를 나열해 봅니다. ^^

!pip install transformers

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

classifier("I've been waiting for a HuggingFace course my whole life.")

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

# 실행 결과
[{'label': 'POSITIVE', 'score': 0.9598048329353333},
 {'label': 'NEGATIVE', 'score': 0.9994558691978455}]

from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier(
    "This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"],
)

# 실행 결과
{'sequence': 'This is a course about the Transformers library',
 'labels': ['education', 'business', 'politics'],
 'scores': [0.8445989489555359, 0.11197412759065628, 0.04342695698142052]}

from transformers import pipeline

generator = pipeline("text-generation")
generator("In this course, we will teach you how to")

# 실행 결과
[{'generated_text': "In this course, we will teach you how to use NLP with the following tasks. In this course, we will work with a computer running NLP. I'm using the npc-get system to find your NPM scripts and to start"}]

from transformers import pipeline

generator = pipeline("text-generation", model="distilgpt2")    # distilgpt2 모델을 로드한다.
generator(
    "In this course, we will teach you how to",
    max_length=30,
    num_return_sequences=2,
)

# 실행 결과
[{'generated_text': 'In this course, we will teach you how to create a simple and fun web design using Photoshop for building a simple website.\n\n\n\nThe'},
 {'generated_text': 'In this course, we will teach you how to apply the following basic concepts to your life (see below). This course aims to help you to choose'}]

from transformers import pipeline

unmasker = pipeline("fill-mask")
unmasker("This course will teach you all about  models.", top_k=3)

# 실행 결과
[{'score': 0.19619806110858917,
  'token': 30412,
  'token_str': ' mathematical',
  'sequence': 'This course will teach you all about mathematical models.'},
 {'score': 0.04052723944187164,
  'token': 38163,
  'token_str': ' computational',
  'sequence': 'This course will teach you all about computational models.'},
 {'score': 0.03301795944571495,
  'token': 27930,
  'token_str': ' predictive',
  'sequence': 'This course will teach you all about predictive models.'}]

from transformers import pipeline

ner = pipeline("ner", grouped_entities=True)
ner("My name is Sylvain and I work at Hugging Face in Brooklyn.")

# 실행 결과
[{'entity_group': 'PER',
  'score': 0.9981694,
  'word': 'Sylvain',
  'start': 11,
  'end': 18},
 {'entity_group': 'ORG',
  'score': 0.9796019,
  'word': 'Hugging Face',
  'start': 33,
  'end': 45},
 {'entity_group': 'LOC',
  'score': 0.9932106,
  'word': 'Brooklyn',
  'start': 49,
  'end': 57}]

from transformers import pipeline

question_answerer = pipeline("question-answering")
question_answerer(
    question="Where do I work?",
    context="My name is Sylvain and I work at Hugging Face in Brooklyn",
)

# 실행 결과
{'score': 0.6949767470359802, 'start': 33, 'end': 45, 'answer': 'Hugging Face'}

from transformers import pipeline

summarizer = pipeline("summarization")
summarizer(
    """
    America has changed dramatically during recent years. Not only has the number of 
    graduates in traditional engineering disciplines such as mechanical, civil, 
    electrical, chemical, and aeronautical engineering declined, but in most of 
    the premier American universities engineering curricula now concentrate on 
    and encourage largely the study of engineering science. As a result, there 
    are declining offerings in engineering subjects dealing with infrastructure, 
    the environment, and related issues, and greater concentration on high 
    technology subjects, largely supporting increasingly complex scientific 
    developments. While the latter is important, it should not be at the expense 
    of more traditional engineering.

    Rapidly developing economies such as China and India, as well as other 
    industrial countries in Europe and Asia, continue to encourage and advance 
    the teaching of engineering. Both China and India, respectively, graduate 
    six and eight times as many traditional engineers as does the United States. 
    Other industrial countries at minimum maintain their output, while America 
    suffers an increasingly serious decline in the number of engineering graduates 
    and a lack of well-educated engineers.
    """
)

# 실행 결과
[{'summary_text': ' America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil, electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India, as well as other industrial countries in Europe and Asia, continue to encourage and advance engineering .'}]

from transformers import pipeline

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
translator("그동안 너무 잘해 주셔서 감사드립니다.")

# 실행 결과
[{'translation_text': 'Thank you so much for your kindness.'}]

from transformers import pipeline

unmasker = pipeline("fill-mask", model="bert-base-uncased")
result = unmasker("This man works as a [MASK].")
print([r["token_str"] for r in result])

result = unmasker("This woman works as a [MASK].")
print([r["token_str"] for r in result])


# 실행 결과
['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']
['nurse', 'maid', 'teacher', 'waitress', 'prostitute']




참고로, Colab이 아닌 Windows에서의 python 환경에서 테스트하고 싶다면 우선 python 3.10으로 설치하고,

Python 3.10.0
; https://www.python.org/downloads/release/python-3100/

제 경우에는 "Windows embeddable package (64-bit)"를 다운로드했고 (따라서 _pth 파일과 pip을 별도로 설정한 다음), virtualenv도 마저 설치합니다.

이후 새로운 virtualenv 환경을 만들고,

C:\python\llml> virtualenv test
created virtual environment CPython3.10.0.final.0-64 in 3934ms
  ...[생략]...

