Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 

(시리즈 글이 2개 있습니다.)
스크립트: 49. 파이썬 - "Transformers (신경망 언어모델 라이브러리) 강좌" - 1장 2절 코드 실행 결과
; https://www.sysnet.pe.kr/2/0/13363

스크립트: 50. Transformers (신경망 언어모델 라이브러리) 강좌 - 2장 코드 실행 결과
; https://www.sysnet.pe.kr/2/0/13375




파이썬 - "Transformers (신경망 언어모델 라이브러리) 강좌" - 1장 2절 코드 실습

다음의 강좌에서,

Transformers (신경망 언어모델 라이브러리) 강좌
; https://wikidocs.net/book/8056

1장 2절의 내용에,

2. 🤗Transformers가 할 수 있는 일들
; https://wikidocs.net/166787

포함된 코드를 구글 Colab에서 수행한 결과를 나열해 봅니다. ^^

!pip install transformers

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

classifier("I've been waiting for a HuggingFace course my whole life.")

classifier(["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"])

# 실행 결과
[{'label': 'POSITIVE', 'score': 0.9598048329353333},
 {'label': 'NEGATIVE', 'score': 0.9994558691978455}]

from transformers import pipeline

classifier = pipeline("zero-shot-classification")
classifier(
    "This is a course about the Transformers library",
    candidate_labels=["education", "politics", "business"],
)

# 실행 결과
{'sequence': 'This is a course about the Transformers library',
 'labels': ['education', 'business', 'politics'],
 'scores': [0.8445989489555359, 0.11197412759065628, 0.04342695698142052]}

from transformers import pipeline

generator = pipeline("text-generation")
generator("In this course, we will teach you how to")

# 실행 결과
[{'generated_text': "In this course, we will teach you how to use NLP with the following tasks. In this course, we will work with a computer running NLP. I'm using the npc-get system to find your NPM scripts and to start"}]

from transformers import pipeline

generator = pipeline("text-generation", model="distilgpt2")    # distilgpt2 모델을 로드한다.
generator(
    "In this course, we will teach you how to",
    max_length=30,
    num_return_sequences=2,
)

# 실행 결과
[{'generated_text': 'In this course, we will teach you how to create a simple and fun web design using Photoshop for building a simple website.\n\n\n\nThe'},
 {'generated_text': 'In this course, we will teach you how to apply the following basic concepts to your life (see below). This course aims to help you to choose'}]

from transformers import pipeline

unmasker = pipeline("fill-mask")
unmasker("This course will teach you all about  models.", top_k=3)

# 실행 결과
[{'score': 0.19619806110858917,
  'token': 30412,
  'token_str': ' mathematical',
  'sequence': 'This course will teach you all about mathematical models.'},
 {'score': 0.04052723944187164,
  'token': 38163,
  'token_str': ' computational',
  'sequence': 'This course will teach you all about computational models.'},
 {'score': 0.03301795944571495,
  'token': 27930,
  'token_str': ' predictive',
  'sequence': 'This course will teach you all about predictive models.'}]

from transformers import pipeline

ner = pipeline("ner", grouped_entities=True)
ner("My name is Sylvain and I work at Hugging Face in Brooklyn.")

# 실행 결과
[{'entity_group': 'PER',
  'score': 0.9981694,
  'word': 'Sylvain',
  'start': 11,
  'end': 18},
 {'entity_group': 'ORG',
  'score': 0.9796019,
  'word': 'Hugging Face',
  'start': 33,
  'end': 45},
 {'entity_group': 'LOC',
  'score': 0.9932106,
  'word': 'Brooklyn',
  'start': 49,
  'end': 57}]

from transformers import pipeline

question_answerer = pipeline("question-answering")
question_answerer(
    question="Where do I work?",
    context="My name is Sylvain and I work at Hugging Face in Brooklyn",
)

# 실행 결과
{'score': 0.6949767470359802, 'start': 33, 'end': 45, 'answer': 'Hugging Face'}

from transformers import pipeline

summarizer = pipeline("summarization")
summarizer(
    """
    America has changed dramatically during recent years. Not only has the number of 
    graduates in traditional engineering disciplines such as mechanical, civil, 
    electrical, chemical, and aeronautical engineering declined, but in most of 
    the premier American universities engineering curricula now concentrate on 
    and encourage largely the study of engineering science. As a result, there 
    are declining offerings in engineering subjects dealing with infrastructure, 
    the environment, and related issues, and greater concentration on high 
    technology subjects, largely supporting increasingly complex scientific 
    developments. While the latter is important, it should not be at the expense 
    of more traditional engineering.

