Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 2개 있습니다.)
스크립트: 49. 파이썬 - "Transformers (신경망 언어모델 라이브러리) 강좌" - 1장 2절 코드 실행 결과
; https://www.sysnet.pe.kr/2/0/13363

스크립트: 50. Transformers (신경망 언어모델 라이브러리) 강좌 - 2장 코드 실행 결과
; https://www.sysnet.pe.kr/2/0/13375




파이썬 - "Transformers (신경망 언어모델 라이브러리) 강좌" - 1장 2절 코드 실습

다음의 강좌에서,

Transformers (신경망 언어모델 라이브러리) 강좌
; https://wikidocs.net/book/8056

1장 2절의 내용에,

2. 🤗Transformers가 할 수 있는 일들
; https://wikidocs.net/166787

포함된 코드를 구글 Colab에서 수행한 결과를 나열해 봅니다. ^^

!pip install transformers

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

classifier("I've been waiting for a HuggingFace course my whole life.")

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

# 실행 결과
[{'label': 'POSITIVE', 'score': 0.9598048329353333},
 {'label': 'NEGATIVE', 'score': 0.9994558691978455}]

from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier(
    "This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"],
)

# 실행 결과
{'sequence': 'This is a course about the Transformers library',
 'labels': ['education', 'business', 'politics'],
 'scores': [0.8445989489555359, 0.11197412759065628, 0.04342695698142052]}

from transformers import pipeline

generator = pipeline("text-generation")
generator("In this course, we will teach you how to")

# 실행 결과
[{'generated_text': "In this course, we will teach you how to use NLP with the following tasks. In this course, we will work with a computer running NLP. I'm using the npc-get system to find your NPM scripts and to start"}]

from transformers import pipeline

generator = pipeline("text-generation", model="distilgpt2")    # distilgpt2 모델을 로드한다.
generator(
    "In this course, we will teach you how to",
    max_length=30,
    num_return_sequences=2,
)

# 실행 결과
[{'generated_text': 'In this course, we will teach you how to create a simple and fun web design using Photoshop for building a simple website.\n\n\n\nThe'},
 {'generated_text': 'In this course, we will teach you how to apply the following basic concepts to your life (see below). This course aims to help you to choose'}]

from transformers import pipeline

unmasker = pipeline("fill-mask")
unmasker("This course will teach you all about  models.", top_k=3)

# 실행 결과
[{'score': 0.19619806110858917,
  'token': 30412,
  'token_str': ' mathematical',
  'sequence': 'This course will teach you all about mathematical models.'},
 {'score': 0.04052723944187164,
  'token': 38163,
  'token_str': ' computational',
  'sequence': 'This course will teach you all about computational models.'},
 {'score': 0.03301795944571495,
  'token': 27930,
  'token_str': ' predictive',
  'sequence': 'This course will teach you all about predictive models.'}]

from transformers import pipeline

ner = pipeline("ner", grouped_entities=True)
ner("My name is Sylvain and I work at Hugging Face in Brooklyn.")

# 실행 결과
[{'entity_group': 'PER',
  'score': 0.9981694,
  'word': 'Sylvain',
  'start': 11,
  'end': 18},
 {'entity_group': 'ORG',
  'score': 0.9796019,
  'word': 'Hugging Face',
  'start': 33,
  'end': 45},
 {'entity_group': 'LOC',
  'score': 0.9932106,
  'word': 'Brooklyn',
  'start': 49,
  'end': 57}]

from transformers import pipeline

question_answerer = pipeline("question-answering")
question_answerer(
    question="Where do I work?",
    context="My name is Sylvain and I work at Hugging Face in Brooklyn",
)

# 실행 결과
{'score': 0.6949767470359802, 'start': 33, 'end': 45, 'answer': 'Hugging Face'}

from transformers import pipeline

summarizer = pipeline("summarization")
summarizer(
    """
    America has changed dramatically during recent years. Not only has the number of 
    graduates in traditional engineering disciplines such as mechanical, civil, 
    electrical, chemical, and aeronautical engineering declined, but in most of 
    the premier American universities engineering curricula now concentrate on 
    and encourage largely the study of engineering science. As a result, there 
    are declining offerings in engineering subjects dealing with infrastructure, 
    the environment, and related issues, and greater concentration on high 
    technology subjects, largely supporting increasingly complex scientific 
    developments. While the latter is important, it should not be at the expense 
    of more traditional engineering.

    Rapidly developing economies such as China and India, as well as other 
    industrial countries in Europe and Asia, continue to encourage and advance 
    the teaching of engineering. Both China and India, respectively, graduate 
    six and eight times as many traditional engineers as does the United States. 
    Other industrial countries at minimum maintain their output, while America 
    suffers an increasingly serious decline in the number of engineering graduates 
    and a lack of well-educated engineers.
    """
)

# 실행 결과
[{'summary_text': ' America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil, electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India, as well as other industrial countries in Europe and Asia, continue to encourage and advance engineering .'}]

from transformers import pipeline

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
translator("그동안 너무 잘해 주셔서 감사드립니다.")

# 실행 결과
[{'translation_text': 'Thank you so much for your kindness.'}]

from transformers import pipeline

unmasker = pipeline("fill-mask", model="bert-base-uncased")
result = unmasker("This man works as a [MASK].")
print([r["token_str"] for r in result])

result = unmasker("This woman works as a [MASK].")
print([r["token_str"] for r in result])


# 실행 결과
['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']
['nurse', 'maid', 'teacher', 'waitress', 'prostitute']




참고로, Colab이 아닌 Windows에서의 python 환경에서 테스트하고 싶다면 우선 python 3.10으로 설치하고,

Python 3.10.0
; https://www.python.org/downloads/release/python-3100/

제 경우에는 "Windows embeddable package (64-bit)"를 다운로드했고 (따라서 _pth 파일과 pip을 별도로 설정한 다음), virtualenv도 마저 설치합니다.