활성화시킨 후,

C:\python\llml> cd test
C:\python\llml\test> .\Scripts\activate

(test) C:\python\llml\test>

transformers를 설치합니다.

(test) C:\python\llml\test> python -m pip install "transformers[sentencepiece]"

그런데, 이것만으로는 pipeline 예제를 실행하는 경우 예외가 발생합니다.

Traceback (most recent call last):
  File "C:\python\llml\test\sc1.py", line 3, in 
    unmasker = pipeline("fill-mask", model="bert-base-uncased")
  File "C:\python\llml\test\lib\site-packages\transformers\pipelines\__init__.py", line 788, in pipeline
    framework, model = infer_framework_load_model(
  File "C:\python\llml\test\lib\site-packages\transformers\pipelines\base.py", line 222, in infer_framework_load_model
    raise RuntimeError(
RuntimeError: At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.

메시지에서 의미하듯이 PyTorch (또는 tensorflow)를 설치해야 하는데요,

START LOCALLY
; https://pytorch.org/get-started/locally/

// NVidia CUDA 11.8
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

// CPU
python -m pip install torch torchvision torchaudio

PyTorch의 경우 지원하는 Compute Platform에 CPU와 CUDA만 있으므로 아쉽게도 AMD 그래픽 카드에서는 사용할 수 없습니다. 하지만, 이미 이 글에서 실습한 코드들의 경우 Model을 직접 훈련시키는 것이 아닌, 이미 훈련된 Model을 사용하는 것에 불과하므로 CPU로도 문제없이 실습이 가능합니다. (3장의 미세 조정 학습까지는!)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/26/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  144  145  146  147  148  [149]  150  ...
NoWriterDateCnt.TitleFile(s)
1329정성태8/21/201222894오류 유형: 161. Azure - Storage 삭제가 안되는 경우 [1]
1328정성태8/20/201233294개발 환경 구성: 163. IIS 7 - "MIME Types" 설정 아이콘이 없는 경우
1327정성태8/19/201238038Windows: 58. Windows 8 정식 버전을 설치해 보고... [14]
1326정성태8/19/201224348오류 유형: 160. Visual Studio 2010 Team Explorer 설치 오류
1325정성태8/15/201224358개발 환경 구성: 162. 닷넷 개발자가 컴파일해 본 리눅스
1324정성태8/15/201226391.NET Framework: 332. 함수형 언어의 코드가 그렇게 빠를까? [4]파일 다운로드1
1323정성태8/4/201228161.NET Framework: 331. C# - 클래스 안에 구조체를 포함하는 경우 발생하는 dynamic 키워드의 부작용 [2]
1322정성태8/3/201227821개발 환경 구성: 161. Ubuntu 리눅스의 Hyper-V 지원 (마우스, 네트워크)
1321정성태7/31/201227097개발 환경 구성: 160. Azure - Virtual Machine의 VHD 파일 다운로드 [2]
1320정성태7/30/201229081Math: 10. C# - (타)원 영역의 마우스 클릭 판단파일 다운로드1
1319정성태7/26/201227619개발 환경 구성: 159. Azure - 네트워크 포트 여는 방법 [1]
1317정성태7/24/201226467오류 유형: 159. SpeechRecognitionEngine.SetInputToDefaultAudioDevice 호출 시 System.InvalidOperationException 예외 발생
1316정성태7/18/201284594개발 환경 구성: 158. .NET 응용 프로그램에서 Oracle XE 11g 사용
1315정성태7/17/201229388개발 환경 구성: 157. Azure - Virtual Machine 구성 [2]
1314정성태7/16/201224407개발 환경 구성: 156. Azure - 2개 이상의 서비스 계정을 가지고 있을 때 프로젝트를 배포하는 방법
1313정성태7/16/201236580오류 유형: 158. Hyper-V 설치 후 VM 시작이 안되는 경우
1312정성태7/15/201236453Math: 9. 황금비율 증명
1311정성태7/15/201229157Math: 8. C# - 피보나치 수열의 사각형과 황금 나선(Golden spiral) 그리기파일 다운로드1
1310정성태7/13/201232601Math: 7. C# - 펜타그램(Pentagram) 그리기파일 다운로드1
1309정성태7/13/201230670개발 환경 구성: 155. 윈도우 운영체제에서 기본적으로 사용할 수 있는 압축 해제 방법
1308정성태7/3/201226049.NET Framework: 330. IEnumerator는 언제나 읽기 전용일까?파일 다운로드1
1307정성태6/30/201228294개발 환경 구성: 154. Sysnet, Azure를 만나다. [5]
1306정성태6/29/201228879제니퍼 .NET: 22. 눈으로 확인하는 connectionManagement의 maxconnection 설정값 [4]
1305정성태6/28/201227056오류 유형: 157. IIS 6 - WCF svc 호출 시 404 Not Found 발생
1304정성태6/27/201227841개발 환경 구성: 153. sysnet 첨부 파일을 Azure Storage에 마이그레이션 [3]파일 다운로드1
1303정성태6/26/201227367개발 환경 구성: 152. sysnet DB를 SQL Azure 데이터베이스로 마이그레이션
... 136  137  138  139  140  141  142  143  144  145  146  147  148  [149]  150  ...