    Rapidly developing economies such as China and India, as well as other 
    industrial countries in Europe and Asia, continue to encourage and advance 
    the teaching of engineering. Both China and India, respectively, graduate 
    six and eight times as many traditional engineers as does the United States. 
    Other industrial countries at minimum maintain their output, while America 
    suffers an increasingly serious decline in the number of engineering graduates 
    and a lack of well-educated engineers.
    """
)

# 실행 결과
[{'summary_text': ' America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil, electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India, as well as other industrial countries in Europe and Asia, continue to encourage and advance engineering .'}]

from transformers import pipeline

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
translator("그동안 너무 잘해 주셔서 감사드립니다.")

# 실행 결과
[{'translation_text': 'Thank you so much for your kindness.'}]

from transformers import pipeline

unmasker = pipeline("fill-mask", model="bert-base-uncased")
result = unmasker("This man works as a [MASK].")
print([r["token_str"] for r in result])

result = unmasker("This woman works as a [MASK].")
print([r["token_str"] for r in result])


# 실행 결과
['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']
['nurse', 'maid', 'teacher', 'waitress', 'prostitute']




참고로, Colab이 아닌 Windows에서의 python 환경에서 테스트하고 싶다면 우선 python 3.10으로 설치하고,

Python 3.10.0
; https://www.python.org/downloads/release/python-3100/

제 경우에는 "Windows embeddable package (64-bit)"를 다운로드했고 (따라서 _pth 파일과 pip을 별도로 설정한 다음), virtualenv도 마저 설치합니다.

이후 새로운 virtualenv 환경을 만들고,

C:\python\llml> virtualenv test
created virtual environment CPython3.10.0.final.0-64 in 3934ms
  ...[생략]...

활성화시킨 후,

C:\python\llml> cd test
C:\python\llml\test> .\Scripts\activate

(test) C:\python\llml\test>

transformers를 설치합니다.

(test) C:\python\llml\test> python -m pip install "transformers[sentencepiece]"

그런데, 이것만으로는 pipeline 예제를 실행하는 경우 예외가 발생합니다.

Traceback (most recent call last):
  File "C:\python\llml\test\sc1.py", line 3, in 
    unmasker = pipeline("fill-mask", model="bert-base-uncased")
  File "C:\python\llml\test\lib\site-packages\transformers\pipelines\__init__.py", line 788, in pipeline
    framework, model = infer_framework_load_model(
  File "C:\python\llml\test\lib\site-packages\transformers\pipelines\base.py", line 222, in infer_framework_load_model
    raise RuntimeError(
RuntimeError: At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.