이후 새로운 virtualenv 환경을 만들고,

C:\python\llml> virtualenv test
created virtual environment CPython3.10.0.final.0-64 in 3934ms
  ...[생략]...

활성화시킨 후,

C:\python\llml> cd test
C:\python\llml\test> .\Scripts\activate

(test) C:\python\llml\test>

transformers를 설치합니다.

(test) C:\python\llml\test> python -m pip install "transformers[sentencepiece]"

그런데, 이것만으로는 pipeline 예제를 실행하는 경우 예외가 발생합니다.

Traceback (most recent call last):
  File "C:\python\llml\test\sc1.py", line 3, in 
    unmasker = pipeline("fill-mask", model="bert-base-uncased")
  File "C:\python\llml\test\lib\site-packages\transformers\pipelines\__init__.py", line 788, in pipeline
    framework, model = infer_framework_load_model(
  File "C:\python\llml\test\lib\site-packages\transformers\pipelines\base.py", line 222, in infer_framework_load_model
    raise RuntimeError(
RuntimeError: At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.

메시지에서 의미하듯이 PyTorch (또는 tensorflow)를 설치해야 하는데요,

START LOCALLY
; https://pytorch.org/get-started/locally/

// NVidia CUDA 11.8
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

// CPU
python -m pip install torch torchvision torchaudio

PyTorch의 경우 지원하는 Compute Platform에 CPU와 CUDA만 있으므로 아쉽게도 AMD 그래픽 카드에서는 사용할 수 없습니다. 하지만, 이미 이 글에서 실습한 코드들의 경우 Model을 직접 훈련시키는 것이 아닌, 이미 훈련된 Model을 사용하는 것에 불과하므로 CPU로도 문제없이 실습이 가능합니다. (3장의 미세 조정 학습까지는!)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/26/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 181  182  183  184  185  186  187  188  189  190  191  192  193  194  [195]  ...
NoWriterDateCnt.TitleFile(s)
68정성태10/31/200422036.NET Framework: 17. Win32_NTLogEvent를 c#에서 wmi 쿼리할 때..에러..
67정성태10/22/200419251COM 개체 관련: 12. Microsoft.XMLHTTP 개체에서 Microsoft.XMLDOM 개체를 전송할 때 charset 지정 문제?
66정성태10/16/200420419.NET Framework: 16. [닷넷 리모팅] 프록시가 죽은 것을 원격 개체가 알 수 있는 방법은?
65정성태10/16/200419438VS.NET IDE: 8. Windows 가상 메모리 사용 해제
64정성태10/3/200423120.NET Framework: 15. ASP.NET에서 .NET COM+ 개체 등록 시 "Local System"이어야 하는 이유.
63정성태10/3/200423256.NET Framework: 14. Response.Cookies.Clear는 기존 설정된 Cookie 헤더를 삭제하는 것이 아닙니다.
62정성태10/3/200422239기타: 7. DB 트랜잭션에서 Lock이 걸릴 수 있는 전형적인 예.
61정성태10/3/200421755.NET Framework: 13. Main 메서드에 붙은 STAThread 의미
60정성태10/3/200420466.NET Framework: 12. IDispatch::GetIDsOfNames 역변환 메서드 작성 힌트 ( DISPID 로 메서드 이름 알아내는 것 )
58정성태10/3/200423564.NET Framework: 11. HttpContext의 간략이해
56정성태10/3/200420020.NET Framework: 10. [.NET 리모팅] 원격개체를 호출한 클라이언트의 연결이 유효한지 판단하는 방법.
55정성태10/3/200420785COM 개체 관련: 11. 내가 생각해 보는 COM의 현재 위치
54정성태8/30/200426448VC++: 10. 내가 생각해 보는 MFC OCX와 ATL DLL에 선택 기준
53정성태11/20/200525788VC++: 9. CFtpFileFind/FtpFileFind가 일부 Unix FTP 서버에서 목록을 제대로 못 가져오는 문제
184정성태11/23/200519432    답변글 VC++: 9.1. FTP 관련 토픽파일 다운로드1
51정성태6/24/200424365VC++: 8. BSTR 메모리 할당 및 해제(MSDN Library 발췌) [1]
50정성태6/16/200417727기타: 6. 1차 데스크톱 컴퓨터 사양
49정성태6/16/200418205기타: 5. 53만 원대 Second PC 마련. ^^
48정성태3/2/200420098.NET Framework: 9. 윈도우즈 발전사를 모아 둔 사이트. [1]
47정성태11/14/200518600VS.NET IDE: 7. 한글 OS에서 Internet Explorer 6.0 with SP1의 UI 언어 바꾸는 방법
45정성태1/26/200417992기타: 4. MCAD 시험
44정성태1/26/200418798VS.NET IDE: 6. 터미널 서비스 포트 변경 ( 서버 및 클라이언트 )
46정성태1/26/200423841    답변글 VS.NET IDE: 6.1. Windows 2003 터미널 서비스 라이센스 서버 없이 접속
114정성태11/14/200515220    답변글 VS.NET IDE: 6.2. [터미널 서버 라이센스] : 활성화 시 오류
43정성태12/23/200318431기타: 3. XP/2003 개인 방화벽 설정파일 다운로드1
40정성태7/23/200321922COM 개체 관련: 10. IE BHO 개체를 개발할 때, 인터넷 익스플로러가 아닌 탐색기에서 활성화 되는 문제 해결 [1]
... 181  182  183  184  185  186  187  188  189  190  191  192  193  194  [195]  ...