메시지에서 의미하듯이 PyTorch (또는 tensorflow)를 설치해야 하는데요,

START LOCALLY
; https://pytorch.org/get-started/locally/

// NVidia CUDA 11.8
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

// CPU
python -m pip install torch torchvision torchaudio

PyTorch의 경우 지원하는 Compute Platform에 CPU와 CUDA만 있으므로 아쉽게도 AMD 그래픽 카드에서는 사용할 수 없습니다. 하지만, 이미 이 글에서 실습한 코드들의 경우 Model을 직접 훈련시키는 것이 아닌, 이미 훈련된 Model을 사용하는 것에 불과하므로 CPU로도 문제없이 실습이 가능합니다. (3장의 미세 조정 학습까지는!)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 6/26/2023]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  [77]  78  79  80  81  82  83  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
12091정성태12/25/201924211디버깅 기술: 147. pdb 파일을 다운로드하기 위한 symchk.exe 실행에 필요한 최소 파일 [1]
12090정성태12/24/201923743.NET Framework: 871. .NET AnyCPU로 빌드된 PE 헤더의 로딩 전/후 차이점 [1]파일 다운로드1
12089정성태12/23/201921238디버깅 기술: 146. gflags와 _CrtIsMemoryBlock을 이용한 Heap 메모리 손상 여부 체크
12088정성태12/23/201920966Linux: 28. Linux - 윈도우의 "Run as different user" 기능을 shell에서 실행하는 방법
12087정성태12/21/201920975디버깅 기술: 145. windbg/sos - Dictionary의 entries 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12086정성태12/20/201924792디버깅 기술: 144. windbg - Marshal.FreeHGlobal에서 발생한 덤프 분석 사례
12085정성태12/20/201923029오류 유형: 586. iisreset - The data is invalid. (2147942413, 8007000d) 오류 발생 - 두 번째 이야기 [1]
12084정성태12/19/201922777디버깅 기술: 143. windbg/sos - Hashtable의 buckets 배열 내용을 모두 덤프하는 방법 (do_hashtable.py) [1]
12083정성태12/17/201925177Linux: 27. linux - lldb를 이용한 .NET Core 응용 프로그램의 메모리 덤프 분석 방법 [2]
12082정성태12/17/201923898오류 유형: 585. lsof: WARNING: can't stat() fuse.gvfsd-fuse file system
12081정성태12/16/201926372개발 환경 구성: 465. 로컬 PC에서 개발 중인 ASP.NET Core 웹 응용 프로그램을 다른 PC에서도 접근하는 방법 [5]
12080정성태12/16/201922213.NET Framework: 870. C# - 프로세스의 모든 핸들을 열람
12079정성태12/13/201925391오류 유형: 584. 원격 데스크톱(rdp) 환경에서 다중 또는 고용량 파일 복사 시 "Unspecified error" 오류 발생
12078정성태12/13/201925190Linux: 26. .NET Core 응용 프로그램을 위한 메모리 덤프 방법 [3]
12077정성태12/13/201922510Linux: 25. 자주 실행할 명령어 또는 초기 환경을 "~/.bashrc" 파일에 등록
12076정성태12/12/201922651디버깅 기술: 142. Linux - lldb 환경에서 sos 확장 명령어를 이용한 닷넷 프로세스 디버깅 - 배포 방법에 따른 차이
12075정성태12/11/201923682디버깅 기술: 141. Linux - lldb 환경에서 sos 확장 명령어를 이용한 닷넷 프로세스 디버깅
12074정성태12/10/201923156디버깅 기술: 140. windbg/Visual Studio - 값이 변경된 경우를 위한 정지점(BP) 설정(Data Breakpoint)
12073정성태12/10/201923067Linux: 24. Linux/C# - 실행 파일이 아닌 스크립트 형식의 명령어를 Process.Start로 실행하는 방법
12072정성태12/9/201919687오류 유형: 583. iisreset 수행 시 "No such interface supported" 오류
12071정성태12/9/201924505오류 유형: 582. 리눅스 디스크 공간 부족 및 safemode 부팅 방법
12070정성태12/9/201925805오류 유형: 581. resize2fs: Bad magic number in super-block while trying to open /dev/.../root
12069정성태12/2/201923171디버깅 기술: 139. windbg - x64 덤프 분석 시 메서드의 인자 또는 로컬 변수의 값을 확인하는 방법
12068정성태11/28/201931650디버깅 기술: 138. windbg와 Win32 API로 알아보는 Windows Heap 정보 분석 [3]파일 다운로드2
12067정성태11/27/201923315디버깅 기술: 137. 실제 사례를 통해 Debug Diagnostics 도구가 생성한 닷넷 웹 응용 프로그램의 성능 장애 보고서 설명 [1]파일 다운로드1
12066정성태11/27/201922891디버깅 기술: 136. windbg - C# PInvoke 호출 시 마샬링을 담당하는 함수 분석 - OracleCommand.ExecuteReader에서 OpsSql.Prepare2 PInvoke 호출 분석
... 76  [77]  78  79  80  81  82  83  84  85  86  87  88  89  90  ...